Справочные материалы

1. Цифровые микросхемы

Краткое содержание.

 

Предисловие

Широкое внедрение цифровой техники в радиолюбительское творчество связано с появлением интегральных микросхем. Цифровые устройства, собранные на дискретных транзисторах и диодах, имели значительные габариты и массу, ненадежно работали из-за большого количества элементов и особенно паяных соединений. Интегральные микросхемы, содержащие в своем составе десятки, сотни, тысячи, а в последнее время многие десятки и сотни тысяч и даже миллионы компонентов, позволили по-новому подойти к проектированию и изготовлению цифровых устройств. Надежность отдельной микросхемы мало зависит от количества элементов и близка к надежности одиночного транзистора, а потребляемая мощность в пересчете на отдельный компонент резко уменьшается по мере повышения степени интеграции.

В результате на интегральных микросхемах стало возможным собирать сложнейшие устройства, изготовить которые в радиолюбительских условиях без применения микросхем было бы совершенно невозможно.

Книга написана на основании большого опыта автора по изучению и применению микросхем серий ТТЛ К155, К555, КР531, КР1533, серий КМОП К176, К561, КР1554, КР1561,564 и содержит материал, частично нашедший отражение в его статьях, опубликованных в журнале «Радио» в 1982-1998 гг., и книгах автора. В настоящем издании описаны общие принципы функционирования комбинационных, последовательностных микросхем, ждущих мультивибраторов и генераторов, приведены схемы соединения микросхем для увеличения разрядности, фрагменты принципиальных схем цифровых устройств с применением различных описываемых микросхем, приведены описания формирователей и генераторов импульсов, квазисенсорных переключателей.

Автор надеется, что данная книга поможет многим радиолюбителям и радиоспециалистам творчески подойти к самостоятельной разработке и изготовлению многих полезных цифровых устройств.

* Под псевдонимом С. Алексеев.

 

1. Микросхемы серии ТТЛ.

Глава 1.Микросхемы серии ТТЛ.

 

1.1 Общие сведения.

1.1. Общие сведения

У нас в стране обширна номенклатура выпускаемых интегральных микросхем. Для построения устройств автоматики и вычислительной техники широкое применение находят цифровые микросхемы серии К 155, которые изготавливают по стандартной технологии биполярных микросхем транзисторно-транзисторной логики (ТТЛ). Имеется свыше 100 наименований микросхем серии К 155. При всех своих преимуществах - высоком быстродействии, обширной номенклатуре, хорошей помехоустойчивости - эти микросхемы обладают большой потребляемой мощностью. Поэтому им на смену выпускают микросхемы серии К555, принципиальное отличие которых - использование транзисторов с коллекторными переходами, зашунтированными диодами Шоттки. В результате транзисторы микросхем серии К555 не входят в насыщение, что существенно уменьшает задержку выключения транзисторов. К тому же они значительно меньших размеров, что уменьшает емкости их р-n-переходов. В результате при сохранении быстродействия микросхем серии К555 на уровне серии К155 удалось уменьшить ее потребляемую мощность примерно в 4...5 раз.

Дальнейшее развитие микросхем серий ТТЛ - разработка микросхем серии КР1533. Основное эксплуатационное отличие их от схем серии К555 - в 1.5...2 раза меньше потребляемая мощность при сохранении и повышении быстродействия.

Средняя задержка распространения элементов микросхем серии К155, К555, КР1533 примерно 15...20 нс. В случаях, когда требуется более высокое быстродействие, используют микросхемы серии КР531. Для сравнения основных параметров в табл. 1 приведены значения средней потребляемой мощности Рср и средней задержки tз.ср распространения микросхем ТТЛ указанных серий, а также стандартные значения входных Iвх и выходных Iвых токов и нагрузочной способности N указанных серий микросхем. Некоторые микросхемы допускают большие выходные токи и имеют большую нагрузочную способность, чем указано в табл. 1. Часть микросхем (особенно серии КР531) также имеют отличные от стандартных входные токи. Эти отличия специально указаны далее.

Стандартные выходные уровни лог. 1 составляют 2,4...2,7 В, лог. 0 -0,36...0,5 В.

Напряжение питания микросхем серий ТТЛ 5 В +-5%, для серии КР1533 допуск на напряжение питания +-;10%.

Микросхемы выпускают в пластмассовых корпусах с 8, 14, 16, 20, 24, 28 выводами, температурный диапазон их работоспособности:

1-11.jpg

-10...+70 °С. Часть микросхем серий К155 и К555 выпускают в керамических корпусах (их обозначение КМ155 и КМ555), температурный диапазон работоспособности таких микросхем -45...+85 °С.

На рис. 1 приведены зависимости выходного напряжения от входного для инвертирующих логических элементов упомянутых серий микросхем при температуре +20 С. Поскольку за порог переключения принимается входное напряжение, при котором выходное равно ему, его нетрудно найти по приведенным зависимостям как точку пересечения с прямой Uвых = Uвх. Из рисунка видно, что микросхемы серии КР1533 имеют наибольший порог переключения - 1,52 В и, как следствие, наибольшую помехоустойчивость.

Рассматриваемые серии имеют в своем составе однотипные микросхемы с совпадающими после номера серии цифробуквенными обозначениями. Логика работы однотипных микросхем, за редким ис-

1-12.jpg

ключением, отмеченным далее, совпадает. Микросхемы серии КР531 ранее не имели в обозначении буквы «Р», а имели в конце обозначения букву <<П>>, например К531ЛАЗП.

В табл. 2 приведены обозначение большинства рассматриваемых микросхем, функциональное назначение, число выводов корпуса, средняя потребляемая мощность, средняя задержка распространения сигнала и номер рисунка, на котором приведено графическое обозначение микросхемы.

В функциональном назначении буквы означают: OK - микросхемы

имеют выход с открытым коллектором, ОЭ - с открытым эмиттером, Z - выходы могут переводиться в высокоимпедансное состояние.

При разработке принципиальных схем различных устройств всегда возникает вопрос: что делать с- неиспользуемыми входами интегральных микросхем. Если по логике работы на вход необходимо подать лог. 0, то его соединяют с общим проводом, если лог. 1 - возможны варианты. Во-первых, неиспользуемые входы микросхем серии К155 можно никуда не подключать, то есть подпаивать к контактной площадке минимальных размеров, к которой (это важно) не подключены никакие проводники. Но при этом несколько уменьшается быстродействие микросхем. Для микросхем серий К555, КР531, КР1533 оставлять входы неподключенными не допускается. Во-вторых, возможно подключение неиспользуемых входов к используемым входам того же элемента, но это увеличивает нагрузку на микросхему-источник сигнала, что также снижает быстродействие. В-третьих, можно подключать неиспользуемые входы микросхем серий К155 и КР531 к выходу инвертирующего элемента, входы которого при этом надо соединить с общим проводом. Наконец, можно объединять неиспользуемые входы микросхем этих серий и подключать их к источнику питания +5 В через резистор сопротивлением 1 кОм (до 20 входов к одному резистору). Входы микросхем серий К555 и КР1533 можно подключать к источнику питания +5 В непосредственно.

Недопустимо подключать ко входу микросхемы проводник, который во время работы может оказаться неподключенным к выходу источника сигнала, например при управлении от кнопки или переключателя, так как это резко снижает помехоустойчивость устройства. Такие проводники следует подключать к источнику +5 В через резистор сопротивлением 1 кОм (до 20 входов к одному резистору). Входы микросхем серий К555 и КР1533 можно подключать к источнику питания +5 В непосредственно.

На печатных платах с использованием микросхем серий К155, К555, КР1533 необходима установка блокировочных конденсаторов между цепью +5 В и общим проводом. Их число определяется одним-двумя конденсаторами емкостью 0,033...0,15 мкВ на каждые пять микросхем. Конденсаторы следует располагать на плате по возможности равномерно. Их следует также установить рядом со всеми микросхемами с мощным выходом (например, К155ЛА6) или с потребляемой мощностью более 0,5 Вт.

Микросхемы серий КР531 требуют особого внимания при разводке цепей питания и общего провода. При изготовлении промышленных

1-13.jpg

1-14.jpg

1-15.jpg

1-16.jpg

1-17.jpg

1-18.jpg

1-19.jpg

1-110.jpg

1-111.jpg

1-112.jpg

устройств на микросхемах этой серии используют многослойные печатные платы, один из слоев используют в качестве общего провода, другой - в качестве шины питания. Если используют двухслойные платы, шины питания и общего провода выполняют навесными в виде латунных полос шириной около 5 мм, керамические блокировочные конденсаторы емкостью 0,047...0,15 мкФ подпаивают непосредственно к этим шинам (один конденсатор на одну-две микросхемы). В радиолюбительских условиях можно одну сторону печатной платы использовать под общий провод, другую - под сигнальные цепи и под провод питания, конечно, при этом придется устанавливать много перемычек и к каждой микросхеме блокировочный конденсатор.

Как правило, напряжение питания микросхем подводят к выводу с максимальным номером, общий провод - к выводу, номер которого вдвое меньше. Случаи исключения из этого правила приведены в табл. 3.

Микросхемы серий К555 и КР1533 можно применять вместо однотипных микросхем серии К 155 и совместно с ними, при этом следует иметь в виду, что их нагрузочная способность на микросхемы серии К155 составляет 5. Микросхемы серии КР531 следует применять только в случае необходимости высокого быстродействия, так как они создают большой уровень помех, к которым особенно чувствительны микросхемы серии К555, и потребляют большую мощность.

Цифровые микросхемы по своим функциям делятся на два больших класса - комбинационные и последовательностные. К первому

1-113.jpg

относятся микросхемы, не имеющие внутренней памяти (состояние выходов этих микросхем однозначно определяется уровнями входных сигналов в данный момент времени). Ко второму - микросхемы, состояние выходов которых определяется не только уровнями входных сигналов в данный момент времени, но и последовательностью состояний в предыдущие моменты времени из-за наличия внутренней памяти.

К комбинационным относятся простые логические микросхемы И-НЕ, И-ИЛИ-НЕ, НЕ, ИЛИ-НЕ, И, ИЛИ, более сложные элементы - дешифраторы, мультиплексоры, сумматоры по модулю 2, полные сумматоры, преобразователи кодов для семисегментных и матричных индикаторов, шифраторы, программируемые постоянные запоминающие устройства, преобразователи двоично-десятичного кода в двоичный и обратно, однонаправленные и двунаправленные буферные элементы, мажоритарные клапаны, триггеры Шмитта, которые, однако, имеют внутреннюю память и могут быть отнесены и к последовательностным микросхемам, а также некоторые другие.

К последовательностным микросхемам относятся триггеры, счетчики, сдвигающие регистры, оперативные запоминающие устройства и некоторые другие микросхемы.

Ждущие мультивибраторы нельзя отнести однозначно ни к одному из упомянутых классов, так как внутренняя память этих микросхем помнит изменение входных сигналов ограниченное время, после чего состояние выходов микросхемы ни от чего не зависит. То же самое относится и к генераторным микросхемам.

 

Рис. 1. Зависимость выходного напряжения от входного для инвертеров серий ТТЛ

Изображение: 

Таблица 1. Температурный диапазон работоспособности микросхем

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (окончание)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 1)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 2)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 3)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 4)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 5)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 6)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 7)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ (продолжение 8)

Изображение: 

Таблица 2. Обозначение и технические характеристики микросхем ТТЛ

Изображение: 

Таблица 3. Выводы питания микросхем ТТЛ

Изображение: 

1.2 Микросхемы комбинационного типа малой степени интеграции.

1.2. Микросхемы комбинационного типа малой степени интеграции

Существует много типов микросхем ТТЛ малой степени интеграции, различающихся по функциональному назначению, нагрузочной способности, схеме выходного каскада. Работа логических элементов этих микросхем достаточно проста. Для элементов И выходной уровень лог. 1 формируется при подаче на все входы элемента уровней лог. 1, для элемента ИЛИ для формирования уровня лог. 1 на выходе достаточно подачи хотя бы на один вход уровня лог. 1. Элементы И-НЕ (основной элемент серий ТТЛ) и ИЛИ-НЕ дополнительно инвертируют выходной сигнал, элемент И-ИЛИ-НЕ состоит из нескольких элементов И, выходы которых подключены к входам элемента ИЛИ-НЕ.

По нагрузочной способности микросхемы можно разделить на стандартные (№10 для серий К 155 и КР531 и N = 20 и 40 для микросхем серий К555 и КР1533 соответственно), микросхемы с повышенной нагрузочной способностью (N = 30 и более), микросхемы со специальным выходным каскадом, обеспечивающим значительно более высокую нагрузочную способность в одном из логических состояний. Некоторые типы микросхем выпускают с так называемым «открытым» коллекторным выходом.

Отдельно следует отметить специальный класс микросхем с третьим состоянием выходного каскада, называемым также еще «высокоимпедансным», или «Z-состоянием», при котором микросхема отключается по своему выходу от нагрузки. Это, как правило, буферные элементы с относительно большой нагрузочной способностью.

На рис. 2 приведены графические обозначения микросхем ТТЛ, выполняющих функции И-НЕ - самой многочисленной группы простых логических микросхем.

МикросхемыЛА1 -ЛА4 имеют стандартную для своей серии нагрузочную способность, микросхемыЛА6 иЛА12 всех серий, КР1533ЛА21 - КР1533ЛА24 - втрое большую (здесь и далее в тексте в названии оставлена только та его часть, которая определяет тип триггера, счетчика, логического элемента и т. п., если такие же обозначения используются в микросхемах нескольких серий).

МикросхемыЛА7 - ЛА11,ЛА13, КР1533ЛА23 выполнены с открытым коллектором, нагрузочная способность для ЛА7- ЛА11 в состоянии лог. 0 стандартная, для ЛА13 и КР1533ЛА23 - втрое большая. Максимально допустимое напряжение, которое можно подавать

на выход микросхемы ЛА11, находящейся в состоянии лог. 1, - 12 В, для остальных - 5,5 В.

МикросхемаКР531ЛА16 (рис. 2) - два мощных магистральных усилителя, выполняющих функцию 4И-НЕ. Нагрузочная способность каждого усилителя 60 мА в состоянии лог. 0 и 40 мА в состоянии лог. 1 при выходном напряжении 2 В, что позволяет работать на линию связи с волновым сопротивлением 50 Ом, нагруженную на конце. Кроме того, гарантируется, что при выходном напряжении 2,7 В в состоянии лог. 1 выходной ток составляет не менее 3 мА.

МикросхемаКР531ЛА17 (рис. 2) - два элемента 4И-НЕ с возможностью перевода выхода в высокоимпедансное состояние при подаче на вход Е лог. 1. При подаче на вход Е лог. 0 выходы активны, допустимые выходные токи составляют 50 мА в состоянии лог. 0 и 32 мА в состоянии лог. 1 при выходном напряжении 2 В, что обеспечивает возможность работы на линию связи с волновым сопротивлением 75 Ом. Дополнительно гарантируется, что при выходном напряжении 2,7 В в состоянии лог. 1 выходной ток составляет не менее 3 мА.

Входные токи микросхем КР531ЛА12, КР531ЛА13, КР531ЛА16, КР531ЛА17 по сигнальным входам в состоянии лог. 0-4 мА, по входам Е - 2 мА.

Микросхема К155ЛА18 (рис. 2) выполнена с открытым коллектором, ее выходное напряжение в состоянии лог. 0 не более 0,5 В при выходном втекающем токе 100 мА и не более 0,8 В при токе 300 мА. Максимальное напряжение на выходе в состоянии лог. 1 — 30 В, что позволяет коммутировать нагрузку мощностью до 9 Вт - электромагнитные реле, маломощные электродвигатели. Лампы накаливания, однако, можно использовать на номинальный ток не более 60 мА, так как сопротивление нити лампы в холодном состоянии значительно меньше номинального.

МикросхемаКР531ЛА19(рис. 2) - двенадцативходовый элемент И-НЕ с возможностью перевода выхода в высокоимпедансное состояние при подаче лог. 1 на вход Е. В состоянии лог. 1 при выходном напряжении 2,4 В микросхема допускает выходной ток до 6,5 мА, в состоянии лог. 0-20 мА.

Микросхема К155ЛП7 (рис. 2) - два стандартных логических элемента И-НЕ с двумя объединенными входами и два n-р-n транзистора с предельно допустимым коллекторным напряжением 30 В и максимальным током коллектора 300 мА. Подложка микросхемы подключена к выводу 8, что позволяет, подключив ее к источнику отрицательного напряжения, коммутировать транзистором и отрицательные сигналы, не выходящие по амплитуде за напряжение этого источника.

1-21.jpg

На рис. 3 приведены графические обозначения микросхем, выполняющих функцию ИЛИ-НЕ. На входах микросхемК155ЛЕ2, К155ЛЕЗ установлены дополнительные элементы И, позволяющие стробировать входные сигналы. Нагрузочная способность микросхем ЛЕ1 - ЛЕ4, КР531ЛЕ7 стандартная для соответствующей серии, микросхемК155ЛЕ5иК155ЛЕ6 в состоянии лог. 0-48 мА, что соответствует N = 30, в состоянии лог. 1 - выше. Микросхема К155ЛЕ5 может обеспечить при выходном напряжении 2,4 В вытекающий ток 2,4 мА, микросхема К155ЛЕ6 - 13,2 мА. Для микросхемы К155ЛЕ6

1-22.jpg

нормирован также ток при выходном напряжении 2 В - он составляет не менее 42,4 мА, то есть эта микросхема может обеспечивать работу на нагрузку 50 Ом, например, на коаксиальный кабель с волновым сопротивлением 50 или 75 Ом, согласованный на конце.

МикросхемыКР1533ЛЕ10и КР1533ЛЕ11 имеют нагрузочную способность втрое большую стандартной для микросхем этой серии. Микросхема КР1533ЛЕ11 выполнена с открытым коллектором, максимальное напряжение, которое можно подать на ее выход в закрытом состоянии, - 5,5 В.

На рис. 4 приведены графические обозначения микросхем, выполняющих функцию И. МикросхемыЛИ1, ЛИЗ, ЛИ6 имеют стандартную для своих серий нагрузочную способность, микросхемыЛИ2

1-23.jpg

и ЛИ4 выполнены с открытым коллектором, их нагрузочная способность в состоянии лог. 0 стандартная, в состоянии лог. 1 допускается подача напряжения 5,5 В.

МикросхемаК155ЛИ5 выполнена с открытым коллектором, ее нагрузочная способность такая же, как у К155ЛА18.

1-24.jpg

МикросхемыКР1533ЛИ8 и КР1533ЛИ10

имеют нагрузочную способность втрое большую стандартной для микросхем этой серии.

На рис. 5 приведены графические обозначения микросхем, выполняющих функцию ИЛИ. Микросхема ЛЛ1 имеет стандартную нагрузочную способность, микросхема К155ЛЛ2 выполнена с открытым коллектором и имеет нагрузочную способность такую же, как К155ЛА18.

МикросхемаКР1533ЛЛ4 имеет нагрузоч ную способность втрое большую стандартной для микросхем этой серии

На рис. 6 приведены графические обозначения микросхем, выполняющих функцию НЕ (инверторы). МикросхемыЛН1 имеют стандартную нагрузочную способность, аЛН2, К155ЛНЗ, К155ЛН5 выполнены с открытым коллектором и имеют стандартную нагрузочную способность в состоянии лог. 0. Для К155ЛНЗ и К155ЛН5 дополнительно гарантируется, что при втекающем токе 40 мА выходное напряжение в состоянии лог. 0 не превышает 0,7 В. Допустимое напряжение на выходе микросхемы в состоянии лог. 1 составляет 5,5, 30 и 15 В для ЛН2, К155ЛНЗ и К155ЛН5 соответственно.

МикросхемаК155ЛН6 (рис. 6) - шесть мощных инверторов с возможностью перевода выходов в высокоимпедансное состояние. Управление состоянием выходов производится по двум равноправным входам управления Е (1 и 15), собранным по схеме, выполняющей функцию И. При подаче на оба указанных входа лог. 0 выходы инверторов переходят в активное состояние и инвертируют входные сигналы, при подаче хотя бы на один вход лог. 1 - переходят в высокоимпедансное состояние.

Нагрузочная способность инверторов довольно велика - при лог. 0 на выходе выходной втекающий ток может достигать 32 мА, при этом выходное напряжение не более 0,4 В, при лог. 1 на выходе выходной вытекающий ток - до 5,2 мА при выходном напряжении 2,4 В.

МикросхемаКР1533ЛН7 (рис. 6) - шесть инверторов с повышенной нагрузочной способностью и возможностью перевода выходов в высокоимпедансное состояние. Инверторы объединены в две группы,

1-25.jpg

у каждой из которых свой вход управления. Подача лог. 0 на вход Е1 включает инверторы с выходами 1-4, на вход Е2 - с выходами 5 и 6. Нагрузочная способность микросхемы 12 мА при 0,4 В в состоянии лог. 0 и 3 мА при 2,4 В в состоянии лог. 1.

МикросхемаКР1533ЛН8 (рис. 6) - шесть инверторов с повышенной нагрузочной способностью; максимальный уровень в состоянии лог. 0 -0,4 В при втекающем токе 12 мА и 0,5 В при 24 мА, минимальный уровень в состоянии лог. 1 2,4 В при вытекающем токе 3,0 мА и 2,5 В при 0,4 мА.

МикросхемаКР1533ЛН10 имеет нагрузочную способность втрое большую стандартной для микросхем этой серии. Микросхема выполнена с открытым коллектором, максимальное напряжение, которое можно подать на ее выход в закрытом состоянии - 5,5 В.

На рис. 7 приведены графические обозначения микросхем, выполняющих функцию И-ИЛИ-НЕ и расширителей И-ИЛИ. Все микросхемы И-ИЛИ-НЕ имеют стандартные выходы, кромеКР531ЛР10, которая выполнена с открытым коллектором, допустимое напряжение для нее в состоянии лог. 1 - 5,5 В. Следует отметить различие микросхемК155ЛР4 и К555ЛР4, КР1533ЛР4, а такжеК555ЛР11, КР1533ЛР11 и КР531ЛР11. МикросхемыК155ЛР1, К155ЛРЗ, К155ЛР4 имеют входы для подключения расширителей И-ИЛИ К155ЛД1 и К155ЛД2, увеличивающих число групп И в функции ИЛИ этих микросхем. Аналогичные входы для расширения числа входов по ИЛИ имеет микросхемаК155ЛЕ2.

