Вы здесь

15.1 Коэффициент корреляции Пирсона

15.1 Коэффициент корреляции Пирсона


Данный коэффициент вычисляется по следующей формуле:


где xi и уi значения двух переменных, х- и у- их средние значения, a sx и sy их стандартные отклонения; n количество пар значений.


На основании данных исследования гипертонии нам нужно рассчитать коэффициент корреляции по Пирсону попарно для переменных cho10, cho11, cho!6 и chol12 (то есть сформировать для этих переменных корреляционную матрицу).

  •  Откройте файл hyper.sav.

  •  Выберите в меню Analyze... (Анализ) Correlate... (Корреляция) Bivariate... (Парные) Появится диалоговое окно Bivariate Correlations (Парные корреляции) (см. рис. 15.21.)

  •  Переменные cho10, cho11, cho16 и chol12 перенесите по очереди в поле тести-! руемых переменных. Расчёт коэффициента корреляции по Пирсону является' предварительной установкой, также как двусторонняя проверка значимости и маркировка значимых корреляций.

  •  Начните расчёт путём нажатия кнопки ОК.

В окне просмотра появятся следующие результаты:


Correlations (Корреляции)

 

Cholesterin, Ausga- ngswert (Холесте- рин, исходная величина)


Cholesterin, nach 1 Monat (Холесте- рин, через 1 месяц)


Cholesterin, nach 6 Monaten (Холесте- рин, через 6 месяцев)


Cholesterin, nach 12 Monaten (Холесте- рин, через 12 месяцев)


Cholesterin, Ausga- ngswert (Холестерин, исходная величина)


Pearson Correlation (Корреляция по Пирсону) Sig. (2-tailed) (Значимость (2-сторонняя)) N


1,000 174


,861"


,000 174


,775"


,000 174


,802"


,000 174


Cholesterin, nach 1 Monat (Холесте- рин, через 1 месяц)


Pearson Correlation (Корреляция по Пирсону) Sig. (2-tailed) (Значимость (2-сторонняя)) N


,861"


,000 174


1,000 174


,852"


,000 174


,813"


,000 174


Cholesterin, nach 6 Monaten (Холесте-рин, через 6 месяцев)


Pearson Correlation (Корреляция по Пирсону) Sig. (2-tailed) (Значимость (2-сторонняя)) N


,775"


,000 174


,852"


,000 174


1,000 174


,892"


,000 174


Cholesterin, nach 12 Monaten (Холесте- рин, через 12 месяцев)


Pearson Correlation (Корреляция по Пирсону) Sig. (2-tailed) (Значимость (2-сторонняя)) N


,802"


,000 174


,813"


,000 174


,892"


,000 174


1,000 174


** Correlation is significant at the 0.01 level (2-tailed). (Корреляция является значимой на уровне 0,01 (2-стороння)).



Рис. 15.2: Диалоговое окно Bivariate Correlations (Двумерные корреляции)


Полученные результаты содержат: корреляционный коэффициент Пирсона r, количество использованных пар значений переменных и вероятность ошибки р, соответствующая предположению о ненулевой корреляции. В приведенном примере присутствует сильная корреляция, поэтому все коэффициенты конечно же являются сверхзначимыми (р < 0,001). Следовательно, маркировка корреляции, приведенная :-низу таблицы, должна была бы состоять из трёх звёздочек, которыми обозначается уровень р=0,001.


При помощи щелчка на кнопке Options... (Опции) можно организовать расчёт среднего значения и стандартного отклонения для двух переменных. Дополнительно могут выводиться отклонения произведений моментов (значений числителя формулы для коэффициента корреляции) и элементы ковариационной матрицы (числитель, делённый на n - 1).


Top.Mail.Ru