Введение Одним из актуальных вопросов обеспечения надежной работы радиоэлектронной аппаратуры был и остается вопрос обеспечения ее бесперебойным и качественным питанием. Авария источника питания, стоимость которого не превышает нескольких процентов от цены всего изделия, порой может погубить ценнейшее радиоэлектронное оборудование и обернуться катастрофой. Более того, в результате повреждения источник питания может стать опасным для жизни человека. |
Электронные предохранители переменного токаСхемы защиты радиоэлектронного оборудования, работающие на переменном токе, обычно более сложны и получили меншее распространение. Это обусловлено тем, что большинство полупроводниковых приборов работает на постоянном токе и, <роме того, надежность работы полупроводниковых приборов на повышенных напряжениях сетевого уровня невелика, поскольку пюбой случайный бросок напряжения, например, при переходных процессах, может легко пробить переход даже самого высоковольтного полупроводникового прибора. Рис. 6.1. Схема полупроводникового биполярного предохранителя на позисторе Полупроводниковый биполярный «предохранитель» (рис. 6.1) способен защитить электронную схему от перегрузки по току [6.1]. ля уменьшения остаточного тока в отключенном состоянии в схе-ie использован позистор. Когда ток нагрузки меньше допустимого, ранзистор VT1 заперт, a VT2 — открыт и находится в состоянии насыщения. Падение напряжения на участке эмиттер — коллектор ранзистора VT2 мало. При перегрузке это напряжение заметно юзрастает, что вызывает открывание транзистора VT1 и возрастаие его коллекторного тока. При этом транзистор VT2 закрывается, ок через электронный предохранитель уменьшается. К позистору рикладывается значительно большее напряжение, в связи с чем Рис. 6.2. Схема полуавтомата защиты аппаратуры при изменении напряжения сети Для питания обмотки электромагнитного реле К1 использован мостовой выпрямитель VD1 — VD4, подключенный к сети через гасящие конденсаторы С1 и С2. Включают устройство фатковременным нажатием на кнопку SB1. Реле К1 срабатыва-эт, его контакты К1.1 блокируют контакты пусковой кнопки. Конденсатор С1 обеспечивает необходимый пусковой ток реле при включении. Рис. 6.3. Схема электронного предохранителя переменного тока Питание устройство контроля тока получает от простейшего выпрямителя с использованием гасящего конденсатора и параметрического стабилизатора на стабилитроне VD3. |
Полупроводниковые самовосстанавливающиеся элементы защиты электронных схем Для нормального функционирования РЭА опасными являются стойкие или кратковременные превышения напряжения питающей сети. Известно, что в обычной питающей сети 220 В 50 Гц достаточно часто присутствуют опасные для бытовой аппаратуры высоковольтные (свыше 400 В) импульсы напряжения длительностью от десятых долей микросекунды до единиц миллисекунд [7.1].
Особенность работы такого индикатора исправности — использование светодиодов в нестандартном режиме. При исправных ограничителях VD1 и VD2 и положительном полупериоде напряжения сети (плюс — на верхнем по схеме сетевом проводе) ток беспрепятственно протекает через ограничитель VD1, открытый в прямом направлении, и через светодиод HL1. Ограничитель VD2 в это время закрыт. Рис. 7.2. Типовая схема включения ограничителя напряжения с индикацией отказа В качестве элементов защиты от перенапряжений можно использовать двух- или трехэлектродные разрядники фирмы Siemens. Защитные устройства на базе элементов PolySwitch корпорации Raychem совместно с разрядниками Siemens обеспечивают многоразовую самовосстанавливающуюся защиту оборудования [7.7, 7.8]. |
Индикаторы отказа элементов схем Для защиты радиоэлектронного оборудования от токовых перегрузок используют плавкие и тепловые предохранители с использованием биметалла или элементов с памятью формы, а также полупроводниковые предохранители с самовосстановлением, см. главу 7. Своевременная реакция на срабатывание системы защиты радиоэлектронного и электросилового оборудования позволит предупредить развитие аварийной ситуации, устранить причину неисправности.
