Вы здесь

34. Визуализация дифференциальных параметров кривых

 

Визуализация дифференциальных параметров кривых

Дифференциальные параметры функции f(x), описывающей некоторую кривую, имеют большое значение для анализа ее особых точек и областей существования. Так, точки с нулевой первой производной задают области, где кривая нарастает (первая производная положительна) или убывает (первая производная отрицательна) с ростом аргументах. Нули второй производной задают точки перегиба кривой.

Следующая графическая процедура служит для визуализации поведения кривой /, = /(.г) на отрезке изменениях от а до b:

В этой процедуре заданы следующие цвета (их можно изменить): Таблица 12.1. Цвета при визуализации в процедуре shape_plot

Изменение /(х)

Цвет

Возрастание

Синий

Убывание

Красный

Площадь

Цвет

Над минимумом

Зеленый

Под максимумом

Коралловый

Например, для функции:

построенный график будет иметь вид, представленный на рис. 12.43 (естественно, в книге цвета — лишь оттенки серого).

Рисунок 12.43 дает наглядное представление о поведении заданной функции. Рекомендуется опробовать данную процедуру на других функциях. Следует отметить, что, поскольку процедура использует функции ntiroimize и maximize, она может давать сбои при исследовании сложных функций, содержащих специальные математические функции или особенности. Иногда можно избежать такой ситуации, исключив особенность. Например, для анализа функции sin(x)/x можно записать ее в виде:

>f:=x->if x=0 then 1 else sin(x)/x  

end if; 

shape_plot(f(x),-10,10);

Исполнение приведенной выше строки ввода дает график, представленный на рис. 12.44.

Рис. 12.43. Визуализация поведения функции f(х)

Рис. 12.44. Визуализация поведения функции sin(x)/x

Данная процедура дает хорошие результаты при анализе функций, представленных полиномами. Вы можете сами убедиться в этом.

 


Top.Mail.Ru