Однако более простой способ построения элементов И или ИЛИ с большим числом входов - каскадное соединение микросхем,

1-26.jpg

выполняющих функции И-НЕ и ИЛИ-НЕ. На рис. 8 (а) приведена схема элемента И на 16 входов, на рис. 8 (б) - элемента ИЛИ на 32 входа. На рис. 8 (в) приведена схема элемента совпадения, формирующего на своем выходе лог. 1 при лог. 1 на четырех верхних по схеме входах и лог. 0 на трех нижних. Такой элемент может использоваться для дешифрации определенных состояний счетчиков и других устройств.

На рис. 9 приведены графические обозначения микросхем - повторителей входного сигнала.

МикросхемаЛП8 - четыре повторителя входного сигнала с высокоимпедансным состоянием. При лог. 0 на управляющем входе Е сигналы с входа D элемента проходят на выход элемента без инверсии. При лог. 1 на входе Е выход элемента переходит в высокоимпедансное состояние. При лог. 0 на выходе микросхема К155ЛП8 обеспечивает втекающий ток 16 мА, при лог. 1 - вытекающий 5,2 мА, К555ЛП8 - 24 мА и 2,6 мА соответственно.

МикросхемаК155ЛП9 (рис. 9) - шесть повторителей входного сигнала с открытым коллектором, ее выходные параметры такие же, как и у К155ЛНЗ.

МикросхемаК155ЛП10 (рис. 9) - шесть мощных повторителей с возможностью перевода выходов в высокоимпедансное состояние.

1-27.jpg

Логика управления и нагрузочная способность этой микросхемы такие же, как и у К155ЛН6.

МикросхемаК155ЛП11 (рис. 9) - шесть мощных повторителей, подобных повторителям микросхемы К155ЛП10, но разбитых на две группы, каждая из которых имеет свой вход управления. Подача лог. 0 на вход Е1 включает повторители с выходами 1-4, вход Е2 управляет выходами 5 и 6. Нагрузочная способность микросхемы К155ЛП11 такая же, как у К155ЛН6.

МикросхемыКР1533ЛП16 и КР1533ЛП17 имеют нагрузочную способность втрое большую стандартной для микросхем этой серии. Микросхема КР1533ЛП17 выполнена с открытым коллектором,

1-28.jpg

максимальное напряжение, которое можно подать на ее выход в закрытом состоянии - 5,5 В.

Основное назначение микросхем-повторителей входного сигнала, имеющих возможность перевода выходов в высокоимпедансное состояние, - поочередная подача на одну магистраль сигналов от различных источников. Причем благодаря большой нагрузочной способности микросхем магистраль может иметь большую емкость и большое число подключенных к ней нагрузок и источников сигналов. Эти микросхемы находят широкое применение также в качестве буферных элементов, в особенности в микропроцессорных микросхемах. Для таких же целей служат далее рассматриваемые микросхемы, графические обозначения которых приведены на рис. 10.

МикросхемаКР531АП2 - четыре пары буферных неинвертирующих элементов с открытым коллектором, частично соединенных между собой. Сигналы могут передаваться со входов А1 - А4 на двунаправленные выходы С1 - С4 при лог. 0 на входе ЕА и лог 1 на входе ЕВ, с двунаправленных выводов С1 - С4 на выходы В1 - В4 при лог. 0 на входе ЕВ и лог. 1 на входе ЕА. При подаче лог. 1 на оба входа ЕА и ЕВ выходы В1 - В4 и С1 - С4 переходят в высокоимпедансное состояние. Одновременная подача лог. 0 на входе ЕА и ЕВ не допускается. Попарное соединение выводов А1 - А4 и В1 - В4 превращает микросхему в четыре двунаправленных ключа, максимальный выходной ток в состоянии лог. 0-60 мА, максимальные входное и выходное напряжения в состоянии лог. 1-10,5 В, входной ток в состоянии лог. 0 не превышает 0,15 мА.

МикросхемаАПЗ (рис. 10) - восемь инвертирующих буферных элементов с повышенной нагрузочной способностью и возможностью перевода выходов в высокоимпедансное состояние. Элементы разбиты на две группы по четыре, у каждой из групп свой вход управления для включения элементов и их перевода в третье состояние (Е1 и Е2). Включение элементов каждой группы происходит при подаче на соответствующий вход (Е1 и Е2) лог. О, переход в высокоимпедансное состояние - при подаче лог. 1. Выходной втекающий ток микросхемы К555АПЗ в состоянии лог. О при напряжении на выходе 0,5 В может достигать 24 мА, вытекающий в состоянии лог. 1 при напряжении на выходе 2 В - 15 мА. Для микросхем КР1533АПЗ максимальный уровень лог. 0 0,4 В при втекающем токе 12 мА и 0,5 В при 24 мА. Минимальный уровень лог. 1 2,4 В при вытекающем токе 3 мА и 2,5 В при 0,4 мА. Нагрузочная способность микросхемы КР531АПЗ в состоянии лог. 0 64 мА, в состоянии лог. 1 3 мА при выходном

1-29.jpg

напряжении 2,4 В и 15 мА при 2 В. Входные токи по сигнальным входам D1 - D8 в состоянии лог. 0 0,4 мА.

МикросхемаАП4 (рис. 10) - восемь аналогичных буферных элементов без инверсии. Отличие ее в том, что один из входов включения элементов и их перевода в третье состояние (El) - инверсный, подобно АПЗ, второй (Е2) - прямой. Нагрузочная способность этой микросхемы такая же, как у АПЗ.

МикросхемаАП5 (рис. 10) - восемь неинвертирующих буферных элементов, обе группы которых имеют инверсные входы управления включением. В остальном эта микросхема аналогична АП4.

Микросхемы АПЗ - АП5 служат для буферизации и коммутации сигналов в микропроцессорных устройствах, например, сигналов адреса, сигналов управления при организации внутренних и внешних шин микро-ЭВМ. Основное их назначение - обеспечение однонаправленной передачи информации. Однако при необходимости с их помощью можно обеспечить и двунаправленную передачу. На рис. 11 в качестве примера показано соединение выводов микросхемы АП4 для получения двунаправленного буферного элемента. При подаче лог. 0 на объединенные между собой входы Е1 и Е2 происходит передача сигнала

от расположенных слева по рисунку выводов микросхемы (входы А1 -А4) к правым (В1 - В4), при подаче лог. 1 - наоборот: от В1 - В4 к А1 -А4. Два треугольника в среднем поле графического обозначения микросхемы символизируют усиление и направление передачи сигнала, верхний - при подаче активного сигнала на вход Е1 (для инверсного входа - лог. 0), нижний - на вход Е2 (для прямого входа - лог. 1).

1-210.jpg

Интересно отметить, что расположение информационных входов и выходов микросхем АПЗ - АП5 сделано специально такое, как показано на рис. 11, - для удобного их соединения.

Однако для организации двунаправленной передачи информации удобнее использовать специально предназначенные для этой цели микросхемы, описываемые далее.

Микросхема АП6 (см. рис. 10) - восемь двунаправленных неинвертирующих буферных элементов. Кроме двух групп информационных выводов А1 - А8 и В1 - В8, микросхема имеет два входа управления - Е и Т. Сигнал лог. 0, подаваемый на

вход Е, разрешает включение буферных элементов, лог. 1 - переводит все выводы микросхемы в Z-состояние. Сигнал на входе Т действует при лог. 0 на входе Е и определяет направление передачи сигналов - при лог. 1 на входе Т выводы А1 - А8 являются входами, В1 - В8 - выходами, при лог. 0 - наоборот; В1 - В8 - входы, А1 - А8 - выходы. Два треугольника у входа Т символизируют усиление и направление распространения сигнала, верхний - при лог. 1 на входе Т, нижний - при лог. 0.

Микросхема АП6 по своему функционированию (но, к сожалению, не по разводке выводов) соответствует микросхеме КР580ВА86, но потребляет в 1,7 раза меньшую мощность (К555АП6).

МикросхемаКР1533АП14 (рис. 10) содержит восемь однонаправленных буферных элементов с возможностью перевода их выходов в высокоимпедансное состояние. При подаче на оба входа разрешения Е лог. 0 выходы микросхемы переходят в активное состояние и на них появляются без инверсии сигналы с соответствующих входов D1 - D8. При поступлении на любой из входов Е лог. 1 выходы переходят в высокоимпедансное состояние. Микросхема КР1533АП15 (рис. 10) аналогична микросхеме КР1533АП14, только она инвертирует входные сигналы.

МикросхемаКР1533АП16 (рис. 10) состоит из восьми двунаправленных буферных элементов и, в основном, аналогична микросхеме

КР1533АП6. Она инвертирует сигналы при передаче их с выводов А на выводы В и не инвертирует их при передаче в обратном направлении. На графическом изображении микросхемы КР1533АП16 для отражения этого свойства у вывода Т, определяющего направление передачи информации, верхний треугольник, символизирующий передачу сигналов с выводов А на выводы В при подаче на вход Т лог. 1, дополнен кружком инверсии, а нижний треугольник (на входе Т - лог. 0) показан без такого кружка.

МикросхемаИП6 (рис. 10) - четыре двунаправленных инвертирующих буферных элемента. Логика работы входов управления Е1 и Е2

1-211.jpg

следующая: при лог. 0 на обоих входах передача сигналов происходит от выводов А1 - А4 к выводам В1 - В4, при лог. 1 на обоих входах - от выводов В1 - В4 к А1 - А4. При лог. 1 на входе Е1 и лог. 0 на входе Е2 все информационные выводы микросхемы переходят в Z-состояние, подача лог. 0 на вход Е1 и лог. 1 на вход Е2 одновременно недопустима. Треугольники на графическом обозначении микросхемы и входов Е1 и Е2 символизируют усиление и направление распространения информации при подаче активных сигналов на эти входы.

Нагрузочная способность микросхемы ИП6 такая же, как у АПЗ.

МикросхемаИП7 отличается от ИП6 только тем, что не инвертирует сигналы.

На рис. 12 в качестве примера показано использование буферных микросхем для подключения внешних устройств к компьютеру «Радио-86РК». Если из всех внешних устройств ограничиться лишь таймером КР580ВИ53, его вполне можно смонтировать на

плате компьютера без буферных элементов. Если же предполагается подключение нескольких внешних устройств (таймер, часы, АЦПУ, модем и др.), из-за малой нагрузочной способности центрального процессора КР580ВМ80 необходимы буферные элементы.

На рис. 12 микросхема DD3 обеспечивает буферизацию управляющих сигналов RD, WR, RES и двух младших адресов АО и А1. Микросхема DD2 буферизирует двунаправленную шину данных. Включение этой микросхемы по входу Е должно происходить лишь при обращении к внешним устройствам, что обеспечивается микросхемой DD1 и элементами D10.4 и D10.3.

В основном варианте компьютера «Радио-86РК» адреса А000Н -BFFFH использованы для микросхемы D14. Практически используются только четыре адреса - А000Н, А001Н, А002Н, А00ЗН. Установкой дешифратора DD1 можно обеспечить при сохранении этих адресов для D14 использование следующих четырех адресов А004Н, АООЗН, А006Н, А007Н - для первого внешнего устройства, например таймера;

следующих четырех А00ЗН - А00ВН - для второго; следующих четырех А00СН - A00FH - для третьего и т. д., всего можно будет подключить семь дополнительных внешних устройств, для каждого из которых будет отведено четыре адреса. Если входы 1,2,4 дешифратора DD1 подключить к другим выходам адреса микропроцессора D6, например, А10, All, A12, на каждое внешнее устройство будет отведено по 1024 адреса.

Элементы D10.4 и D10.3 необходимы для выключения DD2 при обращении микропроцессора к D14, то есть по адресам А000Н - А00ЗН. В этом случае лог. 0 с выхода О DD1 включает D10.3 и лог. 1 с его выхода выключает DD2. Направление передачи сигнала через DD2 определяется сигналом RD. При чтении из внешнего устройства сигнал RD

1-212.jpg

принимает значение лог. 0 и происходит передача сигналов через DD2 от внешнего устройства к микропроцессору, в остальных случаях - от микропроцессора к внешнему устройству.

На рис. 13 приведены микросхемы -инвертирующие триггеры Шмитта. Микросхема К155ТЛ1 - два четырехвходовых элемента И-НЕ, микросхемаТЛЗ - четыре двухвходовых, микросхемаТЛ2 - шесть инверторов.

Указанные микросхемы при плавном изменении входного сигнала обеспечивают

скачкообразное переключение выходного (рис. 14). При повышении напряжения на входе элемента микросхемы от нуля выходное напряжение скачком изменяется с лог. 1 на лог. 0 при напряжении на входе около 1,65 В. При снижении напряжения на входе обратное изменение выходного напряжения происходит при напряжении на входе около 0,85 В для триггеров Шмитта серий К155 и К555ТЛ2 и около 1,2 В для КР531ТЛЗ.

1-213.jpg

Триггеры Шмитта применяют для формирования ТТЛ-сигнала из синусоидального, для приема сигналов при большом уровне помех, в формирователях и генераторах импульсов и в других случаях.

На рис. 15, а показана схема формирователя импульса сброса при включении питания, обеспечивающего крутой фронт при большой длительности импульса, на рис. 15, б - простейшего генератора импульсов.

1-214.jpg

Изучение работы более сложных микросхем удобно продолжить с микросхем последовательностного типа.

 

Рис. 10 Буферные микросхемы

Изображение: 

Рис. 11 Микросхема К555АП4 в качестве двунаправленного буфера

Изображение: 

Рис. 12 Буферные микросхемыв компьютере "Радио-86РК"

Изображение: 

Рис. 13 Триггеры Шмидта

Изображение: 

Рис. 14 Зависимость выходного напряжения от входного для триггеров Шмидта серий К155 и К555

Изображение: 

Рис. 15 Формирователь импульса начальной установки и генератор импульсов на триггере Шмидта

Изображение: 

Рис. 2 Микросхемы 2И-НЕ

Изображение: 

Рис. 3 Микросхемы ИЛИ-НЕ

Изображение: 

Рис. 4 Микросхемы И

Изображение: 

Рис. 5 Микросхемы ИЛИ

Изображение: 

Рис. 6 Микросхемы НЕ

Изображение: 

Рис. 7 Микросхемы И-ИЛИ-НЕ и расширители И-ИЛИ

Изображение: 

Рис. 8 Многовходовые элементы И (а), ИЛИ (б), элементы совпадения на четыре лог. 1 и три лог. 0

Изображение: 

Рис. 9 Микросхемы повторителей

Изображение: 

1.3 Микросхемы последовательстного типа.

1.3. Микросхемы последовательностного типа

Микросхемы последовательностного типа, как уже указывалось, характеризуются наличием памяти. Запись информации в ячейки памяти этих микросхем или изменение содержащейся в них информации производится импульсами. Входы микросхем для подачи импульсов записи могут быть статическими или динамическими. Статические входы характеризуются тем, что импульс, поданный на этот вход, действует в течение всего времени, пока он подан. Как правило, это входы сброса

триггеров, счетчиков и регистров, входы, стробирующие предварительную установку.

Для динамических входов характерно срабатывание по фронту, то есть микросхема чувствительна не к самому импульсу в течение всего времени, пока он подан, а лишь к его фронту или спаду. Точнее, запись (изменение) информации происходит только в моменты смены сигнала на динамическом входе с лог. 1 на лог. 0 или с лог. 0 на лог. 1.

В большинстве случаев для динамических входов безразлично, подаются на вход импульсы положительной или отрицательной полярности (здесь и далее под импульсом отрицательной полярности понимается изменение сигнала с лог. 1 до лог. 0 с последующим изменением с лог. 0 на лог. 1), запись (изменение) информации происходит при изменении сигнала с лог. 1 на лог. 0 для одних типов микросхем, с лог. 0 на лог. 1 для других типов.

При разработке устройств следует придерживаться правила - все последовательностные микросхемы должны переключаться по спадам тактовых импульсов, поэтому при описании микросхем, имеющих динамические входы, указывается, что они срабатывают по спадам импульсов соответствующей полярности. На схемах включения микросхем для импульсов, подаваемых на динамические входы, стрелками отмечены спады импульсов, по которым срабатывают микросхемы, а на графических обозначениях микросхем на их динамических входах штрихом отмечено направление перепада, по которому происходит срабатывание.

 

1.3.1 Триггеры.

1.3.1. Триггеры

Основу последовательностных цифровых структур составляют триггеры различных типов, которые могут использоваться самостоятельно или в составе счетчиков, регистров и т. д.

Триггеры ТТЛ-микросхем различаются по своим возможностям. Так называемые JK- и D-триггеры ТМ2 могут работать в счетном режиме, то есть менять свое состояние на противоположное на каждый импульс, приходящий на счетный вход триггера. Триггеры других микросхем могут работать только в режиме хранения информации, записываемой в них в момент подачи тактовых импульсов. На рис. 16 приведены графические обозначения описываемых далее триггеров.

ТриггерК155ТВ1 имеет девять входов: R - установки в 0, S - установки в 1, С - тактовых импульсов, J и К - управляющие (по три входа, объединенных по схеме И), а также прямой и инверсный (обозначен кружком) выходы. При подаче лог. 0 на вход R триггер

устанавливается в нулевое состояние, при котором на прямом выходе лог. 0, на инверсном - лог. 1. При подаче лог. 0 на вход S триггер устанавливается в единичное состояние. При подаче лог. 0 одновременно на оба входа (R и S) триггера на обоих выходах появляется лог. 1. Состояние триггера после снятия лог. 0 со входов R и S определяется тем, с какого из входов лог. 0 снят последним. Аналогично управляются по входам R и S все описываемые далее триггеры ТТЛ.

Сложнее происходит работа триггера при подаче сигналов на входы С, J и К. Наиболее простой режим - при лог. 1 на входах J и К. В этом случае JK-триггер работает, как обычный триггер со счетным входом: по спаду каждого положительного импульса на тактовом входе С состояние триггера меняется на противоположное. Если хотя бы на одном входе J и на одном входе К одновременно лог. 0, состояние триггера при подаче импульсов по тактовому входу С не меняется.

1-3-11.jpg

Если на всех входах J лог. 1, хотя бы на одном входе К - лог. 0, по спаду положительного импульса на входе С триггер устанавливается в единичное состояние независимо от своего предыдущего. Если хотя бы на одном входе J лог. 0, на всех входах К - 1, по спаду импульса на входе С триггер устанавливается в нулевое состояние.

Изменение сигналов на J- и К-входах при лог. 0 на входе С не влияет на состояние JK-триггера. Если же на входе С лог. 1, изменение сигналов на J- и К-входах само по себе не влияет на состояние выходов, но запоминается. Если триггер находится в нулевом состоянии и во время действия положительного тактового импульса на всех входах J была кратковременно лог. 1, по спаду импульса положительной полярности триггер перейдет в единичное состояние независимо от состояния входов J и К на момент спада. Аналогично, если триггер находится в единичном состоянии и во время действия тактового импульса на всех входах К была кратковременно лог. 1, по спаду тактового импульса триггер перейдет в нулевое состояние независимо от состояния входов J и К.

Предельная частота работы триггера К155ТВ1 10 МГц.

МикросхемаТВ6 (рис. 16) - сдвоенный JK-триггер. Каждый триггер имеет вход для подачи тактовых импульсов С, входы для подачи информации J и К, вход сброса R. Приоритетом пользуется вход R -при подаче на него лог. 0 триггер устанавливается в нулевое состояние, при котором на прямом выходе триггера - лог. 0, на инверсном -лог. 1. При лог. 1 на входе R возможна запись информации со входов J и К. Переключение триггера происходит по спаду импульсов положительной полярности на входе С. Если перед спадом сигнала на входе С на входе J лог. 1, на входе К лог. 0, триггер установится в единичное состояние, если на входе J лог. 0, на входе К лог. 1 - в нулевое. Если на входах J и К лог. 0, переключение по спаду импульса на входе С не произойдет; если на обоих входах лог. 1, триггер по спаду на входе С переключится в противоположное состояние. Для переключения триггера важна информация на входах J и К непосредственно перед переходом на входе С уровня лог. 1 в лог. 0, поэтому информация на входах J и К может меняться как при лог. 0, так и при лог. 1 на входе С. Предельная частота работы триггеров микросхем К555ТВ6 и КР1533ТВ6 - 30 МГц.

МикросхемаТВ9 (рис. 16) - также два JK-триггера, имеющих дополнительно ко входам триггеров К555ТВ6 еще входы установки в единичное состояние S при подаче лог. 0 на вход S. В остальном логика работы этих триггеров аналогична логике работы триггера ТВ6.

Предельная частота работы триггеров микросхем К555ТВ9 и КР1533ТВ9 - 30 МГц.

Микросхема ТВ10 (рис. 16) - два JK-триггера, функционирующих аналогично триггерам микросхем ТВ9, но отличающихся наличием лишь одного установочного входа. Этот вход можно считать входом установки в состояние 1 (вход S), можно считать входом сброса (вход R), в этом случае входы J и К и прямой и инверсный выходы меняются местами. Оба варианта графического обозначения триггера приведены на рис. 16.

МикросхемаТВ11 (рис. 16) - два аналогичных JK-триггера со входами установки и сброса, входы сброса и тактовые входы этих триггеров соответственно объединены.

Предельная частота работоспособности триггеров КР1533ТВ10 и КР1533ТВ11- 30 МГц, триггеров КР531ТВ9- КР531ТВ11 -80 МГц. Входные токи триггеров серии КР531 по некоторым входам увеличены - для выводов S всех триггеров - 7 мА, R для КР531ТВ11 - 14 мА, С для КР531ТВ9 и КР531ТВ10- 4 мА, для КР531ТВ11-8 мА.