При штатном режиме работы предохранитель шунтирует цепь, состоящую из резистора R1 и светодиода HL1 красного цвета свечения. Параллельно источнику питания и нагрузке
При токе через светодиод 10...20 мА величина этого сопротивления (кОм) примерно равна 50...10011ПИТ(В). При малых напряжениях в расчетах следует учитывать, что на светодиоде падает напряжение около 2 В, на диоде — 0,5...0,7 В. При работе
Пока предохранитель FU1 исправен, напряжение источника питания поступает на обе части светодиода HL1 одновременно. Если бы токи через них были близки по значению, то их общий цвет свечения был бы желтый или оранжевый. Однако, поскольку ВАХ светодиодов красного и зеленого свечения заметно различаются (ВАХ светодиода красного свечения идет круче), большая часть тока будет протекать именно через «красный» светодиод. Суммарный цвет свечения при параллельном включении двухцветного светодиода АЛС331А при исправном предохранителе будет красно-оранжевым.
При перегорании предохранителя ток протекает только через светодиод красного свечения. Рис. 8.5. Схема индикатора перегорания предохранителя с защитой светодиодов от пробоя обратным напряжением Рис. 8.6. Схема индикатора перегорания предохранителя для переменного и постоянного тока В случае перегорания предохранителя и при коротком замыкании в нагрузке ток протекает через индикатор. Диод VD1 и стабилитрон VD2 обеспечивают рекомендованный для светодиодов режим работы, резистор R1 ограничивает предельный ток через светодиод. Устройство работоспособно и в цепях постоянного тока при условии его подключения в соответствующей полярности.
Рис. 8.8. Схема индикатора перегорания предохранителя на двух светодиодах Диод VD3 обеспечивает защиту светодиодов от пробоя при отрицательной полуволне сетевого напряжения. Рис. 8.9. Схема светодиодного индикатора перегорания предохранителя для цепей постоянного тока
Обычно для индикации перегорания предохранителя используют низковольтные трехполюсники постоянного тока: при срабатывании сигнализации можно наблюдать непрерывное свечение светодиода. Рис. 8.11. Схема индикатора перегорания предохранителя для постоянного и переменного тока Роль времязадающего конденсатора в устройстве выполняет пьезокерамический излучатель BQ1, который, если использовать только светодиодную индикацию, можно заменить конденсатором емкостью 0,022...0,5 мкФ. Рис. 8.12. Схема индикатора обрыва питания в цепи переменного или постоянного тока Индикатор можно применять в цепях постоянного и переменного (до 1 кГц) тока напряжением от 10 до 1000 В. Максимальный ток, протекающий через индикатор и короткозамкнутую нагрузку при срабатывании элемента защиты, ограничен резисторами R1 и R2 — при напряжении 220 В ток не превышает 0,5 мА. При работе на пониженном напряжении (менее 100 В) сопротивление резисторов R1 и R2 можно уменьшить. |
Индикаторы аварийного отключения источника питания Неплановое или несанкционированное отключение источника электрической энергии может повлечь для сложнотехниче-ских систем, радиоэлектронного бытового и производственного оборудования катастрофические последствия. Ущерб от создавшейся аварийной ситуации можно снизить за счет использования средств оперативного контроля и оповещения обслуживающего персонала о сложившейся аварийной ситуации.
Для индикации отключения источника электроэнергии на рис. 9.1 использован аналог оптрона на основе неоновой змпы HL1 и фотодиода VD1 (или фотосопротивления) [9.1]. В дущем режиме устройство потребляет от батареи питания на-эяжением 9 В минимальный ток. Пока светится неоновая лампа _1, сопротивление фотодиода VD1 мало, напряжение на входе 2 /ШО/7-тригтера первого элемента микросхемы DD1 минимально, а на выходе 3 — максимально (около 9 S).
При отключении сетевого напряжения конденсатор С1 начинает разряжаться. Как только напряжение на нем упадет до 2 6 и ниже, транзистор VT1 закроется, и на входе 1 микросхемы DD1.1 появится напряжение единичного уровня. Оба генератора запустятся, и из динамической головки ВА1 будет раздаваться прерывистый тональный сигнал частотой 1 ...2 кГц. В режиме тревожной сигнализации устройство питается от батареи гальванических элементов или аккумуляторов GB1 напряжением 4,5...9 В. В дежурном режиме эта батарея подзаряжается от сети через диод VD5 и токоограничивающий резистор R6. Диод VD4 обеспечивает закрывание транзистора VT1. |
Схемы резервирования источников питания Для резервирования питания ответственных энергопотребителей используют параллельное соединение нескольких источников питания, исключая при этом взаимное влияние одного источника на другой.
