13.4. Сравнение более чем двух зависимых выборок
На основе данных по гипертонии исследуем, значимо ли изменяется содержание холестерина в течение четырёх промежутков времени (такое сравнение для первых двух промежутков времени мы уже провели в параграфе 13.2).
Для достижения этой цели подходит однофакторный дисперсионный анализ с повторными измерениями. Пользователи SPSS, работавшие с этим пакетом на больших компьютерах, знают, что выполнить эту весьма распространенную операцию можно было только с помощью процедуры MANOVA (многомерный дисперсионный анализ). Ясно, что эта процедура предназначена для разнообразных методов многомерного анализа, но может быть использована при одномерном дисперсионном анализе с повторными измерениями.
Начиная с версии 7 SPSS процедура MANOVA была заменена процедурой GLM (General Linear Model). Однако и в текущей версии процедура MANOVA по прежнему остается доступной при использовании программного синтаксиса.
Разнообразные возможности анализа, предоставляемые этими процедурами (GLM и MANOVA), обеспечиваются ценой уже практически необозримого количества команд, спецификаций, параметров и ключевых слов. Даже при решении такой простой задачи, как рассматриваемая, надо уметь ориентироваться в этом многообразии. Несколько подробнее процедура GLM рассматривается в главе 17; однако в рамках этой книги невозможно охватить всю широту диапазона возможностей, предоставляемых этой процедурой. Теперь перейдем к решению нашей задачи при помощи однофакторного дисперсионного анализа с повторными измерениями.
Загрузите файл hyper, sav.
Выберите в меню команды Analyze (Анализ) General Linear Model (Общая линейная модель) Repeated Measures... (Повторные измерения)
Откроется диалоговое окно Repeated Measures Define Factors) (Определить фактор(ы) для повторных измерений).
В данном примере мы подвергнем анализу четыре переменных: cho10, cho11, cho16 и chol12; следовательно, фактор повторных измерений будет задаваться четырьмя уровнями (слоями).
Введите число 4 в поле Number of Levels (Количество уровней). По умолчанию принимается имя фактора faktorl; при желании можно задать для него любое другое i имя (например, "время").
Щелкните на кнопке Add. Других факторов повторных измерений у нас нет, поэтому можно сразу закрыть этот диалог кнопкой Define (Определить). Появится диалоговое окно Repeated Measures (Повторные измерения) (см. рис. 13.7).
Перенесите переменные cho10, choll, cho16 и chol12 в список Within-Subject Variables (Переменные внутри субъекта); далее кнопками, которые находятся внизу диалогового окна, можно установить дополнительные параметры но мы не будем их рассматривать.
Запустите вычисления, щелкнув на ОК.
Рис. 13.6: Диалоговое окно Repeated Measures Define Factor(s)
Рис. 13.7: Диалоговое окно Repeated Measures
Проанализируйте результаты, появившиеся в окне просмотра.
Вы убедитесь, что для неподготовленного пользователя толкование полученных результатов расчёта может составить большие трудности. Подробнее о них мы поговорим в главе 17. Теперь же мы ограничимся указанием, что результаты обычного дисперсионного анализа содержатся в строке "Sphericity assumed" (Предположение о сферичности) таблицы вывода, приведенной ниже:
Tests of Within-Subjects Effects (Тест эффектов внутри субъекта)
Measure: MEASURE_1 | ||||||
Source (Источник) | Type III Sum of Squares (Сумма квадратов типа III) | df | Mean Square (Среднее квадратов) | F | Sig. (Значи-мость) | |
FACTOR1 | Sphericity Assumed (Прини- мается гипотеза о сферич- ности) | 3381,822 | 3 | 1127,274 | 2,653 | ,048 |
Greenhouse- Geisser | 3381,822 | 2,509 | 1347,779 | 2,653 | ,058 | |
Huynh-Feldt | 3381 ,822 | 2,549 | 1326,675 | 2,653 | ,058 | |
Lower Bound | 3381,822 | 1,000 | 3381,822 | 2,653 | ,105 | |
Error (FACTOR1) | Sphericity Assumed (Прини- мается гипотеза о сферич- ности) | 220504,678 | 519 | 424,865 |
|
|
Greenhouse- Geisser | 220504,678 | 434,088 | 507,972 |
|
| |
Huynh-Feldt | 220504,678 | 440,994 | 500,018 |
|
| |
Lower Bound | 220504,678 | 173,000 | 1274,594 |
|
|
Вероятность ошибки р составляет 0,048, что указывает на значимое различие между отдельными моментами времени. К сожалению, даже в 10-й версии SPSS отсутствует возможность провести апостериорный тест для повторных измерений, чтобы выяснить, какие именно промежутки времени значимо отличаются друг от друга. В случае, если выявлены значимые отличия, как в рассмотренном примере, пользователю не остается ничего другого, кроме выполнения парного t-теста.