Микросхема ТВ15 - сдвоенный JK-триггер (рис. 16), каждый из которых имеет входы: R и S - для установки в 0 и 1 при подаче лог. 0 на соответствующий вход, С - для подачи тактовых импульсов и J и К-информационные. Особенность микросхемы в том, что входы К - инверсные. В отличие от описанных выше JK-триггеров переключение происходит по спаду импульсов отрицательной полярности на входе С.

Счетный режим переключения триггера на каждый импульс осуществляется при подаче на вxoд J лог. 1, на вход К - лог. 0. Если на входы J и К подать лог. 1, по спаду импульса отрицательной полярности произойдет установка триггера в 1, если на эти входы подать лог. 0 - в 0. Объединение входов J и К превращает триггеры микросхемы в D-триггеры, аналогичные триггерам микросхем ТМ2, описываемых ниже. При J = 0, К = 1 происходит блокировка переключения, и триггеры микросхемы ТВ15 на импульсы на входе С не реагируют. Сигналы на входах J и К можно изменять как при лог. 0, так и при лог. 1 на входе С - для переключения триггера играют роль сигналы на этих входах лишь непосредственно перед переходом напряжения на входе С с лог. 0 на лог. 1.

Предельная частота функционирования триггеров К155ТВ15 -25 МГц, КР1533ТВ15 - 34 МГц.

МикросхемаТМ2 (рис. 16) содержит два D-триггера. Триггер D-типа имеет вместо входов J и К один вход D. По входам R и S

D-триггер работает так же, как и JK-триггер. Если на входе D лог. 0, по спаду импульса отрицательной полярности на входе С триггер устанавливается в нулевое состояние, при лог. 1 на входе D по спаду импульса отрицательной полярности на входе С триггер устанавливается в единичное состояние.

Для получения режима счетного триггера вход D соединяют с инверсным выходом триггера, в этом случае триггер меняет свое состояние на противоположное по спадам входных импульсов отрицательной полярности.

Предельная частота функционирования триггеров К155ТМ2 -15 МГц, К555ТМ2 - 25 МГц, КР1533ТМ2 - 40 МГц, КР531ТМ2 -80 МГц. Входные токи микросхемы КР531ТМ2 в состоянии лог. 0 составляют 4 мА по входам С и S, 6 мА по входу R, 2 мА по входу D.

На основе JK- и D-триггеров ТМ2 строятся счетчики и делители частоты.

Для построения двоичных счетчиков счетные входы JK-триггеров К155ТВ1, ТВ6, ТВ9 - ТВ 11 соединяют с прямыми выходами предыдущих триггеров, а D-триггеров ТМ2 и JK-триггеров ТВ 15 с инверсными (рис. 17). Отличие в подключении входов связано с тем, что триггеры микросхем ТМ2 и ТВ 15 срабатывают по спаду импульсов отрицательной полярности, а остальные - по спаду импульсов положительной полярности.

Состояние счетчика (число поступивших на его вход импульсов после установки в 0) однозначно определяется состоянием его триггеров. В частности, для четырехразрядных счетчиков состояние может быть определено по формуле

1-3-12.jpg

где Yi= 0 или 1 - состояние 1-го триггера (i = 1 - 4, начиная со входа счетчика); Рj= 2^i - 1 - вес i-го разряда счетчика. О таких счетчиках

1-3-13.jpg

говорят, что они работают в весовом коде 1-2-4-8. Счетчик может быть построен так, что его весовой код будет отличаться от рассмотренного. Так, для четырехразрядных счетчиков получили распространение коды 1-2-4-6, 1-2-2-4 и др. Существуют такие структуры счетчиков, состояние которых не может быть выражено приведенной выше формулой. О таких счетчиках говорят, что они работают в невесовом коде. Их состояния определяют по временным диаграммам или таблицам переходов. Сказанное о четырехразрядных счетчиках распространяется на счетчики любой разрядности.

Делители частоты (далее просто делители) отличаются от счетчиков тем, что вних используется только один выход - выход последнего триггера. Таким образом, n-разрядный двоичный счетчик всегда можно рассматривать как делитель на 2^n.

Часто необходимо осуществить деление частоты на некоторое целое число т, не являющееся степенью двойки, в таких случаях обычно используют n-разрядный двоичный счетчик (2^n >m) и вводом дополнительных логических связей обеспечивают пропуск 2^n - m состояний в процессе счета. Этого можно достигнуть, например, принудительной установкой счетчика в 0 при достижении состояния m или принудительной установкой счетчика в состояние 2^n - m при его переполнении.

Возможны и другие способы. Например, наиболее часто применяемая декада (счетчик с коэффициентом пересчета 10) нa JK-триггерах К155ТВ1 строится по схеме рис. 18 (а). При подаче импульсов с 1-го по 8-й декада работает как обычный двоичный счетчик импульсов. К моменту подачи восьмого импульса на двух входах J четвертого

1-3-14.jpg

триггера формируется уровень лог. 1, восьмым импульсом этот триггер переключается в единичное состояние и уровень лог. 0 с его инверсного выхода, подаваемый на вход J второго триггера, запрещает его переключение в единичное состояние под действием десятого импульса. Десятый импульс восстанавливает нулевое состояние четвертого триггера, и цикл работы делителя повторяется.

Декада на рис. 18 (а) работает в весовом коде 1-2-4-8. Временная диаграмма ее работы приведена на рис. 18 (б).

Декада на D-триггерах, схема которой приведена на рис. 19 (а), работает в невесовом коде. Временная диаграмма ее работы приведена на рис. 19 (б).

1-3-15.jpg

Построение счетчиков с коэффициентом пересчета 10 (декад) на триггерах ТВ6, ТВ9, ТВ10 отличается от построения на триггерах К155ТВ1, так как у триггеров указанных микросхем по одному входу J и К.

На рис. 20 приведена схема декады, работающей в весовом коде 1-2-4-8. Для увеличения числа входов J до необходимого использован один элемент микросхемы К555ЛИ1. На рис. 21 (а) приведена схема декады, выходной код которой не является весовым. Работа декады проиллюстрирована на диаграмме рис. 21 (б). Элемент DD3 не

1-3-16.jpg

1-3-17.jpg

является обязательным, он преобразует код работы декады в весовой код 1-2-4-8 (выходы А, В, С, Е), что может быть необходимым для подключения к декаде дешифратора или преобразователя кода для семисегментного индикатора.

Декада, схема которой приведена на рис. 22 (а), также работает в невесовом коде. Делитель на пять DD1.2, DD2.1, DD2.2 этой декады выполнен на основе сдвигающего регистра с перекрестными связями

1-3-18.jpg

1-3-19.jpg

так же, как и декады на D-триггерах рис. 19 (а). Коэффициент деления шесть такого регистра уменьшен до пяти за счет подключения входа R триггера DD2.2 к прямому выходу триггера DD2.1. Временная диаграмма работы приведена на рис. 22 (б).

МикросхемаТР2 (см. рис. 16) - четыре RS-триггера. Два триггера микросхемы

имеют по одному входу R и S, два других - по одному входу R и по два входа S. Сброс и установка триггеров в 1 происходят при подаче лог. 0 соответственно на входы R и S. Входы S тех триггеров, гдеих два, собраны как логический элемент ИЛИ для сигналов лог. 0, поэтому для установки триггеров в состояние 1 достаточно подать лог. 0 на один из входов S, состояние второго при этом не играет роли. Если на входы R и S триггера подать лог. 0, на выходе триггера - лог. 1. Состояние триггера после снятия сигналов лог. 0 со входов R и S будет определяться тем, с какого из входов лог. 0 будет снят последним.

Микросхему ТР2 можно использовать для подавления дребезга контактов (рис. 23) и в других случаях.

 

Рис. 16 Микросхемы триггеров

Изображение: 

Рис. 17 Двоичные счетчики на JK и D-триггерах

Изображение: 

Рис. 18 Декада на JK-триггерах К155ТВ1 и диаграмма ее работы

Изображение: 

Рис. 19 Декада на D-триггерах К155ТМ1 и диаграмма ее работы

Изображение: 

Рис. 20 Декада на JK-триггерах в коде 1-2-4-8

Изображение: 

Рис. 21 Декада на JK-триггерах и диаграмма ее работы

Изображение: 

Рис. 22 Декада на JK-триггерах и диаграмма ее работы

Изображение: 

Рис. 23 Подавитель дребезга на микросхеме К155ТР2

Изображение: 

Ф.1 Определение состояния четырехразрядных счетчиков

Изображение: 

1.3.2 Счетчики.

1.3.2. Счетчики

В состав рассматриваемых серий ТТЛ-микросхем входит большое число счетчиков и делителей частоты, различающихся по своим свойствам и назначению.

1-3-21.jpg

МикросхемаК155ИЕ1 (рис. 24) - делитель частоты на 10. Установка триггеров микросхемы в 0 осуществляется подачей лог. 1 одновременно на два объединенных по схеме И входа R. Рабочая полярность входных счетных импульсов, подаваемых на входы С, отрицательная. Импульсы можно подавать или отдельно на каждый из входов (на второй вход

должна при этом подаваться лог. 1), или одновременно на оба входа. Одновременно с каждым десятым входным импульсом на выходе формируется равный ему по длительности выходной импульс отрицательной полярности. Многокаскадные делители частоты можно строить, соединяя входы С последующих каскадов с выходами предыдущих.

МикросхемыИЕ2, К155ИЕ4 и ИЕ5 (рис. 25) содержат по четыре счетных триггера. В каждой микросхеме один из триггеров имеет отдельный вход С1 и прямой выход, три оставшихся триггера соединены между собой так, что образуют делитель на 8 в микросхеме ИЕ5,

1-3-22.jpg

на 6 в К155ИЕ4 и на 5 в ИЕ2. При соединении выхода первого триггера с входом С2 цепочки из трех триггеров образуются соответственно делители на 16, 12 и 10. Делители на 10 и 16 работают в коде 1-2-4-8, делитель на 12 - в коде 1-2-4-6. Микросхемы имеют по два входа R установки в 0, объединенные по схеме И. Сброс (установка в 0) триггеров производится при подаче лог. 1 на оба входа R. Микросхема ИЕ2 имеет, кроме того, входы R9 для установки в состояние 9, при котором первый и последний триггеры декады находятся в единичном состоянии, остальные - в нулевом.

Наличие входов установки, объединенных по схеме И, позволяет строить делители частоты с различными коэффициентами деления в пределах 2-6 без использования дополнительных логических элементов. На рис. 26 приведены схема декады на микросхеме К155ИЕ4 и ее временная диаграмма. До прихода десятого импульса декада работает как делитель частоты на 12. Десятый импульс переводит триггеры микросхемы в состояние 10, при котором на выходах 4 и 6 микросхемы формируются уровни лог. 1. Эти уровни, поступая на входы

1-3-23.jpg

R микросхемы, переводят ее в 0, в результате чего коэффициент пересчета К становится равным 10

1-3-24.jpg

Для установки рассмотренной декады в 0 внешним сигналом необходимо введение в нее логических элементов И-НЕ (рис 27)

В табл. 4 приведены номера выводов микросхем, которые нужно соединить между собой для получения различных К Все делители, полученные соединением выводов по табл. 4, работают по одно

му принципу - при достижении состояния, соответствующего необходимому коэффициенту пересчета, происходит установка счетчика в 0. Исключение составляет делитель на 7 на микросхеме ИЕ2. В этом делителе после подсчета шести импульсов на входах R9 формируются уровни лог. 1, поэтому из состояния 5 делитель сразу переходит в состояние 9, минуя 6,7 и 8 Код работы этого делителя - невесовой

Делители на микросхемах ИЕ5 и ИЕ2 работают в весовом коде 1-2-4-8, на микросхеме К155ИЕ4 - в коде 1-2-4-6 при использовании входа 14 и в коде 1-2-3 - при использовании входа 1.

МикросхемыИЕ6 и ИЕ7 - реверсивные счетчики. Первый из них - двоично-десятичный, второй - двоичный Оба работают в коде 1-2-4-8 Цоколевка обеих микросхем одинакова (рис 28), различие в том, что первый считает до 10, второй до 16

Рассмотрим для примера работу микросхемы ИЕ6 В отличие от рассмотренных ранее счетчиков, эта микросхема имеет большее число

Таблица 4

К

К155ИЕ2

К155ИЕ4

К155ИЕ5

Вход

Вых.

Соединить выводы

Вход

Вых.

Соединить выводы

Вход

Вых.

Соединить выводы

2

14

12

14

12

-

14

12

-

3

1

8

9-2,8-3

1

9

-

1

8

9-2,8-3

4

1

8

11-2-3

1

8

11-6,8-7

1

8

-

5

1

11

-

1

8

9-6,8-7

1

11

9-2,11-3

6

14

8

12-1,9-2,8-3

1

8

-

1

11

8-2,11-3

7

14

11

12-1,9-6,8-7

14

8

12-1-6,8-7

-

-

-

8

14

8

12-1,11-2-3

14

8

12-1,11-6,8-7

1

11

-

9

14

11

12-1-2,11-3

-

-

-

14

11

12-1-2,11-3

10

14

11

12-1

14

8

12-1,9-6,8-7

14

11

12-1,9-2,11-3

12

-

14

8

12-1

14

11

12-1,8-2,11-3

16

-

-

-

-

-

-

14

11

12-1


выходов и входов Входы +1 и -1 служат для подачи тактовых импульсов, +1 - при прямом счете, -1 - при обратном. Вход R служит для установки счетчика в 0, вход L - для предварительной записи в счетчик информации, поступающей по входам D1 - D8.

Установка триггеров счетчика в 0 происходит при подаче лог 1 на вход R, при этом на входе L должна быть лог. 1. Для предварительной записи в счетчик любого числа от 0 до 9 его код следует подать на входы D1 - D8 (D1 - младший разряд, D8 - старший), при этом на входе R должен быть лог 0, и на вход L подать импульс отрицательной полярности

Режим предварительной записи можно использовать для построения делителей частоты с перестраиваемым коэффициентом деления для учета фиксированной частоты (например, 465 кГц) в цифровой шкале радиоприемника Если этот режим не используется, на выходе L должен постоянно поддерживаться уровень лог 1

Прямой счет осуществляется при подаче импульсов отрицательной полярности на вход +1, при этом на входах -1 и L должна быть лог 1, на входе R - лог 0 Переключение триггеров счетчика происходит по спадам входных импульсов, одновременно с каждым десятым входным импульсом на выходе >=9 формируется отрицательный выходной импульс переполнения, который может подаваться на вход +1 следующей микросхемы многоразрядного счетчика Уровни на выходах 1-2-4-8 счетчика соответствуют состоянию счетчика в данный момент (в двоичном коде) При обратном счете входные импульсы подаются на вход -1, выходные импульсы снимаются с выхода <=0 Пример временной диаграммы работы счетчика приведен на рис. 29.

Первый импульс установки в 0 устанавливает все триггеры счетчика в 0. Три следующих импульса, поступающих на вход +1, переводят счетчик в состояние 3, которому соответствуют лог. 1 на выходах 1 и 2 и лог 0 - на 4 и 8. Если на входах D1 - D4 лог. 0, на входе D8 лог. 1, импульс на входе L устанавливает счетчик в состояние 8 Следующие

1-3-25.jpg

шесть импульсов, поступающие на вход +1, переводят счетчик последовательно в состояния 9,0,1,2,3,4 Одновременно с импульсом, переводящим счетчик в 0, на выходе S9 появляется выходной импульс прямого счета Следующие импульсы, поступающие на вход -1, изменяют состояние счетчика в обратном порядке 3, 2, 1,0,9,8 и т д

1-3-26.jpg

Одновременно с импульсом обратного счета, переводящим счетчик в состояние 9, на выходе <=0 появляется выходной импульс.

В микросхеме ИЕ7 импульс на выходе =>15 появляется одновременно с импульсом на входе +1 при переходе счетчика из состояния 15 в состояние 0, а на выходе <=0 - при переходе счетчика из 0 в 15 одновременно с импульсом на входе -1.

Предельная частота функционирования микросхем К155ИЕ6, К155ИЕ7 - 15 МГц, К555ИЕ6 и К555ИЕ7 - 25 МГц, КР1533ИЕ6 и КР1533ИЕ7 - 30 МГц.

МикросхемуК155ИЕ8 обычно называют делителем частоты с переменным коэффициентом деления, однако это не совсем точно. Эта микросхема содержит шестиразрядный двоичный счетчик, элементы совпадения, позволяющие выделять не совпадающие между собой импульсы - каждый второй, каждый четвертый, каждый восьмой и т. д. и управляемый элемент И-ИЛИ, который позволяет подавать на выход часть или все выделенные импульсы, в результате чего сред-

1-3-27.jpg

няя частота выходных импульсов может изменяться от 1/64 до 63/64 частоты входных импульсов. Графическое обозначение микросхемы приведено на рис. 30, пример временной диаграммы ее работы - на рис. 31. Для наглядности на рис. 30 вынесен логический элемент И-НЕ, входящий в микросхему. Микросхема имеет следующие входы: инверсный вход ЕС - разрешения

1-3-28.jpg

счета, при подаче на который лог. 1 счетчик не считает, вход R - установки 0, установка триггеров счетчика в 0 происходит при подаче на него лог. 1; вход С - вход тактовых импульсов отрицательной полярности, переключение триггеров счетчика происходит по спадам входных импульсов; входы XI - Х32 позволяют управлять выдачей отрицательных выходных импульсов, совпадающих по времени с входными, на выход Z. На рис. 31 в качестве примера показано, какие импульсы выделяются на выходе Z при подаче лог. 1 на входы:

Х32 (диаграмма Х32), Х16 (диаграмма Х16) и Х8 (диаграмма Х8). В этих случаях на выходе Z выделяется соответственно 32, 16 или 8 равномерно расположенных импульсов. Если же одновременно подать лог. 1 на несколько входов, например, на Х32 и Х8, то, как показано на диаграмме Z, на выходе Z выделится 40 импульсов, но расположенных неравномерно. В общем случае число импульсов N на выходе Z за период счета составит

N = 32 х Х32 + 16 х Х16 + 8 х Х8 + 4 х Х4 + 2 х Х2 + X1, где X1-Х32 принимают значения соответственно 1 или 0 в зависимости от того, подана или нет лог. 1 на соответствующий вход.

На выходе Р выделяется отрицательный импульс, фронт которого совпадает со спадом 63-го тактового импульса, спад - со спадом 64-го. Этот импульс может использоваться при каскадном соединении интегральных микросхем К155ИЕ8. Вход S - вход стробирования, при подаче на него лог. 1 выдача импульсов на выходе Z прекращается.

На рис. 32 приведена схема соединения двух делителей К155ИЕ8, позволяющая получить на выходе от 1 до 4095 импульсов при подаче на вход 4096 =64^2 импульсов. Число импульсов на выходе подсчитывается по формуле, аналогичной приведенной выше, в которой коэффициенты имеют значения от 2048 до 1. Если требуется соединить большее число делителей, их соединение производится аналогично рис. 32, однако выходной элемент И-НЕ, выполняющий функцию ИЛИ-НЕ

1-3-29.jpg

для отрицательных импульсов, поступающих с выходов Z делителей, необходимо использовать из отдельной микросхемы И-НЕ или И.

1-3-210.jpg

МикросхемаИЕ9 (рис. 33) - синхронный десятичный счетчик с возможностью параллельной записи информации по фронту тактового импульса, имеет девять входов. Подача лог. 0 на вход R независимо от состояния других входов приводит к установке триггеров микросхемы в состояние 0. Для обеспечения режима счета на входе R необходимо подать лог. 1, тот же сигнал должен быть подан на входы разрешения параллельной записи EL, разрешения ЕС, разрешения выдачи сигнала переноса ER Изменение состояния триггеров счетчика при счете происходит по спаду импульсов отрицательной полярности, подаваемых на вход С.

При подаче лог. 0 на вход EL микросхема переходит в режим параллельной записи информации со входов D1 - D8. Запись происходит по спадам импульсов отрицательной полярности на входе С, что позволяет использовать микросхему в режиме сдвигающего регистра. При записи на входе R должна быть лог. 1, сигналы на входах ЕС и ЕР произвольны.

На выходе переноса Р лог. 1 появляется в том случае, когда счетчик находится в состоянии 9, а на входе ЕР - лог. 1, в остальных случаях на выходе Р лог. 0. Подача лог. 0 на вход ЕР запрещает выдачу лог. 1 на выходе Р и счет импульсов. Подача лог. 0 на вход ЕС запрещает счет, но не запрещает выдачу сигнала переноса. Сигнал запрета счета (лог. 0 на входах ЕС и ЕР) действует лишь в том случае, если он полностью перекрывает по длительности импульс отрицательной полярности на входе С, в том числе он может совпадать с ним по времени.

Для обеспечения параллельной записи лог. 0 на вход EL информация на входы D1 - D8 может быть подана как при лог. 1, так и при лог. 0 на входе С и удерживаться до момента перехода лог. 0 на входе С в лог. 1, когда и произойдет запись.

Для обеспечения счета с числа, введенного в микросхему при параллельной записи, лог 0 на входе EL должен быть изменен на лог. 1 или одновременно с переходом лог. 0 в лог. 1 на входе С, или при лог. 1 на входе С.

На рис. 34 (а) приведена схема соединения микросхем ИЕ9 в многоразрядный синхронный счетчик, которая снижает быстродействие счетчика, так как для его нормальной работы необходимо, чтобы сигнал переноса от младшего разряда прошел через все микросхемы до старшего разряда до подачи очередного тактового импульса. Для получения максимального быстродействия многоразрядного счетчика, равного быстродействию отдельной микросхемы, микросхемы можно соединить по схеме рис. 34 (б). В этом случае сигнал переноса с выхода Р микросхемы DD1 разрешает работу остальных микросхем, соединенных в счетчик по схеме рис. 34 (а), лишь в те моменты, когда микросхема DD1 находится в состоянии 9, поэтому от счетчика DD2 - DD9 требуется быстродействие в 10 раз меньшее быстродействия микросхемы DD1, что обеспечивается при любой практически встречающейся длине счетчика.