Кроме того, на светодиоде падает около двух вольт, необходимых для его работы. Световая индикация неустойчива при несущественной разности напряжений питания.
В исходном (штатном) режиме ток от источника основного питания Еа через светодиод-индикатор тока нагрузки поступает в нагрузку. Транзистор VT1 открыт, транзистор VT2 закрыт, резервная батарея питания Еь отключена. Как только произойдет отключение основного источника питания, светодиод HL1 погаснет, закроется транзистор VT1 и, соответственно, откроется транзистор VT2. Батарея Еь подключится к нагрузке.
Аккумуляторная батарея состоит из шести элементов Д-0,55. Ее ресурса хватает для автономной работы телефона в течение часа.
Дальнейшим развитием предыдущего устройства является автоматический коммутатор питания (рис. 10.7) [10.6]. Устройство предназначено для установки в любые носимые и переносные устройства (приемники, плейеры, магнитофоны), имеющие внутренние источники питания. Автоматический коммутатор питания позволяет автоматически переходить от внутреннего к внешнему питанию и обратно.
При наличии напряжения в сети часы питаются от нее во время положительных полупериодов, а во время отрицательных полупериодов — энергией, запасенной аккумулятором GB1 и конденсатором СЗ. При пропадании сетевого напряжения источником питания становится аккумулятор. Рис. 10.9. Схема резервированного питания электронных часов С выхода стабилизатора (аналога стабилитрона и, одновременно, индикатора включения — светодиода HL1) напряжение питания через германиевый диод VD5 подается на электронные часы. В случае отключения сетевого напряжения часы получают питание от батареи GB1, при наличии сетевого напряжения ток выпрямителя подзаряжает элемент питания. В схеме не использован конденсатор фильтра. Роль конденсатора фильтра большой емкости выполняет сам элемент питания.
Схема включения источника резервного питания с гальванической развязкой (ИР/7) питается от источника управляющего сигнала (рис. 10.11), потребляя при этом минимальный ток (доли мА). Управляющий сигнал поступает на резистивный делитель R1, R2. Стабилитрон VD6 и диоды VD1 — VD5 защищают вход устройства от перенапряжения и неправильного подключения полярности. ИР/7 отключен контактами реле К1.1. Напряжение, снимаемое с резистора R2 и стабилитрона VD6, поступает через диод VD5 на электролитический конденсатор С1 большой емкости. Этот конденсатор при первом включении устройства заряжается до 9... 10 В за 2.. .3 минуты, после чего схема готова к работе. Скорость заряда и потребляемый устройством ток определяются резистором R1. Транзистор VT1 закрыт падением напряжения на VD5. Через диод VD7 и резистор R4 устройство подключено к ИР/7. |
Резервирование элементов устройств В технике электропитания зачастую является актуальным выполнение тех или иных функций даже в случае возникновения аварийных ситуаций. К задачам такого рода относятся, например, поддержание освещенности в помещениях пультов управления сложным техническим оборудованием, сохранение постоянным тока нагрузки цепей питания ряда источников питания и т.д.
Одна из наиболее простых схем, позволяющих дублировать основной источник светового излучения в случае перегорания его нити накала, показана на рис. 11.1 [11.1]. При включении устройства горит лампа EL1. Транзистор VT1 открыт, VT2 — закрыт. При обрыве в цепи смещения транзистора VT1 (перегорании лампы EL1, нарушении контакта в панельке) транзистор VT1 закрывается, соответственно открывается транзистор VT2 и включается лампа EL2.
Для контроля исправности лампы EL1 или иной резистив-ой нагрузки может быть использована схема, показанная на ис. 11.3 [11.3]. Нагрузка — лампа EL1 — питается постоянным эком через диод — датчик тока VD1. Пока через нагрузку проте-ает ток, на датчике тока — диоде VD1 падает часть напряжения итания — около 0,7 В. Это напряжение поддерживает в откры-эм состоянии транзистор VT1, в коллекторную цепь которого ключей светодиод HL1 и токоограничивающий резистор R1.
Слаботочная лампа накаливания EL3 индицирует наличие короткого замыкания в цепи лампы EL1.
Стоит этой лампе перегореть, коллекторный ток транзистора VT1 уменьшится, схема переключится, будет светиться вторая лампа ELr и соответствующий ей светодиод Hl_r.
Предельная мощность, рассеиваемая такой нагрузкой, определяется типом транзистора и площадью теплоотвода. Для указанного в первоисточнике типа транзистора максимальная длительно рассеиваемая мощность составляет 50 Вт. Эквивалент нагрузки в соответствии с полярностью питающего напряжения подключают к выходу источника постоянного тока. Через составной транзистор VT2 и VT3 может протекать ток до 4 А. Переключателем SA2 можно отключить мощный выходной транзистор VT3 и ограничить величину тока через эквивалент нагрузки до 0,7 А. Диапазон регулируемых эквивалентных сопротивлений составляет 1,5...4 Ом и 4...24 Ом, соответственно. |
Стабилизация параметров и защита цепей нагрузки Аварийные ситуации при работе радиоэлектронного, да и любого другого оборудования, чаще всего возникают при переходных процессах, когда происходят резкие изменения состояния системы. По статистике наиболее часто повреждение оборудования происходит при его включении или выключении. На дестабилизирующее воздействие любая система реагирует с задержкой во времени. Эта инерционность для нагреваемых электрическим током приборов обусловлена массой и теплоемкостью нагреваемого материала. Так, например, разрушение (перегорание) нитей накала электровакуумных приборов происходит преимущественно в момент подачи напряжения на холодную нить. Мощность, выделяющаяся на нити накала в момент ее включения, превышает номинальную в 10 раз для ламп прямого накала и в 2...3 раза для ламп косвенного накала. Помимо возможного перегорания нити накала, мгновенное выделение значительной тепловой энергии в малом объеме способствует возникновению термонапряжений в конструкционных элементах лампы, растрескиванию стекла возле токовводов и т.д. [12.1].
Подстроечным резистором R1 выставляют необходимое напряжение накала (7 В), желательно при отключенном конденсаторе СЗ.
Плавное двухминутное нарастание выходного напряжения устройства в момент включения обеспечивается установкой в цепи коррекции и обратной связи микросхемы конденсаторов СЗ и С4.
Схема устройства, обеспечивающего «замедленный» режим включения ламп накаливания показана на рис. 12.4 [12.5].
Первичная обмотка трансформатора Т2 включена в на-кальную цепь кинескопа. К его повышающей обмотке подключен циодный мост VD1 — VD4, нагруженный на кенотрон VL1 и обеспечивающий, пока он закрыт, выходное напряжение 220...240 8 на некоторое время после включения питания. Это напряжение поддерживает в закрытом состоянии электронные прожектора <инескопа на время прогрева его катодов.
Для защиты осветительной лампы накаливания предназначено устройство, схема которого приведена на рис. 12.6 [12.7]. Оно обеспечивает плавную регулировку максимальной мощности лампы. При включении лампы переключателем SA1 геркон, закрепленный на язычке переключателя, включает зарядную цепочку, состоящую из накопительного конденсатора С1 и резистора R3. В процессе заряда конденсатора частота работы генератора импульсов на однопереходном транзисторе VT1 будет повышаться. На нить накала лампы будут поступать нарастающие по амплитуде
Поскольку на резисторе R1 избыточная мощность выделяя кратковременно, можно использовать резистор, рассчитан-й на мощность 2 Вт. Величина сопротивления этого резистора ч маломощных (до 60...75 Вт) ламп составляет 750 Ом, для бо-э мощных — 400 Ом и менее. Рис. 12.8. Схема устройства двухступенчатого подключения нити накала кинескопа к источнику питания После того как напряжение на конденсаторе С1 (С2) превысит некоторый порог, откроется составной транзистор VT1, VT2 (VT3, VT4). Для этого достаточно 32 и 10 сек, соответственно.
Мощность, потребляемая устройством, не превышает 1 Вт и определяется, главным образом, типом используемых реле (ток срабатывания до 100 мА).