1-3-211.jpg

Как уже указывалось выше, микросхемы ИЕ9 могут работать в режиме сдвигающего регистра. Для обеспечения такого режима необходимо входы D1 - D8 соединить с выходами 1-2-4-8 в нужном порядке. Для сдвига информации на один двоичный разряд по каждому тактовому импульсу в сторону старших разрядов соединение необходимо произвести в соответствии с рис. 35 (а). Для обеспечения динамической индикации удобно сдвигать информацию сразу на один десятичный разряд, а сдвигающий регистр замыкать в кольцо. Такая возможность проиллюстрирована на рис. 36.

На рис. 36 не показаны цепи подачи импульсов и управляющих сигналов, которые могут быть выполнены в соответствии с рис. 34 (а) или 34 (б). Роль входа разрешения сдвига выполняет вход Запись. Естественно, что при соединении микросхем в соответствии с рис. 35,36 параллельная запись информации в микросхемы невозможна.

Микросхемы ИЕ9 удобно использовать в делителе с переключаемым коэффициентом пересчета. Для получения указанного режима достаточно сигнал переноса старшего разряда одноразрядного или многоразрядного счетчика через инвертор подать на вход разрешения записи, а на входы D1 - D8 подать код, определяющий коэффициент пересчета (рис. 37).

1-3-212.jpg

1-3-213.jpg

При установке счетчика в процессе счета в состояние 99...9 счетчик перейдет в режим параллельной записи и при подаче следующего тактового импульса вместо перехода в состояние 00...0 произойдет запись параллельного кода, поданного на входы D1 - D8 микросхем. В результате общий коэффициент пересчета N уменьшится на величину К, соответствующую численному значению этого кода, и составит

1-3-214.jpg

Коэффициент пересчета может меняться для выхода 2 в пределах 1...10^м (длительность выходных импульсов положительной полярности равна длительности входных), для выхода 1 - в пределах 2...10^м (длительность импульсов отрицательной полярности равна периоду входных импульсов).

Если делитель собран по схеме рис. 34 (б), инвертор DD3 необходимо заменить на двухвходовый элемент И-НЕ, второй вход которого подключить к выходу переноса Р первой микросхемы делителя.

МикросхемаИЕ10 (рис. 38) по своему функционированию аналогична микросхеме ИЕ9 и отличается от нее тем, что считает в двоичном коде, и ее коэффициент пересчета равен 16. В остальном ее рабо

1-3-215.jpg

та и правила включения те же.

МикросхемаИЕ11 - десятичный синхронный счетчик (рис. 38). Логика его работы соответствует логике работы счетчиков ИЕ9. Отличие лишь в том, что для сброса в состояние 0 счетчика ИЕ9 необходима подача на вход R лог. 0, а для сброса в состояние 0 счетчика ИЕ11 кроме подачи на вход ER (разрешение уст. 0) лог. 0

необходима подача тактового импульса отрицательной полярности на вход С, по спаду которого и происходит сброс счетчика. Таким образом, все изменения выходных сигналов этой микросхемы происходят по спаду импульсов отрицательной полярности на входе С.

1-3-216.jpg

МикросхемаКР1533ИЕ12 (рис. 39) обеспечивает параллельную запись и режим счета. Входы Dl, D2, D4, D8 служат для подачи сигналов кода при параллельной записи информации. Запись в триггеры счетчика происходит асинхронно при поступлении на вход L лог. 0 независимо от состояния других входов. При лог. 1 на входе L и лог. 0 на входе разрешения работы Е счетчик изменяет состояние по спадам импульсов отрицательной полярности на входе С. На

правление счета определяется сигналом на входе D/U: при лог. 0 происходит счет вверх, при лог. 1 - вниз.

Для построения многоразрядных счетчиков у микросхемы есть два специальных выхода: последнего состояния 0/9 и переноса Р. На выходе 0/9 лог. 1 появляется при достижении состояния 9 при прямом счете и состояния 0 при обратном. В остальных случаях на выходе 0/9 - лог. 0. При наличии лог. 1 на выходе 0/9 и лог. 0 на входе Е одновременно с импульсом на входе С на выходе переноса Р появляется импульс отрицательной полярности и той же длительности.

Счетчик КР1533ИЕ12 не имеет входа установки в 0. Для этой цели на входы Dl, D2, D4, D8 подают лог. 0, а на вход L - импульс отрицательной полярности. Смена сигналов на входах D/U и Е должна происходить в момент переключения сигнала на входе С из лог. 0 в лог. 1 или в паузе между импульсами на входе С (то есть при лог. 1 на этом входе).

Пример временной диаграммы работы счетчика представлен на рис. 40. По импульсу отрицательной полярности на входе L записываются сигналы кода числа 7 в триггеры счетчика (сигналы кода 0111 на входах D8, D4, D2, Dl не показаны). Первые пять импульсов на входе С переводят его последовательно в состояния 8, 9, 0, 1, 2. На выходе 0/9 лог. 1 появляется при переходе счетчика в состояние 9. Импульс на его выходе Р формируется одновременно с третьим импульсом на входе С, по спаду которого счетчик переключается в состояние 0.

В момент окончания пятого импульса происходит смена направления счета изменением сигнала на входе D/U и следующие пять импульсов на входе С переводят счетчик последовательно в состояния 1, 0, 9,

1-3-217.jpg

8,7 и т. д. При переходе счетчика в состояние 0 на выходе 0/9 появляется лог. 1, а одновременно с восьмым импульсом на входе С, переключающим счетчик в состояние 9, на выходе Р формируется импульс отрицательной полярности.

Схема соединения микросхем КР1533ИЕ12 в многоразрядный счетчик показана на рис. 41 (а). Из-за последовательного переключения быстродействие такого счетчика в реверсивном режиме снижается относительно быстродействия одной микросхемы.

Если необходим реверсивный счетчик с максимально возможным быстродействием, его собирают по схеме рис. 41 (б). В этом счетчике все триггеры микросхем переключаются одновременно и его быстродействие не зависит от числа разрядов. Однако для каждого десятичного разряда, кроме первого, требуется элемент И-НЕ с числом входов, возрастающим по мере роста номера разряда.

В зависимости от необходимого быстродействия возможно построение различных вариантов последовательно-параллельного счетчика. Можно, например, не использовать выход 0/9 микросхемы DD4 (рис. 41, б), а ее выход Р соединить с входом тактовых импульсов второго такого счетчика.

МикросхемаКР1533ИЕ13 (рис. 39) аналогична КР1533ИЕ12, но ее коэффициент пересчета равен 16. Все правила ее использования и схемы включения соответствуют микросхеме КР1533ИЕ12.

МикросхемаИЕ14 (рис. 42) во многом напоминает микросхему ИЕ2. Она также содержит счетный триггер с входом С2. При соединении выхода 1 счетного триггера (вывод 5) с входом С2 образуется двоично-десятичный счетчик, работающий в коде 1-2-4-8. Срабатывание триггера и делителя на 5 происходит по спадам импульсов положительной

1-3-218.jpg

полярности. Различие с микросхемой ИЕ2 заключается в полярности импульсов сброса - триггеры микросхемы ИЕ14 устанавливаются в 0 при подаче на вход R лог. 0. Кроме того, в микросхеме ИЕ14 есть возможность предварительной установки триггеров счетчика. Для установки триггеров необходимый код следует подать на входы D1 - D8, а на вход L - импульс отрицательной полярности. При лог. 0 на входе L сигналы на выходах 1-8 повторяют сигналы на входах D1 - D8, при лог. 1 происходит запоминание и возможен счетный режим работы микросхемы.

1-3-219.jpg

Микросхему можно использовать в счетчиках с предварительной установкой, например, в цифровых шкалах радиоприемников и трансиверов с учетом промежуточной частоты.

МикросхемаИЕ15 (рис. 42) по своей структуре и функционированию аналогична микросхеме ИЕ14, но делитель с входом С2 делит частоту на 8,

Микросхемы КР531ИЕ16 иКР531ИЕ17 - реверсивные синхронные четырехразрядные счетчики - двоично-десятичный и двоичный соответственно. Разводка их выходов совпадает (рис. 43), более того, она совпадает с разводкой микросхем ИЕ9 и ИЕ10, за исключением вывода 1, для описываемых микросхем это вход изменения направления счета

1-3-220.jpg

U/D, вход сброса отсутствует. При лог. 1 на входе U/D счетчик считает вверх, при лог. 0 - вниз. Синхронная параллельная запись информации в микросхемы КР531ИЕ16 и КР531ИЕ17 происходит со входов D1 - D8 по спаду тактового импульса отрицательной полярности на входе С и подаче лог. 0 на вход разрешения загрузки EL. При счете на входе EL должна быть лог. 1.

Отличием описываемых микросхем от ИЕ9 и ИЕ10 является также полярность сигналов разрешения переноса ЕР и разрешения счета ЕС (для разрешения работы на эти входы необходимо подать лог. 1). Соответственно выходным разрешающим сигналом на выходе переноса Р является лог. 0, он появляется в случае, когда микросхема КР531ИЕ16 досчитала до состояния 9 (КР531ИЕ17 - до состояния 15) при прямом счете или до 0 при обратном, а на входе разрешения переноса ЕР - лог. 0.

Примеры соединения микросхем КР531ИЕ16 и КР531ИЕ17 в многоразрядный счетчик приведены на рис. 44 и 45. При соединении микросхем по схеме рис. 44 максимальная частота счета снижается по отношению к максимально возможной для одной микросхемы, при соединении по схеме рис. 45 - не снижается. Следует помнить, что переключение направления счета на входе U/D и смену информации на входах ЕР и ЕС следует производить в паузе между

1-3-221.jpg

тактовыми импульсами, то есть при лог. 1 на входах С микросхем или в момент изменения сигнала на этих входах с лог. 0 на лог. 1. Входной ток микросхем по входу ЕР в состоянии лог. 0-4 мА. МикросхемаИЕ18 (рис. 46) аналогична по функционированию микросхеме ИЕ11, но ее коэффициент пересчета равен 16.

1-3-222.jpg

Рассмотренные выше микросхемы счетчиков серии КР531 имеют входные токи по управляющим входам, как правило, больше стандартных. При подаче на входы лог. 0 токи составляют для микросхем КР531ИЕ9 и КР531ИЕ10 по выводу 2 - 5 мА, выводу 10-3 мА, выводу 9-4 мА. Для микросхем КР531ИЕ11 и КР531ИЕ18 ток по вы

1-3-223.jpg

воду 10 составляет 4 мА, а для КР531ИЕ14 и КР531ИЕ15 ток по выводу 8-8 мА, по выводу 6-10 мА, по выводам 1, 3, 4, 10, 11, 13 - 0,75 мА.

МикросхемаК555ИЕ19 - два четырехразрядных двоичных счетчика (рис. 47), каждый из которых имеет два входа: R - для установки триггеров счетчика в 0 при подаче на вход R лог. 1 и С - для подачи счетных импульсов. Срабатывание триггеров счетчика происходит по спадам импульсов положительной полярности, подаваемых на вход С,

выходной код счетчиков - стандартный, 1-2-4-8. Для соединения счетчиков в многоразрядный выходы 8 предыдущих разрядов необходимо соединить со входами С последующих.

МикросхемаК555ИЕ20 (рис. 47) -два четырехразрядных двоично-десятичных счетчика, каждый из которых аналогичен счетчику микросхем ИЕ2, за исключением входов установки в 0 R.

1-3-224.jpg

Каждый счетчик имеет триггер со входом С1, выходом 1 и делитель частоты на 5 со входом С2 и выходами 2,4,8. Триггер и счетчик срабатывают по спадам положительных импульсов, подаваемых на входы С1 и С2, на входе R при счете должен быть лог. 0. Для получения десятичного счетчика выход 1 надо соединить со входом С2, при этом код счетчика будет 1-2-4-8. Если же выход 8 соединить со входом С1, входные импульсы подать на вход С2, выходной код будет 1-2-4-5, а на выходе 1 сигнал будет иметь форму меандра с частотой, в 10 раз меньше входной. Впрочем, так же можно соединять счетчики микросхем ИЕ2 и ИЕ14. Предельная частота работы триггера - 25 МГц, делителя на 5 - 20 МГц.

 

Рис. 24 Микросхема К155ИЕ1

Изображение: 

Рис. 25 Микросхемы К155ИЕ2, К155ИЕ4, К155ИЕ5

Изображение: 

Рис. 26 Делитель частоты на 10 на микросхеме К155ИЕ4 и диаграмма его работы

Изображение: 

Рис. 27 Декада на микросхеме К155ИЕ4 с возможностью установки в 0

Изображение: 

Рис. 28 Микросхемы ИЕ6 и ИЕ7

Изображение: 

Рис. 29 Временная диаграмма работы микросхемы ИЕ6

Изображение: 

Рис. 30 Микросхема К155ИЕ8

Изображение: 

Рис. 31 Временная диаграмма работы микросхемы К155ИЕ8

Изображение: 

Рис. 32 Схема соединения двух делителей К155ИЕ8

Изображение: 

Рис. 33 Микросхема ИЕ9

Изображение: 

Рис. 34 Соединение микросхем ИЕ9 в счетчик, соединение для получения максимального быстродействия

Изображение: 

Рис. 35 Счетчик с возможностью сдвига в сторону старших разрядов

Изображение: 

Рис. 37 Делитель с управляемым коэффициентом деления

Изображение: 

Рис. 38 Микросхемы ИЕ10 и ИЕ11

Изображение: 

Рис. 39 Микросхемы КР1533ИЕ12 и КР1533ИЕ13

Изображение: 

Рис. 40 Временная диаграмма работы микросхемы КР1533ИЕ12

Изображение: 

Рис. 41 Соединение микросхем КР1533ИЕ12 в многоразядный счетчик

Изображение: 

Рис. 42 Микросхемы ИЕ14 и ИЕ15

Изображение: 

Рис. 43 Микросхемы ИЕ16 и ИЕ17

Изображение: 

Рис. 44 Соединение микросхем ИЕ16 в счетчик

Изображение: 

Рис. 45 Соединение микросхем ИЕ16 в счетчик для получения максимального быстродействия

Изображение: 

Рис. 46 Микросхема ИЕ18

Изображение: 

Рис. 47 Микросхемы К555ИЕ19 и К555ИЕ20

Изображение: 

Ф.1 Определение коэффициента пересчета

Изображение: 

1.3.3 Регистры.

1.3.3. Регистры

Регистры можно разделить на два класса - сдвигающие и хранения информации. В свою очередь, регистры хранения бывают «прозрачные», тактируемые импульсом, и синхронные, тактируемые фронтом импульса.

МикросхемыК155ТМ5 и ТМ7 (рис. 48) содержат по четыре триггера, образующих два двухразрядных регистра хранения информации. Каждый триггер имеет информационный вход D, тактовый вход С и прямой выход (а в микросхеме ТМ7 еще и инверсный выход). Триггер работает следующим образом. При лог. 0 на входе С изменение сигнала на входе D не влияет на состояние триггера и он хранит записанную в нем ранее информацию. При подаче на вход С лог. 1 триггер превращается в повторитель - сигнал на выходе соответствует сигналу на входе, за это свойство подобные триггеры называют «прозрачными». При подаче на вход С лог. 0 триггер переходит вновь в режим хранения, а его состояние определяется сигналом на входе D перед спа-

1-3-31.jpg

дом импульса на входе С. Таким образом, основные свойства триггеров микросхем К155ТМ5 и ТМ7 следующие:

1) при подаче на вход С лог. 0 - хранение информации;

2) при подаче на вход С лог. 1 - повторение входного сигнала;

3) запоминается информация, имеющаяся на входе D перед спадом на входе С;

4) изменение информации на выходе может происходить в течение всего положительного импульса на входе С, если при этом меняется информация на входе D.

Эту разновидность D-триггера называют «D-триггером, тактируемым импульсом», «триггером-защелкой», «прозрачным» триггером, чтобы отличать ее от описанных выше D-триггеров ТМ2, которые можно назвать «D-триггерами, тактируемыми фронтом» или «синхронными D-триггерами».

Для того чтобы подчеркнуть различие между ними, приведем логику работы D-триггера, тактируемого фронтом импульса:

1) хранение информации осуществляется при подаче на вход С как лог. 0, так и лог. 1;

2) прямое прохождение сигнала на выход со входа D нет;

3) запоминается информация, имеющаяся на входе D перед фронтом импульса положительной полярности на входе С;

4) изменение информации на выходе может происходить только во

время фронта на входе С.

МикросхемаТМ8 (рис. 49) - регистр хранения информации, содержащий четыре синхронных D-триггера, по функционированию анало

1-3-32.jpg

гичных триггерам микросхем ТМ2. Сброс триггеров происходит при подаче лог. 0 на вход R, запись - по спаду импульса отрицательной полярности на входе С. Информация на входах D1 - D4 может меняться как при лог. 0, так и при лог. 1 на входе С, она важна лишь непосредственно перед изменением сигнала на входе С с лог. 0 на лог. 1. МикросхемаТМ9 - регистр хране

ния информации, содержащий шесть D-триггеров, по функционированию аналогичных триггерам микросхем ТМ2 и ТМ8.

МикросхемаК155ИР1 (рис. 50) - четырехразрядный сдвигающий регистр, позволяет производить последовательную и параллельную запись информации в триггеры регистра, последовательное и параллельное считывание информации, сдвиг информации. Вход С1 микросхемы служит для подачи положительных тактовых импульсов, сдвигающих информацию, причем сдвиг происходит по спадам импульсов. При подаче положительного импульса на вход С2 по его спаду происходит запись в триггеры регистра информации, имеющейся на входах D1 - D4. Кроме того, есть управляющий вход EL. Запись со входов D1 - D4 может происходить лишь при наличии лог. 1 на входе EL, сдвиг - при наличии лог. 0. Для последовательной записи информации используется вход D0, запись происходит в режиме сдвига.

1-3-33.jpg

Наличие управляющего входа EL расширяет возможности использования микросхемы. Если соединить между собой входы С1 и С2, можно управлять сдвигом и записью, лишь изменяя логический уровень на входе EL. Можно соединить между собой входы С2 и EL, специального управляющего сигнала в этом случае не потребуется -сдвиг будет происходить при подаче импульсов на вход С1, запись -при подаче импульсов на С2.

Если вход D1 подключить к выходу 2, D2 - к выходу 3, D3 - к выходу 4, а D4 использовать в качестве входа последовательной записи, то получится реверсивный сдвигающий регистр. При подаче импульсов на вход С1 будет происходить последовательная запись информации со входа D0 и сдвиг в сторону возрастания номеров выходов (сдвиг вправо). При подаче импульсов на вход С2 запись будет происходить со входа D4, сдвиг - в сторону уменьшения номеров выходов (сдвиг влево). В полученный таким образом реверсивный сдвигающий регистр параллельная запись информации невозможна.

МикросхемаК555ИР8 (рис. 50) - восьмиразрядный сдвигающий регистр. Она имеет вход С для подачи импульсов сдвига, вход сброса R, два равноправных входа D для подачи сдвигаемой информации, собранных по И, и восемь выходов. Обнуление триггеров регистра производится подачей лог. 0 на вход R. Прием информации со входов D и ее сдвиг в сторону выходов с большими номерами происходят по спадам импульсов отрицательной полярности на входе С.

Микросхему К555ИР8 удобно использовать для преобразования информации, поступающей в последовательном коде, в параллельный.

МикросхемаК555ИР9 (рис. 50) - восьмиразрядный сдвигающий регистр с возможностью асинхронной параллельной записи и последовательным считыванием. Микросхема имеет вход D0 для подачи

информации при последовательной записи, восемь входов D1 - D8 для подачи информации при параллельной записи, два равноправных входа для подачи тактовых импульсов (выводы 2 и 15), вход параллельной записи L и прямой и инверсный выходы последнего разряда сдвигающего регистра. Переключение триггеров регистра происходит по спаду импульсов отрицательной полярности на любом из входов С при лог. 0 на другом. Подача лог. 1 на любой из входов запрещает переключение триггеров при подаче импульсов на второй вход. Режим работы регистра определяется сигналом, поданным на вход L - при лог. 1 на нем по спадам импульсов на входе С происходит сдвиг информации, поступающей на вход D0, выходам 8, при лог. 0 на входе L происходит параллельная запись информации со входов D1 - D8 в триггеры регистра.

МикросхемаК555ИР10 (рис. 50) по своей структуре аналогична микросхеме К555ИР9 и отличается от нее синхронной параллельной записью, отсутствием инверсного выхода последнего разряда сдвигающего регистра и наличием входа R для сброса всех триггеров регистра в нулевое состояние. Сброс производится при подаче лог. 0 на вход R, запись - спадом импульса отрицательной полярности на входе С при лог. 0 на входе EL.

Микросхемы К555ИР9 и К555ИР10 удобно применять для преобразования параллельного кода в последовательный. Наличие двух входов для подачи тактовых импульсов позволяет использовать один из них как вход разрешения работы регистра, другой - для выполнения сдвига или записи.

МикросхемаИР11 (рис. 50) - универсальный четырехразрядный сдвигающий регистр, позволяет производить как параллельную запись информации, так и ее сдвиг вправо и влево. Имеет входы: D1 -D4 - для подачи информации при параллельной записи; DR - при последовательной записи и сдвиге вправо (в сторону возрастания номеров выходов); DL - то же и сдвиге влево; SR и SL - управляющие, С - для подачи тактовых импульсов и R - сброса.

При подаче лог. 0 на вход R происходит установка триггеров регистра в 0. При лог. 1 на входе R режим работы определяется управляющими сигналами на входах SR и SL При лог. 1 на входе SR и лог. 0 на входе SL по спадам импульсов отрицательной полярности на входе С происходит последовательный прием информации с входа DR и сдвиг вправо. При лог. 1 на входе SL и лог. 0 на входе SR происходит прием информации с входа DL и сдвиг влево. При лог. 1 на обоих входа SR и SL по спаду импульса отрицательной полярности на входе С произойдет параллельная

1-3-34.jpg

запись информации со входов D1 - D4. Если на входах SR и SL лог. 0, переключение триггеров регистра при изменении информации на входе С не происходит.