Светодиод HL2 является индикатором выходного напряжения и, одновременно, датчиком тока в цепи нагрузки. При увеличении тока нагрузки управляющий транзистор VT2 плавно запирается, ограничивая ток через транзистор VT1. Цепочка, состоящая из мощных германиевого диода VD6 (ДЗОЗ — Д306) и стабилитрона VD7 (Д815Б), ограничивает напряжение на нити накала при повреждении транзистора VT1 (коротком замыкании). Наконец, элементом защиты является плавкий предохранитель FU1, срабатывающий при длительном протекании сверхкритического тока через короткозамкнутый транзистор VT1, диодно-стабилитронную цепочку ограничителя напряжения (VD6, VD7) и нить накала. Рис. 12.12. Схема устройства оптимизации режима эксплуатации кинескопа
Схема задержки подключения нагрузки, опубликованная в одном из зарубежных журналов, содержит тиристорный ключ, последовательно соединенный с нагрузкой (рис. 12.13). При включении питающего напряжения постоянного тока тиристор вначале заперт. После того как конденсатор С через резистор R1 и сопротивление нагрузки зарядится до напряжения переключения дини-стора VD1, он перейдет в проводящее состояние, а конденсатор С разрядится на управляющий переход тиристора. Тиристор переключится в проводящее состояние, когда падение напряжения на нем минимально (обычно единицы вольт) и подключит нагрузку. |
Методы восстановления химических источников тока
Помимо зарядно-разрядных операций для некоторых видов аккумуляторов актуальным вопросом является регенерация (вое-
В первых двух вариантах устройств зарядка постоянным стабильным током не является оптимальной. Исследованиями установлено [13.1], что в самом начале цикла зарядки аккумулятор наиболее восприимчив к сообщаемому ему количеству электричества. К концу зарядки процесс накопления энергии аккумулятора замедляется. |
Слаботочные зарядные устройстваОдин из наиболее простых способов зарядки серебряно-цинковых элементов типа СЦ-21 описан в работе [14.1]. Для этого параллельно соединяют элемент типа 373 («Орион-М») и восстанавливаемый элемент СЦ-21 (рис. 14.1). До зарядки напряжение на СЦ-21 составляло около 1,5 В. В процессе зарядки это напряжение достигло нормы: 1,55... 1,6 6, причем перезаряд элемента СЦ-21 исключен. Минимальное время восстановления заряда составляло 1...1.5 суток. В качестве батареи-донора можно использовать также элементы типа 343 и ему подобные элементы, напряжение на которых близко к 1,6 6. Поскольку ток зарядки невелик, то можно использовать отработанные сухие батареи. Рис. 14.1. Подзарядка СЦ-21 от элемента 373 Рис. 14.2. Схема заряда батареи 2х2Д-0,1 от автомобильного аккумулятора Зарядка миниатюрных аккумуляторных батарей, таких, как 2х2Д-0,1 или 7Д-0,1 может производиться в полевых условиях от любых источников постоянного тока, в частности от автомобильных аккумуляторов напряжением 12 Б или бортовой сети напряжением 24...27 В [14.2]. Для зарядки аккумуляторной батареи 2х2Д-0,1 от 12-вольтовой аккумуляторной батареи зарядным током 24 мА необходимо в зарядную цепь включить последовательно ограничительное сопротивление (например, типа М/77) величиной около 110 Ом, как это показано на рис. 14.2. Рис. 14.3. Схема устройства для регенерации гальванических элементов асимметричным током Значения сопротивлений резисторов устройства можно о ределить из выражений: Рис. 14.4. Усовершенствованный вариант схемы зарядного устройства с сетевым питанием Рис. 14.5. Схема простейшего устройства для зарядки марганцево-цинковых и ртутно-цинковых элементов и батарей асимметричным током Существует несколько схем получения асимметричного тока. Простейшая схема выпрямителя для зарядки МЦ и РЦ элементов и батарей приведена на рис. 14.5 [14.2]. Рис. 14.6. Схема устройства для получения асимметричного зарядного тока Рис. 14.7. Вариант схемы устройства для получения асимметричного зарядного тока Следующая схема для получения асимметричного зарядного тока (рис. 14.7) использует два включенных навстречу диода [14.2]. Окончание заряда батареи в этой схеме определяется по прекращению роста напряжения, которое после достижения 6 В (для батарей КБС) уже не повышается вследствие уравнивания токов в обеих параллельных ветвях и протекания только переменной составляющей, не вызывающей увеличения напряжения. Рис. 14.8. Схема устройства для зарядки серебряно-цинковых и никель-цинковых аккумуляторов асимметричным током Рис. 14.9. Схема получения асимметричного переменного напряжения Рис. 14.10. Схема получения регулируемого асимметричного переменного тока Рассмотренная выше схема трансформатора не позволяет получить на выходе регулируемое соотношение полуволн напряжения. Как следует из рис. 14.9, соотношение амплитуд полупериодов на выходе трансформатора остается неизменным. Впрочем, эту проблему легко можно разрешить, включив в схему дополнительный потенциометр R1 (рис. 14.10). Отметим, что вместо потенциометра R1 можно использовать и его транзисторный аналог — управляемое электрическим сигналом «сопротивление» на основе полевых или биполярных транзисторов. Рис. 14.11. Схема преобразователя напряжения с регулировкой формы выходного напряжения Рис. 14.12. Схема зарядного устройства с ограничителями-стабилизаторами зарядного тока на основе ламп накаливания Зарядное устройство (рис. 14.12) позволяет одновременно заряжать различным током несколько аккумуляторов [14.6]. Для зарядки используется пульсирующее напряжение, снимаемое с выхода мостового выпрямителя на диодах VD1 — VD4. В качестве ограничителей-стабилизаторов тока заряда использованы слаботочные лампы накаливания, включенные последовательно с заряжаемыми элементами. Рис. 14.13. Схема устройства для защиты аккумуляторов от разряда ниже допустимой величины Стоит источнику напряжения GB1 разрядиться до напряжения, меньшего суммы напряжения стабилизации стабилитрона (или напряжения лавинного пробоя транзистора VT3) и падения напряжения на эмиттерном переходе транзистора VT2, как
Схема (рис. 14.15) предназначена для раздельного заряда до шести химических источников тока [14.7]. Одновременно можно заряжать полностью разряженные аккумуляторы и те, которые необходимо подзарядить после хранения. Последние никогда не перезарядятся, если прекратить заряд одновременно с теми, которым необходимо полностью восстановить емкость. Вследствие технологического разброса при производстве аккумуляторов, каждый из них отдает различную емкость даже при соединении их в батарею, особенно это относится к длительно эксплуатируемым аккумуляторам. Рис. 14.15. Схема зарядного устройства для никель-кадмиевых аккумуляторов На схеме указаны номиналы для заряда аккумуляторов ЦНК-0,45. Зарядное устройство позволяет заряжать также аккумуляторы типов Д-0,06, Д-0,125, Д-0,25, но для каждого из них необходимо установить в цепи базы транзистора резистор, обеспечивающий соответствующий начальный ток заряда. Рис. 14.16. Схема контроля окончания заряда Основой ее служит компаратор DA1. На неинвертирую-иций вход поступает напряжение 1,35 Б с движка подстроенного резистора R1. Через контакты кнопки SB1 на инвертирующий вход подают напряжение с контролируемого аккумулятора. Если при фиксации кнопки SB1 в нажатом положении светодиод HL1 начинает светиться, то аккумулятор" зарядился до номинального напряжения 1,35 В. Далее контролируют напряжение на следующем аккумуляторе и т.д. Рис. 14.17. Схема зарядного устройства с автоматическим отключением Рис. 14.18. Схема зарядного устройства на основе стабилизатора тока
Рис. 14.20. Схема зарядного устройства с ограничением зарядного тока
В схеме зарядного устройства (рис. 14.21) для заряда аккууляторов типа ЦНК-0,45 использован стабилизатор тока на микэсхеме типа КР142ЕН5А [14.9]. Ток заряда (50...55 мА) задан
В устройстве можно применить микросхемы типов SD1083, SD1084, ND1083 или ND1084. Рис. 14.23. Схема зарядного устройства «ВС-100" для Ni-Cd аккумуляторов Рис. 14.24. Схема усовершенствованного зарядного устройства для Ni-Cd аккумуляторов Значение начального тока заряда определяется напряжением вторичной обмоти трансформатора и сопротивлением резистора R2. Но напряжения на выходе устройства Рис. 14.25. Схема стабилизатора тока для заряда Ni-Cd аккумуляторов Рис. 14.26. Схема устройства для восстановления серебряно-цинковых элементов СЦ-21 Для подзаряда серебряно-цинковых элементов СЦ-21 В. Пиц-маном [14.13] использована схема (рис. 14.26), в основе которой — задающий генератор на транзисторе и микросхеме К155ЛАЗ. К выводам 8 и 11 микросхемы DA1 подключены диодные цепочки, образованные из последовательно включенных кремниевых диодов КД102, встречно-параллельно которым подключен германиевый диод Д310. |
Слаботочные зарядные устройства с бестрансформаторным сетевым питанием Зарядное устройство с сетевым питанием (рис. 15.1) предназначено для подзаряда элементов СЦ-21 током 2.5...3 мА (время заряда 8. ..10 часов) или элементов РЦ-31 током 6. ..8 мА [15.1].