Соединение микросхем ИР11 в многоразрядный реверсивный сдвигающий регистр проиллюстрировано на рис. 51.

МикросхемаКР531ИР12 (рис. 52) -четырехразрядный сдвигающий регистр. Имеет четыре прямых выхода 1-4, инверсный выход разряда 4 и следующие входы: R - сброса, С - для подачи тактовых импульсов, EL - установки режима параллельной записи, J и К - для подачи информации при последовательной записи и D1, D2, D3, D4 - для подачи информации при параллельной записи.

Вход сброса R - преобладающий - при подаче на него лог. 0 независимо от состояния других входов все триггеры микросхемы устанавливаются в 0. Если на входе R лог. 1, возможна запись информации

в триггеры микросхемы. При лог. 0 на входе EL по спаду импульса отрицательной полярности на входе С произойдет запись информации с входов J и К в триггер с выходом 1 и сдвиг информации в остальных триггерах в сторону возрастания номеров выходов. Информация, которая будет записана в первый триггер, определяется состоянием входов J и К перед спадом импульса отрицательной полярности на входе С. Если объединить между собой входы J и К, будет записываться информация, имеющаяся на

1-3-35.jpg

этих объединенных входах. Если на вход J подать лог. 0, на вход К -лог. 1, изменения информации в первом триггере по спаду импульса отрицательной полярности на входе С не произойдет. При лог. 1 на входе J и лог. 0 на входе К первый триггер микросхемы переходит в счетный режим и меняет свое состояние на противоположное на каждый спад импульса отрицательной полярности на входе С.

Для построения сдвигающего регистра с числом разрядов более четырех достаточно соединить выходы четырех микросхем младших

разрядов с объединенными входами J и К микросхем следующих разрядов (рис. 53). Входы С, R, EL различных микросхем следует соединить между сбой.

Для построения реверсивного сдвигающего регистра выходы и информационные входы микросхем следует соединить между собой в соответствии с рис. 54, параллельная запись информации в такой регистр невозможна, а сигнал на входах EL микросхем будет определять направление сдвига.

МикросхемаК155ИР13 (рис. 55) - восьмиразрядный реверсивный сдвигающий регистр, имеет 8 выходов параллельного кода и следующие входы: D1 - D8 - для подачи информации при параллельной записи, DR и DL - для подачи информации при последовательной записи и сдвиге вправо и влево соответственно, С - для подачи тактовых импульсов, SR и SL - для управления режимом и R - для сброса триггеров регистра.

При подаче на вход R лог. 0 происходит сброс всех триггеров счетчика независимо от состояния других входов. Любые другие изменения состояния регистра происходят лишь по спаду импульса отрицательной

1-3-36.jpg

полярности на входе С. При лог. 1 на входе SR и лог. 0 на входе SL по спаду импульса на входе С происходит сдвиг информации вправо (в сторону возрастания номеров выходов). В первый разряд сдвигающего регистра последовательный прием информации осуществляется со входа DR. При лог. 1 на входе SL и лог. 0 на входе SR сдвиг осуществляется влево, прием информации в восьмой разряд регистра - со входа DL. Если лог. 1 подать сразу на оба входа SR и SL, по спаду импульса отрицательной полярности на входе С произойдет параллельная запись в регистр информации со входов D1 - D8.

1-3-37.jpg

Подача лог. 0 на оба входа SR и SL блокирует тактовые импульсы, подаваемые на вход С, и по ним информация в регистре уже не будет меняться. Однако, если при лог. 0 на входе С вначале хотя бы на одном из входов SR или SL имелась лог. 1, затем на обоих входах - лог. 0, это изменение будет воспринято микросхемой как спад тактового импульса, по которому произойдет сдвиг или параллельная запись, в зависимости от состояния входов SR и SL перед появлением лог. 0 на обоих входах. Указанное свойство микросхемы позволяет, подав постоянно лог. 0 на вход С, использовать вход SR для подачи импульсов сдвига вправо, вход SL - для подачи импульсов сдвига влево. Сдвиг будет происходить по спадам импульсов положительной полярности. Если изменение сигнала с лог. 1 на лог. 0 произойдет одновременно на обоих входах SR и SL, осуществится параллельная запись информации со входов D1 - D8.

Соединение микросхем К155ИР13 для увеличения разрядности проиллюстрировано на рис. 56.

МикросхемаИР15 (рис. 57) - четырехразрядный регистр хранения информации с возможностью перевода выходов в высокоимпедансное состояние. Запись информации со входов D1 - D4 в триггеры микросхемы происходит по спаду импульса отрицательной полярности на входе С, обнуление триггеров - по импульсу положительной полярности на входе R. Особенность регистра - два равноправных инверсных входа разрешения записи EL, собранных по И. Наличие лог. 1 на любом из этих входов запрещает запись в триггеры, причем изменение сигналов на входах D1 - D4 может происходить как при лог. 0, так и при лог. 1 на входе С, важно лишь состояние этих входов непосредственно перед переходом сигнала на входе С из лог. 0 в лог. 1.

Микросхема имеет два равноправных инверсных входа ЕО, собранных по И. Наличие лог. 1 на любом из этих входов переводит

1-3-38.jpg

1-3-39.jpg

выходы в высокоимпедансное состояние. Состояние входов ЕО никак не влияет на работу микросхемы по другим входам - запись, обнуление могут происходить при любых сочетаниях сигналов на входах ЕО.

Основное назначение микросхемы -прием, хранение и мультиплексирование информации, поступающей от различных источников. В качестве простейшего примера на рис. 58 приведена схема для обеспечения одновременного приема четырехразрядной информации от двух различных источников Данные 1 и Данные 2 по фронту импульса на входе Запись и поочередной передачи принятой информации на выход по сигналам Чтение 1 и Чтение 2.

Наличие двух входов разрешения записи и двух входов перевода в высокоимпедансное состояние позволяет легко организовать матричное управление большим числом микросхем. Например, два описываемых далее дешифратора ИД4 могут управлять по входам ЕО матрицей из 64 микросхем ИР15, в результате можно получить одновременный прием и запоминание 256 бит информации и последовательную передачу информации по 4 бита в необходимом порядке.

Управляя матрицей по входам EL, можно организовать последовательный прием информации

от различных источников и параллельную выдачу, если выходы микросхем не объединять.

Микросхема К555ИР16 (рис. 59) - четырехразрядный сдвигающий регистр с возможностью перевода выходов в высокоимпедансное состояние, имеет входы: D0 - для подачи последовательной информации при сдвиге; D1 - D4 - для подачи информации при параллельной записи;

С - для тактовых импульсов; EL - для выбора режима параллельной записи и ЕО - для перевода выходов в высокоимпедансное состояние.

При лог. 1 на входе EL спад импульса положительной полярности на входе С приводит к параллельной записи информации со входов

1-3-310.jpg

1-3-311.jpg

D1 - D4 в триггеры регистра. Если на входе EL лог. 0, по спадам на входе С происходит прием информации со входа D0 и сдвиг ее в сторону возрастания номеров выходов.

Подача лог. 0 на вход ЕО приводит к переводу выходов регистра в высокоимпедансное состояние, при котором сдвиг информации невозможен. Параллельная запись возможна как при лог. 0, так и при лог. 1 на входе ЕО.

1-3-312.jpg

Микросхема К555ИР16 по логике своей работы близка к микросхеме К155ИР1 и в ряде случаев может заменить ее без существенной переработки печатных плат, так как назначение выводов микросхем К555ИР16 и К155ИР1 совпадает, за исключением вывода 8.

МикросхемаК155ИР17 (рис. 60) - специальный регистр, предназначенный для построения аналого-цифровых преобразователей, работающих по принципу последовательного приближения с числом разрядов до 12. Имеет четыре входа:

С - для подачи тактовых импульсов (срабатывание триггеров регистра происходит по спаду тактовых импульсов отрицательной полярности), D - для подачи запоминаемой регистром информации, Е - разрешения преобразования и ER - сброса.

Работа микросхемы проиллюстрирована на диаграммах C-DO рис. 61. При подаче на вход ER лог. 0 по спаду очередного импульса отрицательной полярности (импульс 0) происходит начальная установка

триггеров регистра - на выходе 12 устанавливается лог. 0, на выходах 1-11 и 12 - лог. 1. На выходе окончания преобразования Р появляется лог. 1. Такое состояние регистра будет сохраняться до тех пор, пока на входе ER будет лог. 0.

После установления на входе ER лог. 1 первый спад импульса отрицательной полярности произведет запись в триггер регистра с выходами 12 и 12 информации со входа D и установит выход 11 в состояние 0, на выходах 10-1 и Р будет лог. 1. Спад очередного импульса отрицательной полярности произведет запись информации со входа D в очередной триггер регистра и установит следующий за ним выход в состояние 0. Таким образом, на выходах регистра поочередно появляется лог. 0, вслед за ним - информация со входа D.

После записи информации со входа D в последний триггер регистра (с выходом 1) на выходе Р появляется лог. 0 и это состояние регистра фиксируется до появления лог. 0 на входе ER. Если вход ER соединить с выходом Р, появление лог. 0 на выходе Р по спаду очередного

1-3-313.jpg

тактового импульса (импульс 13 на рис. 61) приведет к установлению исходного состояния регистра аналогично импульсу 0. В результате микросхема будет повторять описанный выше цикл работы с периодом 13 тактов.

Так микросхема работает при лог. 0 на входе Е. Если на вход Е подать лог. 1, выходы 12-1 и Р переходят в состояние 1 и на сигналы на других входах не реагируют. Наличие входа Е позволяет соединять между собой микросхемы для получения регистров последовательного приближения на 24,36 и т. д. разрядов (рис. 62). Работа таких регистров аналогична работе одной микросхемы, а период при соединении выхода Р последней микросхемы с объединенными входами ER всех

1-3-314.jpg

микросхем составит 25,37 и т. д. тактов.

Микросхема позволяет использовать ее в качестве регистра последовательного приближения и с меньшим, чем на 12, числом разрядов, для чего для подачи сигнала на вход ER можно использовать его соединение с любым из выходов 1-11.

Если вход D подключить постоянно к источнику лог. 1, микросхему можно использовать как счетчик с дешифратором, на выходах которого поочередно на период тактовых импульсов появляется лог. 0. Коэффициент пересчета счетчика составит 13, он может быть и меньше при соединении входа ER с любым из выходов 11-1.

Если на вход D постоянно подавать лог. 0, микросхема будет работать так, что по каждому тактовому импульсу на очередном из выходов 11-1 регистра лог. 1 будет изменяться на лог. 0, который будет держаться на выходе до конца цикла. На выходе 12 при этом будет постоянно лог. 0. Длительность цикла также может быть переменной - от 2 до 13 периодов тактовых импульсов.

Основное же назначение микросхемы К155ИР17 - построение аналого-цифровых преобразователей (АЦП). Одна из возможных схем АЦП приведена на рис. 63. К выходам 12-1 микросхемы подключен цифро-аналоговый преобразователь (ЦАП) DA1, старший разряд - 12, младший - 1. Компаратор DA2 сравнивает выходное напряжение ЦАП и преобразуемое в код входное напряжение.

Работает АЦП следующим образом. Тактовый импульс 0 устанавливает, как уже указывалось, выход 12 микросхемы DD1 в 0, остальные

выходы - в 1. В результате на вход ЦАП подается код 0111...1, на его выходе формируется напряжение, равное половине преобразуемого диапазона входных напряжений. Компаратор DA2 сравнивает его с входным, и если входное напряжение превышает напряжение с выхода ЦАП, как это показано на нижней диаграмме рис. 61, на его выходе появляется лог. 1. Тактовым импульсом 1 лог. 1 записывается в триггер микросхемы с выходом 12, это состояние триггера сохраняется до конца преобразования (диаграмма 12 рис. 61). Если входное напряжение меньше половины диапазона преобразователя, в триггер с выходом 12 запишется лог. 0.

1-3-315.jpg

По окончании тактового импульса 1 на выходе 11 микросхемы DD1 появится лог. 0 и на ЦАП будет подан код 10111...1 (для примера, показанного на рис. 61). В результате входное напряжение будет сравниваться с 3/4 преобразуемого диапазона входных напряжений. Если, как показано на рис. 61, входное напряжение больше, чем 3/4 диапазона, в триггер с выходом 11 будет записана 1, в противном случае - 0. Для описываемого примера в триггер регистра с выходом 11 импульс 2 запишет 1, и на ЦАП будет подан код 11011...1. В результате входное напряжение будет сравниваться с 1/2 + 1/4 + 1/8 =7/8 полного диапазона, если оно меньше, в триггер с выходом 10 запишется 0. По окончании такта 12 на выходах 12-1 микросхемы образуется двоичный двенадцатиразрядный код преобразованного напряжения, для данного случая 110101...1. Лог. 0 на выходе Р сигнализирует об окончании преобразования и может быть использован для переписи сформированного кода в регистр хранения. Если, как указывалось выше, выход Р

соединить с выходом ER, преобразование будет производиться циклически с периодом 13 тактов входных импульсов.

В процессе преобразования на выход D0 микросхемы выдается сдвинутая на один период входных импульсов информация со входа D, являющаяся последовательным кодом преобразованного входного напряжения.

Разрядность АЦП может быть уменьшена, если использовать вместо выхода Р любой из выходов 11-1, и увеличена, если микросхемы К155ИР17 соединить в соответствии с рис. 62 и использовать ПАП соответствующей разрядности.

Микросхему К155ИР17 можно использовать также и для других операций, производимых методом последовательных приближений. Например, при наличии цифрового умножителя кодов можно построить устройство, извлекающее квадратные корни или производящее деление одного цифрового кода на другой. Для извлечения квадратного корня микросхема выдает «пробное» значение корня 011...1, которое с помощью цифрового умножителя кодов возводится в квадрат и цифровым компаратором сравнивается с кодом числа, из которого надо извлечь корень. Далее работа происходит аналогично работе АЦП, в результате чего на выходе можно получить код квадратного корня. Аналогично можно производить деление или определение кода обратного числа.

МикросхемаКР531ИР18 - шестиразрядный регистр хранения информации (рис. 64). Запись информации в регистр производится по спаду импульса отрицательной полярности на входе С, при этом на входе разрешения записи EL должен быть лог. 0. Если на входе EL лог. 1, запись в регистр запрещена.

МикросхемаКР531ИР19 (рис. 64) - четырехразрядный регистр хранения информации с прямыми и инверсными выходами, функционирует аналогично микросхеме КР531ИР18.

1-3-316.jpg

Микросхема КР531ИР20 (рис. 65) -четыре двухвходовых мультиплексора с регистром хранения на выходе. На входы регистра поступают сигналы со входов D0 микросхемы, если на адресном входе А лог. 0, и со входов D1, если на входе А лог. 1. Запись в регистр производится по спаду импульса отрицательной полярности на входе С. По функционированию эта микросхема близка

1-3-317.jpg

описываемой далее микросхеме КП13 (для КП13 запись происходит по спаду импульса положительной полярности), разводка выводов уних разная.

МикросхемаКР531ИР21 (рис. 66) не является регистром. Это комбинационная микросхема статического сдвигателя четырехразрядного кода, по логике функционирования она ближе всего к мультиплексорам. Микросхема имеет семь информационных входов D1-D7, два адресных 1 и 2 и вход разрешения Е. Выходы 1-4 выполнены с возможностью их перевода в высокоимпедансное состояние при подаче на вход Е лог. 1, выходы активны при лог. 0 на входе Е.

На выходы 1-4 проходят сигналы с соответствующего входа, номер которого увеличен на десятичный эквивалент двоичного кода, поданного на входы 1 и 2. Если, например, на входах 1 и 2 лог. 0, на выходы проходят сигналы со входов D1 - D4, если на входе 1 - лог. 1, на входе 2 - лог. 0 - со входов D2 - D5, если и на входе 1, и на входе 2 -лог. 1 - со входов D4 - D7.

Если необходимо сдвигать восьмиразрядный код, микросхемы КР531ИР21 следует соединять в соответствии с рис. 67. Если же необходим сдвиг более чем на три разряда, микросхемы можно объединить согласно рис. 68. Дешифратор DD1 в зависимости от старших разрядов сдвига 4 и 8 выбирает одну из микросхем DD2 -DD5, выбор входных сигналов внутри микросхемы осуществляют младшие разряды сдвига 1 и 2.

Микросхемы КР531ИР21 находят применение в комбинационных умножителях и других случаях. Допустимое значение выходного тока микросхем в состоянии лог. 0 стандартное - 20 мА, в состоянии лог. 1 -6,5 мА при выходном напряжении 2,4 В. Входные токи в состоянии лог. 0 по входам D2 и D6 - 4 мА, D3 и D5 - 6 мА, D4 - 8 мА.

1-3-318.jpg

1-3-319.jpg

1-3-320.jpg

МикросхемаИР22 (рис. 69) - восьмиразрядный регистр хранения информации, тактируемый импульсом, с возможностью перевода выходов в высокоимпедансное состояние. Запись информации в триггеры регистра происходит при подаче лог. 1 на вход С, в этом случае сигналы на выходах регистра повторяют входные, регистр <<прозрачен» для сигналов на входах D1 - D8. При подаче лог. 0 на вход С регистр переходит в режим хранения информации.

1-3-321.jpg

Выходы микросхемы находятся в активном состоянии, если на вход ЕО подан лог. 0. Если же на вход ЕО подать лог. 1,выходы регистра переходят в высокоимпедансное состояние. Сигнал на входе ЕО не влияет на запись в триггеры, запись может производиться как при лог. 0, так и при лог. 1 на этом входе.

МикросхемаИР23 (рис. 69) - синхронный регистр хранения информации - отличается от ИР22 тем, что

запись информации производится по спаду импульса отрицательной полярности на входе С. Информация на входах D1-D8 может меняться как при лог. 0, так и при лог. 1 на входе С, важна она лишь непосредственно перед переходом сигнала на входе С с лог. 0 в лог. 1.

Нагрузочная способность микросхем К555ИР22 и К555ИР23 в три раза превышает стандартную для микросхем серии К555, для микросхем

КР1533ИР22 и КР1533ИР23 максимальный уровень лог. 0 0,4 В при втекающем токе 12 мА и 0,5 В при 24 мА, уровень лог. 1 2,4 В - при вытекающем токе 2,6 мА и 2,5 В при 0,4 мА. Для микросхем КР531ИР22 и КР1531ИР23 значение выходного тока в состоянии лог. 0 стандартное - 20 мА, в состоянии лог. 1 - 6,5 мА при выходном напряжении 2,4 В. Входные токи в состоянии лог. 0 составляют 0,25 мА.

1-3-322.jpg

МикросхемаИР24 - восьмиразрядный реверсивный сдвигающий регистр со входами параллельной записи, совмещенными с выходами (рис. 70). Микросхема имеет восемь триггеров с выходными ключами, которые могут переводиться в высокоимпедансное состояние (выходы ключей на рис.70 обозначены 1-8), от первого и последнего триггеров сделаны также выходы переноса PL и PR. Управляются выходные ключи по двум равноправным входам Е, сбрасываются триггеры по асинхронному входу сброса R. Все другие изменения состояния триггеров производятся по спадам им-

пульсов отрицательной полярности, подаваемых на вход С.

Преобладающие над другими - входы R, Е. Подача лог. 0 на вход R устанавливает все триггеры регистра в 0 независимо от состояния других входов. Подача хотя бы одной лог. 1 на входы Е переводит основные выходы 1-8 в высокоимпедансное состояние независимо от сигналов на других входах. Выходы PL и PR - стандартные, они всегда находятся в активном состоянии.

Режим работы регистра при лог. 1 на входе R и подаче импульсов на вход С выбирают по входам SR и SL. При подаче лог. 1 на вход SR и лог. 0 на вход SL по спадам импульсов отрицательной полярности происходит сдвиг информации вправо (вниз по рис. 70), запись в разряд 1 происходит со входа DR, при лог. 0 на входе SR и лог. 1 на входе SL - влево, запись в разряд 8 - со входа DL. При подаче лог. 0 на оба входа SR и SL по импульсам на входе С изменение состояния триггеров не происходит. Во всех этих случаях состояние (активное или высокоимпедансное) выходов 1-8 определяется сигналами на входах Е. Если же на входы SR и SL подана лог. 1, выходы 1-8 переходят в высокоимпедансное состояние независимо от сигналов на входах Е и по спадам импульсов отрицательной полярности на входе С происходит параллельная запись в регистр информации, поступающей на его выходы 1-8 (теперь они стали входами).

Микросхему ИР24 удобно использовать для преобразования последовательного кода в параллельный и наоборот, для параллельного

приема многоразрядного двоичного числа, его сдвига в любую сторону на необходимое число разрядов и выдачи на ту же шину и во многих других случаях.

На рис. 71 приведена схема соединения микросхем между собой для увеличения числа разрядов.

Нагрузочная способность микросхем КР1533ИР24 по выходам 1-8 такая же, как и у КР1533ИР22, по выходам PR и PL - стандартная. Для микросхемы КР531ИР24 максимально допустимый выходной ток по выходам 1-8 в состоянии лог. 0-20 мА, в состоянии лог. 1 -6,5 мА при 2,4 В и 0,5 мА - при 2,7 В. По выходам PL и PR максимальный ток в состоянии лог. 0 составляет 6 мА. Входные токи в состоянии лог. 0 по выводам 1-7,11-16, 18, 19 составляют 0,25 мА.

МикросхемаК555ИР27 (рис. 72)-восьмиразрядный регистр хранения информации. Запись информации в регистр производится, как и для микросхемы

ИР23, по спаду импульса отрицательной полярности на входе С. Регистр имеет инверсный вход разрешения записи EL, при лог. 1 на этом входе запись в регистр запрещена. Информация на входах D1 - D8 может меняться как при лог. 0, так и при лог. 1 на входе С.