Схема, предложенная Е. Гумелей (рис. 15.2), не имеет понижающего трансформатора и питается от сети переменного тока 220 В [15.2]. Конденсаторы С1 и С2 должны выдерживать напряжение 250 6. Они могут быть заменены резисторами с суммарным сопротивлением 24 кОм и мощностью не менее 2 Вт. Схема предназначается для подзарядки батарей, частично разряженных, но не более чем до напряжения 1,1 6 на один элемент, так как подзаряд с помощью такой схемы предусматривает Рис. 15.3. Схема выпрямителя для заряда никель-кадмиевых аккумуляторов Рис. 15.4. Схема бестрансформаторного зарядного устройства Зарядное устройство (рис. 15.4) содержит выпрямитель с гасящим конденсатором С1 [15.3]. Стабильный зарядный ток через элементы GB1, GB2 обеспечивает лампа накаливания EL1. При напряжении заряда 4...20 6 зарядный ток поддерживается неизменным на уровне 35 мА. Следует отметить, что для обеспечения такого зарядного тока емкость гасящего конденсатора не должна превышать 0,5 мкФ. Рис. 15.5. Схема зарядного устройства для батареи аккумуляторного фонарика с защитой от перезаряда Стабилитрон VD5 типа КС156 ограничивает предельное напряжение на батарее. Светодиод HL1 гасит на себе избыток напряжения и одновременно служит индикатором конца зарядки -начинает неярко светиться. Рис. 15.6. Схема автоматического зарядного устройства для аккумулятора 7Д-01 Налаживают устройство при подключенном аккумуляторе и контрольном вольтметре постоянного тока. При напряжении 9,45 В на выводах аккумулятора подбором резистора R4 добиваются зажигания сигнальной лампы. Рис. 15.7. Схема оптоэлектронного преобразователя с сетевым питанием Преобразователь может быть использован для питания электронно-механических или электронно-кварцевых часов, быть дублером их штатного источника питания — батареи или аккумулятора, а также использоваться для их подзарядки. Четырехэле-ментный оптронный преобразователь напряжения на аналогах оптронов (парах АЛ107Б-ФД256) способен обеспечить выходное напряжение порядка 0,5 В при токе нагрузки до 0,4...0,5 мА. Для этого емкость конденсатора С1, рассчитанного на напряжение не ниже 400 В, должна быть не менее 0,75... 1,0 мкФ.