Регистры ТМ8, ТМ9, ИР15, ИР22, ИР23, К555ИР27 могут использоваться для кратковременного запоминания небольшого объема информации, поступающей в параллельном коде.

Выходы микросхем ИР22 и ИР23 можно объединять, что позволяет организовать не только запоми

1-3-323.jpg

1-3-324.jpg

нание информации, но и ее мультиплексирование. Для примера на рис. 73 приведена схема приема восьмибитовой информации одновременно от двух различных источников Данные 1 и Данные 2, подобная рис. 58. Поочередная выдача информации на выходы может осуществляться при подаче на входы Чтение 1 и Чтение 2 лог. 0.

При необходимости из микросхем ТМ8, ТМ9, ИР23, К555ИР27 можно построить сдвигающий регистр, соединив входы D2 - D8

1-3-325.jpg

1-3-326.jpg

соответственно с выходами 1-7, в такой сдвигающий регистр параллельная запись информации невозможна.

МикросхемаКР1533ИР29 - восьмиразрядный реверсивный сдвигающий регистр (рис. 74), работает аналогично микросхеме КР1533ИР24. Однако в нем обеспечивается еще и синхронный сброс. Для установки триггера регистра в нулевое состояние на вход разрешения установки ER нужно подать лог. 0, а на вход С - импульс отрицательной полярности. Сброс триггеров произойдет по спаду импульса.

МикросхемаКР1533ИР31 - 24-разрядный сдвигающий регистр (рис. 75) Она имеет два входа (D - информационный и С - тактовый) и 24 выхода. Последовательная запись информации со входа и ее сдвиг происходят по спадам импульсов отрицательной полярности, поступающих на вход С Отличие подачи питания от стандартного варианта специально отмечено на графическом обозначении микросхемы Микросхема удобна для преобразования длинного последовательного кода в параллельный.

МикросхемаКР1533ИРЗЗ (рис 76) по функционированию и нагрузочной способности соответствует КР1533ИР22, отличается от нее разводкой выводов, мощностью и быстродействием

1-3-327.jpg

МикросхемаКР1533ИР34 - два

четырехразрядных регистра хранения (рис. 77). Каждый из регистров, кроме четырех входов для подачи информации D1 - D4 (D5 - D8), имеет входы С, R, ЕО. При подаче на вход R лог. 0 происходит установка триггеров регистра в состояние 0 независимо от сигналов на других входах Запись информации происходит при подаче лог. 1 на вход С. Если при этом на вход ЕО подан лог. 0, триггеры регистра «прозрачны» и выходные сигналы повторяют входной сигнал, запоминание сигналов происходит в момент подачи лог. 0 на вход С. Подача лог. 1 на вход ЕО приводит к переводу выходов в высокоимпедансное состояние, но не мешает записи информации в триггеры регистра. Нагрузочная способность микросхемы КР1533ИР34 такая же, как у КР1533ИР22.

МикросхемаК555ИР35 - восьмиразрядный регистр хранения информации (рис. 78) Логика работы триг-

1-3-328.jpg

1-3-329.jpg

геров регистра такая же, как и у микросхем ТМ2, ТМ8, ТМ9. Установка триггеров в нулевое состояние происходит при подаче лог 0 на вход R, параллельная запись информации осуществляется по

1-3-330.jpg

спаду импульсов отрицательной полярности, подаваемых на вход С Нагрузочная способность микросхемы стандартная.

МикросхемаКР1533ИР37 (рис. 76) аналогична по функционированию и нагрузочной способности КР1533ИР22, отличается разводкой выводов, мощностью и быстродействием

МикросхемаКР1533ИР38 (рис 77) отличается от КР1533ИР34 тем, что триггеры ее регистров синхронны - запись в них происходит по спаду импульсов отрицательной полярности на входе С.

 

Рис. 48 Микросхемы ТМ5 и ТМ7

Изображение: 

Рис. 49 Микросхемы ТМ8 и ТМ9

Изображение: 

Рис. 50 Микросхемы сдвигающих регистров

Изображение: 

Рис. 51 Соединение микросхем К555ИР11

Изображение: 

Рис. 52 Микросхема КР531ИР12

Изображение: 

Рис. 53 Соединение микросхем К531ИР12

Изображение: 

Рис. 55 Микросхема ИР13

Изображение: 

Рис. 56 Соединение микросхем ИР13

Изображение: 

Рис. 57 Микросхема ИР15

Изображение: 

Рис. 58 Регистр для приема информации из двух различных источников

Изображение: 

Рис. 59 Микросхема ИР16

Изображение: 

Рис. 60 Микросхема ИР17

Изображение: 

Рис. 61 Временная диаграмма работы микросхемы К155ИР17

Изображение: 

Рис. 62 Соедиение микросхем К155ИР17 для увеличения числа разрядов

Изображение: 

Рис. 63 Аналого-цифровой преобразователь на основе микросхемы К155ИР17

Изображение: 

Рис. 64 Микросхемы КР531ИР18 и КР531ИР19

Изображение: 

Рис. 65 Микросхема КР531ИР20

Изображение: 

Рис. 66 Микросхема КР531ИР21

Изображение: 

Рис. 67 Соедиение микросхем КР531ИР21 для увеличения разрядности

Изображение: 

Рис. 68 Микросхемы ИР22 и ИР23

Изображение: 

Рис. 68 Соедиение микросхем КР531ИР21 для увеличения сдвига

Изображение: 

Рис. 70 Микросхема ИР24

Изображение: 

Рис. 71 Соединение микросхем ИР24

Изображение: 

Рис. 72 Микросхема ИР27

Изображение: 

Рис. 73 Регистр для приема информации из двух различных источников

Изображение: 

Рис. 74 Микросхема К555ИР29

Изображение: 

Рис. 75 Микросхема КР1533ИР31

Изображение: 

Рис. 76 Микросхемы КР1533ИР33 и КР1533ИР37

Изображение: 

Рис. 77 Микросхемы КР1533ИР34 и КР1533ИР38

Изображение: 

Рис. 78 Микросхема К555ИР35

Изображение: 

1.4 Микросхемы комбинационного типа средней степени интеграции.

1.4 Микросхемы комбинационного типа средней степени интеграции.

  • .

 

1.4.1 Дешифраторы и шифраторы

1.4.1. Дешифраторы и шифраторы

Из микросхем комбинационного типа при разработке цифровых устройств широко используют дешифраторы, их номенклатура довольно разнообразна.

МикросхемаИДЗ (рис. 79) имеет четыре адресных входа 1, 2,4, 8, два инверсных входа стробирования S, объединенных по И, и 16 ёвыходов 0-15 Если на обоих входах стробирования лог. 0, на том из выходов, номер которого соответствует десятичному эквиваленту входного кода (вход 1 - младший разряд, вход 8 -старший), будет лог. 0, на остальных выходах - лог. 1. Если хотя бы на одном из входов стробирования S лог. 1, то независимо от состояний входов на всех выходах микросхемы формируется лог. 1.

Наличие двух входов стробирования существенно расширяет возможности использования микросхем. Из двух микросхем ИДЗ, дополненных одним инвертором, можно собрать дешифратор на 32 выхода (рис. 80), де-

1-4-11.jpg

шифратор на 64 выхода собирается из четырех микросхем ИДЗ и двух инверторов (рис 81), а на 256 выходов - из 17 микросхем ИДЗ (рис 82)

МикросхемаИД4 (рис 83) содержит два дешифратора на четыре выхода каждый с объединенными адресными входами и разделенными входами стробирования Лог 0 на выходах первого (верхнего по

1-4-12.jpg

1-4-13.jpg

1-4-14.jpg

схеме) дешифратора формируется (аналогично ИДЗ) лишь при наличии на обоих стробирующих входах лог 0 .Соответствующее условие для второго дешифратора - наличие на одном из его входов стробирования лог 1 (вывод 1), а на другом - лог 0 (вывод 2). Такая структура микросхемы позволяет использовать ее в различных вариантах включения. На основе микросхемы ИД4 могут быть построены, в частности, дешифраторы на восемь выходов со входом стробирования (рис 84) и на 16 выходов (рис 85). На девяти микросхемах

1-4-15.jpg

1-4-16.jpg

1-4-17.jpg

ИД4 можно собрать дешифратор на 64 выхода по схеме, подобной рис. 82. Если дополнить микросхему ИД4 тремя элементами 2И-НЕ, можно получить дешифратор на десять выходов (рис. 86).

МикросхемаК555ИД5 (рис. 83) аналогична по функционированию ИД4, но имеет выходы с открытым коллектором.

Описанные двоичные дешифраторы являются полными: любому состоянию адресных входов соответствует нулевое состояние некоторого единственного выхода. В ряде случаев, например при двоично-десятичном представлении чисел, удобно использовать неполные дешифра-

1-4-18.jpg

торы, в которых число выходов меньше числа возможных состояний адресных входов. В частности, двоично-десятичный дешифратор содержит десять выходов и не меньше четырех входов. На основе полного дешифратора всегда можно построить неполный на меньшее число входов.

1-4-19.jpg

Однако ввиду широкого использования в устройствах индикации двоично-десятичных дешифраторов в состав серии К 155 специально включен двоично-десятичный дешифраторК155ИД1 с высоковольтным выходом (рис. 87). Дешифратор имеет четыре входа, которые могут подключаться к выходам любого источника кода 1-2-4-8, и десять выходов, которые могут подключаться к катодам газоразрядного цифрового или знакового индикатора

1-4-110.jpg

(анод последнего через резистор сопротивлением 22...91 кОм подключен к полюсу источника постоянного или пульсирующего напряжения 200...300 В).

Схема подключения дешифратора к микросхеме К155ИЕ4, включенной в режим деления на 10 с кодом 1-2-4-6, приведена на рис. 88.

Для подключения микросхемы К155ИД1 к выходам декады на микросхемах ТМ2 (см. рис. 19) или декады по рис. 22 необходим дополнительный элемент И, в качестве которого могут быть использованы два любых маломощных диода (рис. 89) или 1/4 часть интегральной микросхемы ЛИ1.

Для подключения выходов микросхемы К155ИД1 ко входам других микросхем ТТЛ следует принять дополнительные меры по согласованию уровней, поскольку техническими условиями на микросхему К155ИД1 гарантируется выходное напряжение в состоянии лог. 0 не более 2,5 В, что превышает порог переключения микросхем ТТЛ, составляющий около 1,3 В. Практически выходное напряжение микросхем К155ИД1 в состоянии 0 может быть несколько выше или ниже порога пере-

1-4-111.jpg

ключения, поэтому для надежной работы микросхемы-нагрузки в минусовую цепь питания этой микросхемы следует включить кремниевый диод. Такое включение повысит порог переключения примерно до 2 В, что обеспечит ее согласование с дешифратором К155ИД1. Кроме того, поднимется выходной уровень лог. 0 микросхемы примерно до 0,9 В, что вполне достаточно для нормальной работы последующих микросхем.

На рис. 90 приведена схема делителя частоты на 10 с переключаемой в пределах 10...1,1 скважностью выходных импульсов, иллюстрирующая описанные выше правила согласования дешифратора К155ИД1 с микросхемами ТТЛ.

МикросхемаК555ИД6 (рис. 91) - неполный дешифратор двоично-десятичного кода 1-2-4-8. Как и микросхема К155ИД1, она имеет четыре адресных входа 1,2,4,8, но ее десять выходов 0-9 выполнены

1-4-112.jpg

1-4-113.jpg

по стандартной схеме. При подаче на входы 1, 2 4,8 кода чисел 0-9 на том выходе, номер которого соответствует десятичному эквиваленту входного кода, появляется лог. 0, на остальных выходах -лог. 1: при входных кодах, соответствующих числам 10-15, на всех выходах - лог. 1.

МикросхемаИД7 (рис. 92) - дешифратор, имеющий три адресных входа 1,2,4, три входа стробирования S, два из которых инверсные, и восемь инверсных выходов. Лог. 0 на одном из выходов может появиться лишь при единственном разрешающем сочетании сигналов на входах стробирования S - на инверсных входах должен быть лог. 0, на прямом - лог. 1. При всех других сочетаниях сигналов на входах S на всех выходах микросхемы -лог. 1. Сигнал лог. 0 при разрешающем сочетании на входах появится на том выходе дешифратора, номер которого соответствует десятичному эквиваленту кода, поданному на адресные входы 1, 2, 4.

1-4-114.jpg

Наличие трех входов стробирования позволяет простыми средствами объединять микросхемы для наращивания разрядности дешифратора. Три микросхемы ИД7 можно объединить в дешифратор на 24 выхода без дополнительных элементов (соединение микросхем DD1 -DD3 на рис. 93), четыре микросхемы и инвертор - в дешифратор на 32 выхода (рис. 93). Дополнив схему рис. 93 еще четырьмя микросхемами ИД7 и инвертором, можно получить дешифратор на 64 выхода.

МикросхемаИД10 (рис. 94) - дешифратор, по функционированию соответствующий микросхеме К555ИД6, но с выходами, выполненными с открытым коллектооом. Для микросхемы К555ИЛ10

1-4-115.jpg

в состоянии лог. 0 ее выходной ток может достигать 24 мА, в состоянии лог. 1 на ее выход можно подавать напряжение до 15 В. Для микросхемы К155ИД10 максимально допустимое напряжение, которое можно подвести к выходу, находящемуся в состоянии лог. 1, также составляет 15 В. Выходное напряжение лог. 0 при втекающем токе 20 мА не более 0,4 В, при токе 80 мА - не более 0,9 В. Указанные выходные параметры позволяют применять микросхему К155ИД10 при построении распределителей с релейными выходами (рис. 95).

1-4-116.jpg

При необходимости увеличения числа выходов стробирование микросхемы можно осуществлять по входу 8. Для примера на рис. 96 приведена схема дешифратора на 64 выхода.

Отметим, что в соответствии с рис. 96 можно при необходимости соединять микросхемы К155ИД1, К555ИД6.

МикросхемаКР531ИД14 (рис. 97) содержит два стробируемых дешифратора, каждый с двумя адресными входами 1 и 2, инверсным

1-4-117.jpg

1-4-118.jpg

входом стробирования S и инверсными выходами 0-3. Как и в других дешифраторах ТТЛ-серий, при разрешающем лог. 0 на входе S лог. 0 появляется на том выходе дешифратора, номер которого соответствует десятичному эквиваленту двоичного числа, поданному на адресные входы 1 и 2. При лог. 1 на входе S на всех выходах дешифратора также лог. 1.

Для получения дешифраторов с большим числом выходов можно соединять микросхемы в соответствии с рис. 98.

1-4-119.jpg

1-4-120.jpg

Функцию, обратную функции дешифраторов, выполняют шифраторы.

МикросхемаИВ1 - приоритетный шифратор (рис. 99). Она имеет восемь информационных входов 0-7 и вход разрешения Е. Выходов у микросхемы пять - три инверсных выходного кода 1,2,4; G -признака подачи входного сигнала и Р - переноса.

Если на всех информационных входах микросхемы лог. 1, на выходах 1,2,4, G - лог. 1, на выходе Р - лог. 0. При подаче лог. 0 на любой из информационных входов 0-7 на выходах 1,2, 4 появится инверсный код, соответствующий номеру входа, на который подан лог. 0, на выходе G'- лог. 0, что

1-4-121.jpg

является признаком подачи входного сигнала, на выходе Р - лог. 1, которая запрещает работу других микросхем ИВ1 при их каскадном соединении. Если лог. 0 будет подан на несколько информационных входов микросхемы, выходной код будет соответствовать входу с большим номером.

Так работает микросхема при подаче на вход Е лог. 0. Если же на входе Е лог. 1 (запрет работы), на всех шести выходах микросхемы лог. 1.

1-4-122.jpg

Две микросхемы ИВ1 можно соединить по схеме рис. 100 для получения приоритетного шифратора на 16 входов.

Если лог. 0 подан на один из входов 0-7, на выходах DD3 появятся младшие разряды прямого выходного кода, на выходе G DD1 - лог. 0, определяющий разряд 8 выходного кода, на выходе Р - лог. 1, являющаяся признаком подачи входного сигнала. Если лог. 0 подать на один из входов 8-15, лог. 1 с выхода Р DD2 запретит работу DD1, младшие разряды на выходах DD3 определяются микросхемой DD2, на выходе 8 выходного кода будет лог. 1.

Таким образом, с выходов 1,2,4,8

устройства по схеме рис. 100 можно снять прямой код, соответствующий номеру входа, на который подан лог. 0.

Микросхемы ИВ1 можно соединять для получения большего числа входов. В этом случае выходы переноса микросхем с большими номерами следует соединить со входами запрета микросхем с меньшими номерами, выходы 1, 2,4 следует через многовходовые элементы И-НЕ подключить к выходам устройства - это будут младшие разряды выходного кода. Выходы G микросхем ИВ1 следует соединить с входами 0-7 еще одной микросхемы ИВ1, с выходов которой можно будет снять старшие разряды кода и признак подачи входного сигнала G (рис. 101). В схемах рис. 100 и 101 сохраняется свойство приоритетности шифраторов - при одновременной подаче лог. 0 на несколько входов выходной код всегда соответствует входу с наибольшим номером.

1-4-123.jpg

МикросхемаК555ИВЗ (рис. 102) - приоритетный шифратор. Она имеет девять инверсных входов 1-9 для подачи кодируемого сигнала и четыре инверсных выхода кода 1-2-4-8. В исходном состоянии на всех входах и выходах лог. 1. При подаче на любой из входов лог. 0 на выходах 1-2-4-8 формируется инверсный код номера входа, на который подан лог. 0. Если лог. 0 подан сразу на несколько входов, код на выходе соответствует наибольшему номеру входа, на который подан лог. 0.

1-4-124.jpg

Основное назначение микросхемы - преобразование номера источника сигнала в код, например номера нажатой кнопки. Для примера на рис. 103 показана схема квазисенсорного переключателя на 10 положений, выходными сигналами которого является код 1-2-4-8 нажатой и отпущенной кнопки (аналог переключателя с взаимовыключением).

При включении питания все триггеры микросхемы DD2 устанавливаются в 0, на выходах 1-2-4-8 код 1111, не соответствующий ни одной из нажатых кнопок. Если нажать любую из 10 кнопок SB1 - SB10, на выходе микросхемы DD1 сформируется инверсный код нажатой кнопки (для кнопки SB1 - 1111), этот код поступит на информационные входы микросхемы DD2. Ток через один из резисторов R1 - R10, соответствующий нажатой кнопке, включит транзистор VT1, на его коллекторе появится лог. 0 на время нажатия кнопки. Напряжение на левой обкладке конденсатора С2 начнет уменьшаться и через время,

1-4-125.jpg

в течение которого прекратится дребезг контактов кнопки, достигнет порога переключения элемента DD3.1. На выходе элемента DD3.1 появится лог. 1, на выходе DD3.2 - лог. 0. Изменение напряжения на правой обкладке конденсатора передается на вход элемента DD3.1, в результате чего произойдет скачкообразное переключение элементов микросхемы DD3 в противоположное состояние (рис. 104). Изменение лог. 0 на выходе элемента DD3.3 на лог. 1 приведет к записи инверсного кода с выходов микросхемы DD1 в триггеры микросхемы DD2, на ее инверсных выходах появится прямой код нажатой кнопки.

В момент отпускания кнопки первое размыкание ее контактов приведет к появлению лог. 1 на нижнем по схеме входе элемента DD3.1, вся цепочка элементов микросхемы DD3 переключится. На время дребезга контактов кнопки лог. 1 на верхнем по схеме входе элемента DD3,1 будет поддерживаться за счет положительной обратной связи через конденсатор С2. На выходе микросхемы DD2 сохранится код нажатой кнопки,. Если при нажатой кнопке нажать еще одну, выходной код не изменится, он будет соответствовать первой из нажатых кнопок. Код не изменится и при отпускании кнопок. Если нажать одновременно (с точностью до задержки, вносимой цепью подавления дребезга DD3.1, DD3.2) две или более кнопок, выходной код будет соответствовать кнопке с большим номером.

1-4-126.jpg

В схеме рис. 103 можно использовать и микросхему (несколько микросхем) ИВ1, в этом случае транзистор VT1 излишен. Входной сигнал на схему подавления дребезга необходимо будет подать с выхода G микросхемы ИВ1.

 

Рис. 100 Соединение двух микросхем ИВ1

Изображение: 

Рис. 101 Шифратор на 64 входа

Изображение: 

Рис. 102 Микросхема К555ИВ3

Изображение: 

Рис. 103 Квазисенсорный переключатель

Изображение: 

Рис. 104 К пояснению подавления дребезга

Изображение: 

Рис. 79 Микросхема ИД3

Изображение: 

Рис. 80 Дешифратор на 32 выхода

Изображение: 

Рис. 81 Дешифратор на 64 выхода

Изображение: 

Рис. 82 Дешифратор на 256 выходов

Изображение: 

Рис. 83 Микросхема ИД4 и ИД5

Изображение: 

Рис. 84 Дешифратор на 8 выходов со стробированием

Изображение: 

Рис. 85 Дешифратор на 16 выходов

Изображение: 

Рис. 86 Дешифратор на 10 выходов

Изображение: 

Рис. 87 Микросхема К155ИД1

Изображение: 

Рис. 88 Подключение микросхемы К155ИД1 к декаде на микросхеме К155ИЕ4

Изображение: 

Рис. 89 Подключение микросхемы К155ИД1 к декаде на микросхемах К155ТМ2

Изображение: 

Рис. 90 Делитель частоты на 10 с переключаемой скважностью

Изображение: 

Рис. 91 Микросхема К555ИД6

Изображение: 

Рис. 92 Микросхема К555ИД7

Изображение: 

Рис. 93 Дешифратор на 32 выхода

Изображение: 

Рис. 94 Микросхема К555ИД10

Изображение: 

Рис. 95 Распределитель с релейными выходами

Изображение: 

Рис. 96 Дешифратор на 64 выхода

Изображение: 

Рис. 97 Микросхема ИД14

Изображение: 

Рис. 98 Дешифратор на 12 выходов

Изображение: 

Рис. 99 Микросхема ИВ1

Изображение: 

1.4.2 Мультиплексоры.

1.4.2. Мультиплексоры

Широкое применение в цифровых устройствах находят микросхемы мультиплексоров, используемые для коммутации двоичных сигналов.

МультиплексорКП7 имеет восемь информационных входов D0 - D7, три адресных входа 1, 2, 4 и вход стробирования S (рис. 105). У микросхемы два выхода - прямой и инверсный. Если на входе стробирования лог. 1, на прямом выходе 0 независимо от сигналов на других входах. Если на входе стробирования лог. 0, сигнал на прямом выходе повторяет сигнал на том входе, номер которого совпадает с десятичным эквивалентом кода на входах 1,2,4 мультиплексора. На инверсном выходе сигнал всегда противофазен сигналу на прямом выходе.

Наличие входа стробирования позволяет простыми средствами строить мультиплексоры на большее число входов. На рис. 106 приведена схема мультиплексора на 16 входов, на рис. 107 - на 64.

МультиплексорК155КП5 (рис. 105) в отличие от КП7 имеет лишь инверсный выход и не имеет входа стробирования.

МикросхемаК155КП1 (рис. 105) содержит четыре адресных входа 1,2,4,8; 16 информационных входов D0 - D15 и вход стробирования S. Выход у этой микросхемы только инверсный. Все свойства и способы включения у нее такие же, как и у КП7.

МикросхемаКП2 (рис. 105) содержит два мультиплексора на четыре информационных входа D0 - D3 с отдельными входами стробирования, объединенными адресными входами и прямыми выходами.

МикросхемаКП11 (рис. 105) - четыре двухвходовых мультиплексора с общим управлением и возможностью перевода выходов в высокоимпедансное состояние. При лог. 0 на адресном входе А на выход каждого мультиплексора проходит сигнал со входа D0, при лог. 1 -с входа D1. Выходы микросхемы активны при лог. 0 на входе ЕО.

1-4-21.jpg

Подача лог 1 на вход ЕО переводит выходы в высокоимпедансное состояние.

МикросхемаКП12 (рис. 105) - два четырехвходовых мультиплексора с общим управлением и возможностью перевода выходов в высокоимпедансное состояние. На выход каждого мультиплексора проходит сигнал со входа с номером, соответствующим десятичному эквиваленту двоичного кода, поданного на адресные входы 1 и 2. Каждый мультиплексор имеет свой вход перевода выхода в высокоимпедансное состояние ЕО, действующий подобно входу ЕО микросхемы К555КП 11.

МикросхемаКП13 (рис. 105) - четыре двухвходовых мультиплексора с общим управлением и регистром хранения на выходе (похожа на микросхему КР531ИР20). На входы регистра поступают сигналы

1-4-22.jpg

1-4-23.jpg

со входов D0 микросхемы, если на адресном входе А лог. 0 и со входов D1, если на входе А лог. 1. Запись в регистр производится по спаду импульса положительной полярности на входе С.

МикросхемаКП14 (рис. 105) аналогична микросхеме К555КП11, но инвертирует мультиплексируемые сигналы.

МикросхемаКП15 (рис. 105) - восьмивходовый мультиплексор с прямым и инверсным выходом и с возможностью перевода выходов в высокоимпедансное состояние. При лог. 0 на входе ЕО на выходы проходит сигнал с того входа, номер которого соответствует десятичному эквиваленту кода, поданного на адресные входы 1, 2, 4. На инверсный выход сигнал проходит с инверсией. Подача лог. 1 на вход ЕО переводит и прямой, и инверсный выходы в высокоимпедансное состояние.

МикросхемаКП16 (рис. 105) - четыре двухвходовых стробируемых мультиплексора. Логика ее работы аналогична логике работы

микросхемы КП11, однако подача лог. 1 на вход S переводит выходы микросхемы в состояние лог. 0 независимо от состояния информационных и адресного входов.

Микросхема КР533КП17 (рис. 105) аналогична микросхеме КП12, но инвертирует мультиплексируемые сигналы.

МикросхемаКП18 (рис. 105) аналогична КП16, но инвертирует мультиплексируемые сигналы. Подача лог. 1 на вход S микросхемы устанавливает выход в состояние лог. 1 независимо от состояния других входов.

МикросхемаКР1533КП19 (рис. 105) функционирует аналогично КП2, но инвертирует мультиплексируемые сигналы. Вход S этой микросхемы действует аналогично такому же входу КП18.

Наиболее полный набор мультиплексоров входит в серию микросхем КР1533 - счетверенные мультиплексоры на два входа, сдвоенные на четыре входа и мультиплексоры на восемь входов, причем в каждой из этих групп есть мультиплексоры со стандартным выходом - КР1533КП16, КР1533КП2, КР1533КП17, с инверсным выходом - КР1533КП18, КР1533КП19, КР1533КП7, с выходом с высокоимпедансным состоянием - КР1533КП11, КР1533КП12, КР1533КП15, с инверсным выходом с высокоимпедансным состоянием - КР1533 КП14, КР1533КП17, КР1533КП15.

Нагрузочная способность мультиплексоров КР1533КП2, КП7, КП11А, КП12, КП14А, КП15 составляет 12 мА в состоянии лог. 0 при выходном напряжении 0,4 В и 0,4 мА в состоянии лог. 1 при вы

1-4-24.jpg

ходном напряжении 2,4 В, мультиплексоров КР1533КП16, КП17, КП18, КП19 аналогична той, что у микросхемы КР1533ИР22. Нагрузочная способность мультиплексоров серии КР531, выходы которых могут переводиться в высокоимпедансное состояние, составляет 20 мА в состоянии лог. 0 и 6,5 мА в состоянии лог. 1 при выходном напряжении 2,4 В.

Возможность перевода выходов мультиплексоров КП11, КП12, КП14, КП15 и КП17 в высокоимпедансное состояние облегчает объединение микросхем для увеличения числа входов. На рис. 108 показано преобразование мультиплексоров

1-4-25.jpg

микросхемы КП12 в один на восемь входов, на рис. 109 - на 64 входа.

Назначение выводов микросхем КП12 и К155КП2, КП15 и К155КП7 совпадает за исключением входов перевода выходов микросхем в высокоимпедансное состояние. Это позволяет в большинстве случаев использовать микросхемы КП12 и КП15 взамен указанных микросхем серии К155 без переработки печатных плат.

 

микросхемы мультиплексоры

Изображение: 

мультиплексор на 16 входов

Изображение: 

мультиплексор на 64 входа

Изображение: 

мультиплексор на 64 входа

Изображение: 

мультиплексор на 8 входов

Изображение: 

1.4.3 Преобразователи кодов.

1.4.3. Преобразователи кодов

Для формирования цифр и знаков на семисегментных и матричных индикаторах и запуска шкальных индикаторов используют различные преобразователи кодов, иногда неправильно называемые дешифраторами. Существуют также микросхемы для преобразования двоичного кода в двоично-десятичный, и наоборот. Рассмотрим такие микросхемы.

1-4-31.jpg

Микросхема К155ПП5 - преобразователь двоично-десятичного кода в код семисегментного индикатора (рис. 110), ее можно применять совместно с полупроводниковыми индикаторами с общим анодом, например АЛ305А или АЛС324Б. Для нормирования тока элементов индикатора между его катодами и выходами микросхемы следует включить ограничительные резисторы, сопротивление которых определяется в соответ

ствии с рабочим током индикатора. Вход Е микросхемы может быть использован для гашения индикатора, которое происходит при подаче на этот вход лог. 1. Индикация осуществляется при лог. 0.

На рис. 111 приведено стандартное обозначение сегментов семисегментных индикаторов, а на рис. 112 - форма индицируемых знаков.

МикросхемыКМ155ИД8А, КМ155ИД8Б, КМ155ИД9 - преобразователи двоично-десятичного кода 1-2-4-8 в коды работы индикаторов, состоящих из 27 отдельных светодиодов (ИД8, рис. 113) и из 20 светодиодов (ИД9, рис. 114). Микросхемы имеют по четыре входа для подачи

1-4-32.jpg

входного кода. Число выходов микросхемы КМ155ИД8 составляет 18, микросхемы КМ155ИД9 - 13.

К каждому выходу микросхем должны быть подключены или один, или два последовательно включенных светодиода, соединенных с источником питания +5 В. На рис. 113 (б) и 114 (б) на элементах индикаторов указаны номера выводов микросхем, к которым должны быть подключены светодиоды индикаторов. Микросхемы выполнены с «открытым» коллекторным выходом и содержат ограничительные резисторы двух номиналов - для выходов, стыкуемых с двумя последовательно включенными светодиодами, номинал ограничительного резистора меньше, что обеспечивает одинаковый ток

1-4-33.jpg

1-4-34.jpg

1-4-35.jpg

через все светодиоды индикатора - 10 мА для микросхем КМ155ИД8А и КМ155ИД9 и 15 мА для КМ155ИД8Б.

Для входных кодов чисел 0-9 на светодиодах индицируются соответствующие цифры, для кода числа 10 знак «-», для кода числа 11 - буква «Е». Для кодов чисел 12-15 все светодиоды индикаторов погашены.

1-4-36.jpg

Микросхема КМ155ИД9 может быть использована и с обычными полупроводниковыми семисегментными индикаторами с общим анодом аналогично К155ПП5 (рис. 115). В отличие от использования микросхемы К155ПП5 не требуются ограничительные резисторы и добавляется возможность индикации знака «-» и буквы «Е».

При необходимости можно увеличить число диодов в индикаторах, управляемых от микросхемы КМ155ИД9, до 27 (рис. 116, а) и до 34 (рис. 116, б). В этом случае напряжение питания цепочек из трех светодиодов должно быть увеличено до 7 В, а для четырех светодиодов - до 9 В. Одиночные светодиоды должны быть по-прежнему подключены к источнику питания +5 В. ;

Микросхема КМ155ИД11 - преобразователь двоичного кода в код управления светодиодной шкалой, формирующий светящийся «столбик», число светящихся точек в котором равно числу, соответствующему входному коду (рис. 117). Микросхема имеет три входа 1, 2, 4 для подачи входного кода, вход разрешения Е, вход переноса PI, восемь выходов для подключения светодиодной шкалы 0-7 и выход переноса Р.

1-4-37.jpg

При подаче лог. 1 на вход PI и лог. 0 на вход Е лог. 1 появляется на том выходе микросхемы, номер которого соответствует десятичному эквиваленту кода на входах 1, 2, 4 и на всех выходах с меньшим номером, при этом на выходе Р -лог. 0. Если на вход PI подать лог. 0, на выходах 0-7 будет лог. 1, на выходе Р -лог. 0 независимо от сигналов на входах Е и 1,2,4. Если на входах PI и Е лог. 1, на выходах 0-7 лог. 0, на выходе Р - лог. 1.

Выходы микросхем выполнены с от-

1-4-38.jpg

крытым эмиттером и ограничительным резистором, обеспечивающим выходной ток для непосредственного подключения светодиодов между выходами и общим проводом. При работе одной микросхемы с восемью светодиодами высота «столбика» светящихся светодиодов будет на единицу больше десятичного эквивалента кода на входах 1,2,4.

Рис. 118 иллюстрирует соединение двух микросхем КМ155ИД11 для индикации 16 уровней. Если на входе 8 устройства по схеме рис. 118 лог. 0, на выходе Р DD1 лог. 1, микросхема DD2 работает так, как описано выше, и светодиоды HL1 - HL8 образуют столбик, высота которого на единицу больше численного эквивалента кода на входах 1,2,4. Если на входе 8 устройства лог. 1, на входе разрешения Е микросхемы DD1 появится лог. 0, в работу вступит DD1 и в соответствии с поданным на входы 1,2,4 кодом начнут включаться светодиоды HL9 - HL16. На выходе Р появится лог. 0, он подается на вход PI DD2 и включит все светодиоды HL1 - HL8 независимо от сигналов на других входах DD2.

1-4-39.jpg

Таким образом, в схеме рис. 118 число светящихся диодов на единицу больше десятичного эквивалента входного кода - входному коду 0000 соответствует один включенный светодиод HL1, коду 1111-16 светодиодов.

Для построения шкал с большим числом индицируемых уровней необходим дополнительный дешифратор, например К155ИД4 (рис. 119). Работает такое устройство аналогично. Если на входах 8 и 16 лог. 0, то лог. 0 с выхода 0 DD1 включает DD5, высота столбика составляет 1-8 светодиодов. Если на входе 8 лог. 1, на входе 16 - лог. 0, включается DD4, лог. 0 с ее выхода Р включает HL1 - HL8. При лог. 1 на входах 8 и 16 начинает работать DD2, лог. 0 с ее выхода Р включает HL17 -HL24, на выходе Р DD3 появляется лог. 0, включающий HL9 - HL16, лог. 0 с выхода Р DD4 включает HL1 - HL8. Таким образом, и здесь число светящихся светодиодов на единицу больше десятичного эквивалента входного кода.

Вход Е устройства по схеме рис. 119 можно использовать для гашения шкалы - при подаче на него лог. 1 все светодиоды будут выключены независимо от сигналов на входах 1-16.

При необходимости построения шкал с большим числом индицируемых уровней необходимо использовать соответствующее число микросхем К155ИД11 и дешифратор с большим числом выходов (К155ИД4 в соответствующем включении, К555ИД7, К155ИДЗ).

МикросхемаКМ155ИД12 - стробируемый дешифратор трехразрядного двоичного кода, подаваемого на входы 1-2-4, в позиционный (рис. 117). Лог. 1 появляется на том выходе микросхемы, номер которого соответствует десятичному эквиваленту входного кода, при этом на входе Е должен быть лог. 0. Если на вход Е подать лог. 1, на всех выходах будет лог. 0. К выходам этой микросхемы можно подключить светодиоды шкалы аналогично КМ155ИД11, в результате в шкале будет светиться один светодиод с номером, на единицу большим десятичного эквивалента входного кода.

При необходимости можно соединять микросхемы КМ155ИД12 в соответствии с рис. 118 или 119, естественно, исключив цепи выводов Р и PI.

1-4-310.jpg

МикросхемаКМ155ИД13 имеет те же выводы, что и КМ155ИД11, но иную логику работы. Она обеспечивает построение шкал, в которых светятся одновременно два рядом расположенных светодиода -один с номером, на единицу большим десятичного эквивалента входного кода, и второй с номером, равным эквиваленту.

При подаче на вход PI лог. 1, на вход Е лог. 0 входному коду 000 соответствует лог. 1 на выходе 0, входному коду 001 - лог. 1 на выходах 0 и 1, коду 010 - лог. 1 на выходах 1 и 2 и т. д. Кроме того, входному коду 000 и лог.0 на входе Е соответствует лог. 0 на выходе Р (во всех остальных случаях на выходе Р лог. 1). Лог. 0 на входе PI включает светодиод, подключенный к выходу 7, независимо от всех других входных сигналов, этот вход не влияет ни на какие другие выходы.

При соединении микросхемы КМ155ИД13 по схемам рис. 118 или 119 можно получить устройства, в которых положение двух светящихся светодиодов будет определяться входным сигналом так же, как это описано для одной микросхемы КМ155ИД13 - номер верхнего светодиода на единицу больше десятичного эквивалента входного кода, ниже его светится еще один светодиод. Нулевому входному коду соответствует свечение одного светодиода HL1.

МикросхемаК555ИД18 (рис. 120) - преобразователь двоично-десятичного кода 1-2-4-8 в сигналы управления семисегментным индикато-

1-4-311.jpg

ром, имеет выходы с открытым коллектором и предназначена для управления полупроводниковыми индикаторами с общим анодом, которые подключаются к выходам микросхемы через ограничительные резисторы (рис. 121). Особенность микросхемы - возможность гашения левых незначащих нулей при индикации многоразрядных чисел и возможность одновременного включения всех сегментов индикатора для контроля его исправности.

Для обеспечения указанных режимов используют два входа - Е0 и К и двунаправленный вывод Е.

Обычный режим преобразования входного кода осуществляется при подаче на входы Е0 и К лог. 1, вывод Е можно при этом оставить свободным - в состав микросхемы входит резистор (сопротивлением около 5 кОм), включенный между выводом Е и цепью +5 В.

Если на вывод Е подать лог. 0, независимо от состояния всех остальных входов происходит гашение всех сегментов индикатора, подключенного к выходам микросхемы. Если на вывод Е подать лог. 1 или оставить его свободным, а на вход К (Контроль) подать лог. 0,

независимо от сигналов на других входах включаются все сегменты индикатора.

Наиболее интересный режим осуществляется в следующем случае:

на входе К лог. 1, вывод Е свободен, на входе Е0 (гашение нуля) лог. 0. В этом случае при подаче на выходы 1,2,4,8 входного кода, соответствующего цифрам 1-9, происходит индикация этих цифр, при подаче кода цифры 0 - гашение индикатора и выдача на вывод Е лог. 0. Поэтому, если соединить несколько микросхем К555ИД18 и индикаторов в соответствии с рис. 121, можно получить гашение всех незначащих нулей в старших разрядах. Если в старшем разряде (DD1) должен индицироваться нуль, он гасится и на выводе Е DD1 появляется лог. 0, разрешающий гашение нуля в DD2, и т. д. Если во всех разрядах нуль, то ни один из индикаторов не включен, на выводе Е микросхемы младшего разряда - лог. 0, являющийся признаком подачи нулевого числа, этот сигнал может быть использован, например, в таймерах. Если необходимо, чтобы при всех нулях младший разряд не гасился, на вход Е0 младшего разряда нужно подать лог. 1.

Если нужно обеспечить контроль индикаторов в схеме рис. 121, на объединенные входы К всех микросхем можно подать лог. 0. Для

1-4-312.jpg

принудительного гашения всех индикаторов на рис. 121 независимо от входного кода на выводы Е всех микросхем можно подать лог. 0 от соответствующего числа элементов с открытым коллектором, например К555ЛН2.

Сочетание включенных сегментов при входных кодах, соответствующих числам 10-14, не соответствует никаким буквам или знакам, при входном коде 15 происходит гашение индикатора.

Для микросхемы К555ИД 18 максимальное напряжение, подводимое к выходам, находящимся в состоянии лог. 1,15 В, максимальный выходной ток в состоянии лог. 0-24 мА.

1-4-313.jpg

Для генерации знаков на 35-элементных индикаторах и дисплеях можно использовать микросхемыК155РЕ21,К155РЕ22,К155РЕ23, К155РЕ24: К155РЕ21 - для воспроизведения русских букв (за исключением «Ъ»), К155РЕ22 -букв латинского алфавита, буквы <<Ъ>> и некоторых знаков, К155РЕ23 - цифр и различных знаков (табл. 5). Каждая из этих микросхем содержит основную часть необходимой информации, недостающая часть содержится в микросхеме К155РЕ24. Цоколевка всех четырех микросхем одинакова (рис. 122), в микросхеме К155РЕ24 вывод 9 не используется. Каждая микросхема со

держит три входа выбора строки в матричном индикаторе В1, В2, В4, пять входов выбора индицируемого знака А1 - А16, два входа разрешения Е. Входы Е разрешают появление сигналов лог. 0 на выходах микросхемы лишь при подаче лог. 0 на оба входа Е.

При подаче на входы В1, В2, В4 кода номера строки на выходах 1,2, 3,4 микросхемы появляется лог. 0 для включения элементов индикатора данной строки. Крайнему левому элементу строки соответствует сигнал на выходе 1, второму слева - на выходе 2 и т. д. Для крайнего правого элемента должна использоваться информация с одного из трех выходов микросхемы К155РЕ24. Выход 3 этой микросхемы дополняет информацию микросхемы К155РЕ21, выход 2 - микросхемы К155РЕ22, выход 1 - микросхемы К155РЕ23.

Счет строк индикатора ведется сверху вниз: первой строке соответствует код 001 (младший разряд - В1), последней - код 111. Код 000 не используется. Индицируемый знак определяется кодом, подаваемым на входы выбора знака А1 - А16 в соответствии с табл. 5.

На рис. 123 приведена схема соединения микросхем К155РЕ21, К155РЕ22, К155РЕ23, К155РЕ24 между собой, обеспечивающая получение информации, необходимой для индикации всех указанных в табл. 5 знаков. Выходы микросхем выполнены с открытым коллектором, что позволяет объединить их между собой и требует установки нагрузочных резисторов R1 - R7. Старшие разряды кода индицируемого знака А32 и А64 выбирают микросхему (DD1, DD2 или DD3),

Таблица 5

N

Адрес

Индицируемый знак для микросхем

А16

А8

А4

А2

А1

К155РЕ21

К155РЕ22

К155РЕ23

А32=1 А64=0

А32=0 А64=1

А32=1 А64=1

0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0

1 1

0 1 0

1

Ю А Б Ц

@ А В С

пробел ! кавычки

#

4 5 6 7

0 0 0 0

0 0 0 0

1 1 1 1

0 0

1 1

0

1

0

1

Д Е Ф Г

D E F G

* % & апостроф

8 9 10 11

0 0 0 0

1

1

1

1

0 0 0 0

0 0 1 1

0

1

0

1

Х

И

Й К

Н

I J

K

(

)

*

+

12 13 14 15

0 0 0 0

1

1

1

1

1 1 1 1

0 0

1 1

0

1

0

1

л м н о

L М N 0

,

-

.

/

16 17 18 19

1 1 1 1

0

0 0' 0

0 0 0 0

0 0

1 1

0

1

0

1

п я Р с

Р Q R S

0 1 2 3

20 21 22 23

1 1 1 1

0 0 0 0

1 1 1 1

0 0

1 1

0

1

0

1

т у ж

в

Т U V W

4 5 6 7

24 25 26

27

1 1 1 1

1 1 1 1

0 0 0 0

0

0

1 1

0

1

0

1

ь ы

3

ш

Х

Y Z

[

8

9

:

;

28 29 30 31

1 1 1 1

1 1 1 1

1 1 1 1

0 0 1 1

0

1

0

1

э щ

ч

пробел

\ ]

^

ъ

< = >

?