Когда доработанное ЗУ соединяют с приемником, зеленое вечение светодиода HL2 (переключатель SA1 - - в положении Заряд») указывает, что цепь заряда исправна, а при подключе-ии ЗУ к сети красное свечение дополнительного светодиода HL1 видетельствует, что аккумуляторная батарея заряжается. Когда се есть зеленое свечение, а красного нет, — напряжение в сети тсутствует. Такой режим заряда батареи 7Д-0,125Д крайне неже-ателен, но там где он неизбежен — следует предусмотреть защиту от перезаряда. Для этого параллельно батарее включают стабилитрон VD2 с напряжением стабилизации 9,9 6 при токе 10... 12 мА. Подзаряжать батарею нужно через каждые 3...4 ч работы приемника (при средней громкости). Продолжительность заряда батареи — в 2...3 раза больше. Рис. 15.9. Схема автоматического зарядного устройства При наличии напряжения в сети 220 В устройство постоянно подключено параллельно аккумулятору и представляет собой ключевой стабилизатор напряжения со стабильным током на выходе. Ток заряда (I3) зависит от емкости конденсатора С1 и при 10 мкФ равен 0,7 А. Ток выбирается из условия: I3 (24 часа) > 2lntn, где ln — ток потребления, A; tn — количество часов в сутки работы потребителя от аккумуляторов. |
Зарядные устройства повышенной мощности Простейшее зарядное устройство для автомобильных, тракторных и мотоциклетных аккумуляторных батарей обычно состоит из понижающего трансформатора и подключенного к его вторичной обмотке выпрямителя. Последовательно с батареей включают регулятор тока — мощный проволочный реостат, транзисторный или тиристорный стабилизатор тока. На всех этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность возникновения пожара.
Для восстановления батареи необходимо заряжать ее импульсами тока; в промежутках между импульсами она разряжается через специальный резистор, подключаемый параллельно батарее GB1. Разрядный ток при этом меньше зарядного в 10 раз, а по длительности в 2 раза больше [16.7]. Импульсы зарядного тока формируются схемой сравнения напряжения VT4, VD5 и тиристором VS1. Стабилитрон VD4 ограничивает напряжение до 18 6 (т.е. до половины амплитудного) после выпрямительного диода VD1. При достижении на аккумуляторной батарее ЭДС около 14 В стабилитрон VD5 закрывается, вызывая запирание транзистора VT4 и тиристора VS1. Так осуществляется автоматическое прекращение процесса заряда, но при условии, что к аккумуляторной батарее не был подключен разрядный резистор. Измерительный прибор РА1 регистрирует средний зарядный ток, который в 3 раза меньше истинного зарядного. При подключении разрядного резистора ток следует увеличить на 10%.
В случае, когда аккумулятор длительное время хранится без дела, он в результате естественного саморазряда и сульфата-ции пластин приходит в негодность. Рис. 16.6. Схема устройства для подзарядки аккумуляторных батарей При саморазряде батареи до напряжения ниже 14,4 В начинается ее «мягкий» заряд малым током. Величина этого тока находится в обратной зависимости от напряжения на аккумуляторе, но в любом случае даже при коротком замыкании не превышает 0,3 А. При заряде батареи до напряжения 14,4 В процесс прекращается. Рис. 16.7. Схема устройства для заряда автомобильных или тракторных аккумуляторов током 10...15 А Трансформатор Т1 — любой с габаритной мощностью не менее 400 Вт.
Рис. 16.9. Схема зарядного устройства для ионно-литиевых батарей на основе микросхемы МАХ1679 Рис. 16.10. Схема повышающего преобразователя для заряда 13,8 В аккумуляторной батареи УКВ-радиостанции от бортовой сети автомобиля Для повышения стабильности работы устройства при изменении температуры окружающей среды в пределах от 0 до 50°С использован термистор R2 типа NTC FENWAL 140-103LAG-RBI, имеющий сопротивление 10 кОм при температуре 25°С. |
Расчет разрядных характеристик элементов питания Прогноз характера поведения элементов питания при эксплуатации радиоэлектронных устройств позволяет правильно оценить оптимальный срок использования комплекта батарей, предупредить возможный или внезапный отказ техники, обосновать выбор элементов питания в проектируемых устройствах [17.1].
Не менее значимой характеристикой гальванических элементов является зависимость максимального времени разряда от величины разрядного тока. Для t0 5, где t0 5 — время разряда гальванического элемента до половины начального напряжения, это значение может быть определено по формуле, рис. 17.4.
Определить значение емкости гальванического элемента при варьировании тока разряда можно с использованием выражения, рис. 17.5. |
Приложение. Правила техники безопасности Работы, сопряженные с использованием для питания радиоэлектронных и иных устройств электрической сети напряжением 220 В, особенно если речь идет о бестрансформаторных источниках питания, являются исключительно опасными. В этой связи особое внимание следует уделять строжайшему соблюдению правил техники безопасности. На рисунках книги схемы устройств, представляющих собой источник повышенной опасности, отмечены значком:
|