1-4-314.jpg

а также необходимый выход микросхемы DD4 с помощью мультиплексора DD6. При А32 - А64 - 0 ни одна из микросхем DD1 - DD3 не выбрана, на выходах 1-5 лог. 1. Если на входе А32 лог. 1, на входе А64 - лог. 0, включается DD1, на выход 5 проходит информация с выхода 3 микросхемы DD4, индицируются русские буквы. При лог. 0 на входе А32 и лог. 1 на входе А64 выбирается микросхема DD2, индуцируются буквы латинского алфавита, при А32=А64=1 индицируются цифры и знаки.

Вполне возможны другие варианты подключения входов Е микросхем к старшим разрядам источника кода знаков. Если какая-либо из микросхем оказывается лишней, например, не используются латинские буквы, вместо мультиплексора DD6 можно использовать микросхему К155ЛАЗ (рис. 124). В этом случае при А32 = 0 выбирается DD1 и индицируются русские буквы, при А32 = 1 выбирается DD3, происходит индикация цифр и знаков.

1-4-315.jpg

Как пример использования микросхем К155РЕ21 - К155РЕ 24, рассмотрим схему индикатора для четырех знаков с использованием светодиодных матриц АЛС340А (рис. 125). На этой схеме DD4 обозначены элементы схемы рис. 123 (резисторы R1 - R4 в этом случае на рис. 123 не нужны). Генератор DD1.1, DD1.2, DD1.3 со счетчиком строк DD2, DD3 обеспечивает на выходах последних поочередное появление кодов 00000, 00001, 00010...11111 и снова 00000 и т. д. Подключенные к выходам DD2 и DD3 дешифраторы DD5 и DD6 поочередно включают транзисторы VT6 - VT33. В результате поочередно на строки индикаторов HL1 - HL4 подается напряжение около +0,8 В. К выводам строк индикаторов подключены катоды светодиодов, расположенных на пересечении строк и столбцов. Аноды светодиодов подключены к выводам столбцов. Напряжение +5 В подается на выводы столбцов через ключи на транзисторах VT1 -VT5, управление ключами ведется от выходов 1-5 DD4. Ток через диоды индикаторов ограничен резисторами R12 - R16 на уровне около 100 мА. Скважность импульсов тока - 32, средний ток через каждый светящийся светодиод - около 3 мА, что обеспечивает нормальную яркость его свечения.

Перебор строк одного индикатора идет сверху вниз, перебор индикаторов - слева направо. Состояниям счетчика строк 00000, 010000, 10000,11000 не соответствует выбор каких-либо строк индикаторов,

1-4-316.jpg

выходы 0 и 8 дешифраторов DD5 и DD6, соответствующие этим состояниям, не использованы.

Индицируемые знаки определяются кодами, подаваемыми на входы А1 - А64 DD4. Смена этих кодов должна осуществляться в моменты перехода от одного индикатора к другому. Для смены кодов можно использовать мультиплексоры, например К155КП2, управляемые

с выходов 1 и 2 устройства. Лог. 0 на обоих выходах 1 и 2 соответствует включению индикатора HL1, лог. 1 на выходе 1 и лог. 0 на выходе 2 - индикатора HL2 и т. д.

Десятичная точка перед индицируемыми цифрами может быть включена переключателем SA1. Транзисторы КТ626А можно заменить на КТ626 с любым буквенным индексом или на транзисторные матрицы КТС622А, Б.

Если необходимо вывести большое число знаков, возможно пропорциональное наращивание числа выходов дешифратора счетчика строк (при одновременном увеличении числа разрядов счетчика), однако возможен более экономичный вариант, например, на рис. 126 приведена измененная часть схемы рис. 125 для индикации восьми знаков.

В этой схеме, так же как и в схеме рис. 125, используется дешифратор на 28 выходов, однако индикаторы объединены в две группы. Первая группа индикаторов по столбцам управляется транзисторами VT1 -VT5, вторая - транзисторами VT34 - VT38. Пока на выходе 2 микросхемы DD3 счетчика строк (он должен быть в этом случае шестиразрядным)

1-4-317.jpg

лог. 0, выходные сигналы через микросхемы DD7 и элемент DD9.1 включают транзисторы VT1 - VT5 и поочередно включаются индикаторы HL1 - HL4. Когда на выходе 2 микросхемы DD3 появляется лог. 1, выходные сигналы ПЗУ проходят через микросхему DD8 и элемент DD9.2 на транзисторы VT34 - VT38, включаются индикаторы HL5 - HL8. Скважность импульсов тока через светодиоды в схеме рис. 126 составляет 64, поэтому амплитуда импульсов увеличена до 200 мА за счет уменьшения сопротивления токоограничительных резисторов.

Рассмотренный вариант включения индикаторов (рис. 126) может быть использован и при меньшем, чем восемь, числе разрядов.

1-4-318.jpg

Описанные выше микросхемы К155РЕ21 -К155РЕ24 являются постоянными запоминающими устройствами (ПЗУ), запись информации в которые произведена на заводе. В состав серии К155 входит микросхема ПЗУК155РЕЗ (рис. 127), программирование которой для изготовления необходимого преобразователя кодов может быть произведено потребителем. Микросхема К155РЕЗ имеет пять адресных входов 1, 2, 4, 8, 16, вход раз

решения Е, восемь выходов. Микросхема позволяет записать 32 восьмиразрядных двоичных слова и может быть широко использована при разработке различных радиоэлектронных устройств.

При изготовлении микросхемы на заводе во все слова по всем адресам записывают лог. 0. При программировании потребитель может записать в определенные биты слов лог. 1 и получить ПЗУ с нужной информацией.

Микросхема К155РЕЗ имеет «открытые» коллекторные выходы, что позволяет объединять микросхемы по выходам, управление выбором нужной микросхемы осуществляется подачей лог. 0 на вход Е микросхемы. Для микросхем, на входы Е которых подана лог. 1, на всех выходах также лог. 1.

До программирования все входы микросхемы равноценны, как равноценны и ее выходы, что позволяет использовать их в произвольном порядке, чем упрощается разводка печатных плат.

Предприятие-изготовитель не гарантирует полную программируемость микросхем К155РЕЗ (примерно в половину новых микросхем необходимую информацию записать нельзя). Примером использования микросхем К155РЕЗ является изготовление преобразователей кода для индикации цифр и некоторых букв на семи- и девятисегментных индикаторах.

1-4-319.jpg

МикросхемыК155ПР6 и К155ПР7

(рис. 128) служат для преобразования двоично-десятичного кода в двоичный (К155ПР6) и двоичного кода в двоично-десятичный (К155ПР7). Микросхемы являются постоянными запоминающими устройствами, программирование которых произведено на заводе-изготовителе. По функциональному назначению выво

дов указанные микросхемы идентичны микросхемам К155РЕЗ.

Включение микросхем К155ПР6 и К155ПР7 в простейшем варианте проиллюстрировано на рис. 129. Одна микросхема К155ПР6 позволяет преобразовать двоично-десятичный код чисел 0-39 в двоичный. Младший разряд (разряд единиц) передается мимо микросхем, так как он совпадает в двоично-десятичном и двоичном кодах. Аналогично одну микросхему К155ПР7 можно использовать для преобразования двоичного кода чисел 0-63 в двоично-десятичный.

1-4-320.jpg

Микросхема К155ПР6 позволяет также преобразовать двоично-десятичный код чисел 0-9 в код дополнения до 9 (рис. 130, а) и до 10 (рис. 130, б). Сумма десятичных чисел, соответствующих входному и выходному кодам схемы рис. 130 (а), равна 9, а схемы рис. 130 (б) - 10. В схеме рис. 130 (б) при входном коде, соответствующем числу 0, выходной код также соответствует 0.

1-4-321.jpg

Микросхему К155ПР6 можно применять для преобразования данных, вводимых в двоично-десятичном коде, в двоичный, например для управления микросхемой К155ИЕ8 в синтезаторе частоты или для ввода двоично-десятичного кода в цифроаналоговый преобразователь, работающий, как правило, в двоичном коде.

Микросхема К155ПР7 может быть использована для преобразования в десятичный вид данных, полученных в двоичном коде, например с выхода аналогоцифрового преобразователя для индикации в десятичном виде.

1-4-322.jpg

Как правило, разрядности одиночных микросхем недостаточно для решения большинства задач преобразования кодов, в этих случаях применяют каскадное соединение микросхем. На рис. 131 показано соединение двух микросхем К155ПР6 для преобразования двоично-десятичных кодов чисел 0-99 в двоичный, на рис. 132 -шести микросхем для преобразования кодов чисел 0-999.

На рис. 133 и 134 представлены схемы для преобразования двоичных

1-4-323.jpg

кодов чисел 0-255 и 0-511 в десятичный. Отметим, что для преобразования кодов десятичных чисел 0-9999 в двоичный требуется 19 микросхем К155ПР6, а для преобразования кодов двоичных чисел 0-4095 и 0-65535 в двоично-десятичный - соответственно 8 и 16 микросхем К155ПР7.

Микросхемы К155ПР6 и К155ПР7 выполнены с «открытым» коллекторным выходом, поэтому для обеспечения помехоустойчивой работы микросхем между их выходами и плюсом питания следует устанавливать нагрузочные резисторы 1...5.1 кОм, эти резисторы на приведенных схемах условно не показаны. Вход разрешения работы микросхем Е должен быть подключен к общему проводу, при подаче на него лог. 1 все выходы переходят в выключенное состояние.

1-4-324.jpg

1-4-325.jpg

 

Рис. 110 Микросхема К155ПП5

Изображение: 

Рис. 111 Стандартное обозначение сегментов семисегментного индикатора

Изображение: 

Рис. 112 Цифры, индицируемые на семисегментном индикаторе

Изображение: 

Рис. 113 Микросхема К155ИД8 и подключение ее к светодиодам индикатора

Изображение: 

Рис. 114 Микросхема К155ИД9 и подключение ее к светодиодам индикатора

Изображение: 

Рис. 115 Микросхема К155ИД9 как преобразователь кода для семисегментного индикатора

Изображение: 

Рис. 116 Подключение выводов микросхемы К155ИД9 к индикатору из 27 светодиодов и 34 светодиодов

Изображение: 

Рис. 117 Микросхемы КМ155ИД11, КМ155ИД12, КМ155ИД13

Изображение: 

Рис. 118 Соединение двух микросхем КМ155ИД11, КМ155ИД13

Изображение: 

Рис. 119 Соединение четырех микросхем КМ155ИД11, КМ155ИД13

Изображение: 

Рис. 120 Микросхема К555ИД18

Изображение: 

Рис. 121 Соединение микросхем К555ИД18

Изображение: 

Рис. 122 Микросхемы К155РЕ21, К155РЕ22, К155РЕ23, К155РЕ24

Изображение: 

Рис. 123 Соединение микросхем К155РЕ21-К155РЕ24

Изображение: 

Рис. 124 Соединение микросхем К155РЕ21, К155РЕ23, К155РЕ24

Изображение: 

Рис. 125 Схема матричной индикации на 4 знака

Изображение: 

Рис. 126 Схема матричной индикации на 8 знаков

Изображение: 

Рис. 127 Микросхема К155РЕ3

Изображение: 

Рис. 128 Микросхемы К155ПР6 и К155ПР7

Изображение: 

Рис. 129 Простейшее включение микросхемы К155ПР6 и К155ПР7

Изображение: 

Рис. 130 Преобразователь кода в дополнение до 9 и дополнение до 10

Изображение: 

Рис. 131 Преобразователь двоично-десятичного кода чисел до 99 в двоичный

Изображение: 

Рис. 132 Преобразователь двоично-десятичного кода чисел до 999 в двоичный

Изображение: 

Рис. 133 Преобразователь двоичного кода чисел до 255 в двоично-десятичный

Изображение: 

Рис. 134 Преобразователь двоичного кода чисел до 511 в двоично-десятичный

Изображение: 

1.4.4 Сумматоры и другие элементы.

1.4.4. Сумматоры и другие элементы

Как известно, основная операция в цифровых вычислительных машинах - сложение. Все другие арифметические операции - вычитание, умножение, деление - сводятся к сложению. Операция сложения двоичных чисел производится с использованием сумматоров, полусумматоров и сумматоров по модулю 2.

МикросхемаЛП5 (рис. 135) - четыре независимых сумматора по модулю 2, каждый из которых работает следующим образом. Если на обоих входах элемента, например 1 и 2, лог. 0 - на выходе 3 лог. 0. Если на одном из входов лог. 0, на другом лог. 1, на выходе лог. 1, если на обоих входах лог. 1 - на выходе лог. 0.

1-4-41.jpg

В состав микросхемыК155ИП2 (рис. 135) входят восьмивходовый сумматор по модулю 2, обозначенный SM2, инвертор и два логических элемента И-ИЛИ-НЕ. Восьмивходовый сумматор по модулю 2 работает аналогично двувходовому: если на его входах четное число сигналов с уровнем лог. 1, на выходе лог. 0, если число единиц на входах нечетное, на выходе лог. 1. Остальные элементы позволяют объединять микросхемы между собой для увеличения числа входов. При подаче лог. 1 на вход 3, лог. 0 на вход 4, уровень на выходе 5 будет соответствовать выходному уровню сумматора SM2, на выходе 6 -его инверсии. Если уровни на входах 3 и 4 изменить на противоположные, уровни на выходах 5 и 6 изменятся на противоположные.

МикросхемаК555ИП5 (рис. 135) - девятивходовый сумматор по модулю 2. Выходной сигнал на прямом выходе 6 соответствует лог. 1 при нечетном числе лог. 1 на входах микросхемы и равен лог. 0 в противном случае. Сигнал на инверсном выходе всегда противофазен сигналу на прямом.

Микросхему К555ИП5, так же как К155ИП2, можно использовать для формирования разряда контроля четности при передаче данных

или при записи в память или на какие-либо носители данных, а также при проверке данных, снабженных контрольным разрядом, при их приеме или считывании из памяти или с носителей данных.

1-4-42.jpg

МикросхемаК555ЛП12 (рис. 135) - четыре двухвходовых сумматора по модулю 2 с открытым коллектором. Логика работы элементов такая же, как и у элементов микросхем ЛП5. Возможность объединения выходов элементов позволяет использовать микросхему для сравнения кодов чисел на равенство (рис. 136). Одно из сравниваемых чисел должно быть представлено прямым кодом, другое - инвертированным. При равенстве чисел на входах каждого из элементов будут неодинаковые логические уровни, на выходах элементов и, следовательно, на их общем выходе - лог. 1. Если хотя бы в од

ном разряде коды будут различаться, сигналы на входах соответствующего элемента совпадут и на объединенном выходе сформируется лог. 0.

Напомним основные свойства двоичных сумматоров. Каждый разряд двоичного сумматора (его также называют полным сумматором) имеет три входа (А и В - для слагаемых, С - сигнала переноса от предыдущего разряда) и два выхода (S - суммы и Р - сигнала переноса в следующий разряд). Работа сумматора иллюстрируется табл. 6. Входы А, В, С, вообще говоря, равноправны. Сигнал суммы S принимает значение лог. 1 при нечетном числе единиц на входах А, В и С и лог. 0 при четном, как и в рассмотренных выше полусумматорах. Сигнал переноса Р равен лог. 1 при числе единиц на входах, равном 2 или 3. Интересным свойством табл. 6 является ее симметрия: замена 0 на 1, и наоборот не нарушает ее истинности. Это свойство используется Для упрощения схем сумматоров.

МикросхемыК155ИМ1, К155ИМ2 и К155ИМЗ - соответственно одноразрядный, двухразрядный и четырехразрядный полные сумматоры. На рис. 137 приведена схема микросхемы К155ИМ1. Ее основу

Таблица 6

Входы

Выходы

Входы

Выходы

А

B

C

S

Р

А

B

C

S

Р

0

0

0

0

0

0

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

1

1

1

0

0

1

1

1

1

1

1


1-4-43.jpg

составляют два многовходовых элемента И-ИЛИ-НЕ. Сигнал переноса (инверсный) формируется на выходе Р, если хотя бы на двух входах сумматора имеется уровень лог. 1. При А=В=1 включается нижний элемент И DD6, при А=С=1 включается средний элемент DD6, при В=С=1 включается верхний элемент. Сигнал переноса формируется, конечно, и при А=В=С=1. Сигнал суммы формируется в случае, если А=В=С=1и включается нижний логический элемент И DD5. Сигнал суммы формируется также и в том случае, когда есть хотя бы одна единица на входах А, В, С и нет сигнала на выходе переноса (Р=1, включается один из трех верхних элементов И DD5). Поскольку сигнал переноса формируется в том случае, когда среди входных сигналов число единиц две или три, второй случай формирования сигнала суммы соответствует одной и только одной единице среди входных сигналов. Если на всех входах сигналы отсутствуют (А=B= С=0), выходные сигналы также отсутствуют: S = 0, Pинв=1 (Р=0).

Входные сигналы А и В могут быть поданы не только в прямом коде (входы 8 и 9 для А, 12 и 13 для В), но и в инверсном (входы 11 для А и 2 для В). При использовании инверсных входных сигналов входы 8,9,12 и 13 следует соединить с общим проводом, а при использовании прямых сигналов - попарно соединить выводы 10 и 11,1 и 2.

Элементы DD1 и DD2 микросхемы имеют открытый коллекторный выход, поэтому выводы 10 и 1 можно использовать или как выходы элементов DD1 и DD2, или как входы, превращающие элементы DD1 и DD2 типа И-НЕ в элементы И-ИЛИ-НЕ подключением к этим выводам выходов микросхемы К155ЛА8. В любом случае использования выводов 10 и 1 между ними и полюсом питания необходимо включать резисторы сопротивлением 1...2 кОм.

1-4-44.jpg

При соединении микросхем К155ИМ1 в многоразрядный сумматор (рис. 138) используется описанное выше свойство симметрии полного сумматора относительно замены входных и выходных сигналов инверсными. В первом разряде входные сигналы подаются на прямые входы DD1, выходной сигнал суммы снимается с прямого выхода S, сигнал переноса - с единственного (инверсного) выхода P. На второй разряд сумматора входные сигналы А и В подаются на инверсные входы, на прямой вход С подается инверсный сигнал переноса с первого разряда, выходной прямой сигнал суммы формируется на инверсном выходе S, выходной прямой сигнал переноса - на инверсном выходе Pинв. Третий разряд сумматора работает так же, как и первый, четвертый - как второй, и т. д. Такое чередование режима работы одноразрядных сумматоров обеспечивает минимальную задержку распространения сигнала в самой длинной цепи - в цепи формирования сигнала переноса.

Микросхема К155ИМ2 (рис. 139) представляет собой объединение двух микросхем К155ИМ1, соединенных в соответствии с рис. 138 с исключенными неиспользуемыми инверторами. Микросхема К155ИМЗ (рис. 139) соответствует двум микросхемам К155ИМ2, в которых выход переноса первой микросхемы соединен с входом С второй.

1-4-45.jpg

МикросхемаК555ИМ5 - два полных одноразрядных сумматора (рис. 139), каждый из которых имеет три входа (А и В - для подачи двух слагаемых, С - переноса от предыдущего разряда) и два выхода (S - суммы, Р - переноса).

МикросхемаК555ИМ6 (рис. 139) - полный четырехразрядный двоичный сумматор. Ее логика работы соответствует логике работы микросхемы К555ИМЗ - на входы А1 - А8 подается код одного из суммируемых чисел (А1 - младший разряд, А8 - старший), на входы В1-В8 - код второго числа, на вход С - перенос от предыдущей микросхемы. Код суммы формируется на выходах S1 - S8, перенос - на выходе Р. У микросхемы, суммирующей младшие разряды многоразрядных двоичных чисел, вход С следует соединить с общим проводом.

1-4-46.jpg

Микросхема К555СП1 (рис. 140) служит для сравнения кодов двух четырехразрядных двоичных или двух одноразрядных двоично-десятичных чисел. Коды сравниваемых чисел подают на входы А1 - А8 и В1 - В8. Если число, код которого подан на входы А1 - А8, больше числа, код которого подан на входы В1-В8, на выходе > микросхемы появляется лог. 1, на выходах = и < - лог. 0. Если код числа А меньше кода числа В, лог. 1 появляется на выходе <, на выходах = и > - лог. 0. Если коды, поданные на входы А и В, равны, микросхема передает на свои выходы сигналы со входов >, < и =, если на этих входах только одна лог. 1.

На рис. 141 показано соединение микросхем К555СП1 в многоразрядное устройство сравнения.

Микросхемы К555СП1 могут найти применение в устройствах определения равенства или знака разности двух чисел, в устройствах автопоиска записей в магнитофонах, в таймерах и других случаях.

Если необходимо только определить, равны или не равны сравниваемые коды, входы > и < всех микросхем можно не соединять

1-4-47.jpg

с выходами предыдущих микросхем, а соединить с общим проводом, как это сделано со входами микросхемы DD1.

1-4-48.jpg

1-4-49.jpg

Если необходимо максимальное быстродействие устройства определения равенства двух чисел, следует подать на микросхемы К555СП1 коды сравниваемых чисел так, как показано на рис. 141, сигналы на управляющие входы - как показано на рис. 142, выходы объединить с помощью многовходового элемента И или И-НЕ.

МикросхемаКР1533ЛПЗ - три мажоритарных клапана (рис. 143), имеющих дополнительный вход управления ЕС.

При лог. 0 на входе ЕС выходной сигнал мажоритарного клапана соответствует входным сигналам на большинстве входов А, В, С, то есть если лог. 1 на двух или на трех входах, на выходе лог. 1, если лог. 1 только на одном входе или на всех входах мажоритарного клапана лог. 0, на выходе - лог. 0.

При подаче на дополнительный вход ЕС лог. 1 на выход клапана проходит сигнал с входа С независимо от сигналов на других входах.

Основное применение мажоритарных клапанов - использование в системах мажоритарного

резервирования. Идея мажоритарного резервирования - построение устройства, от которого требуется высокая надежность, в виде трех идентичных устройств, выходные сигналы которых объединяются с помощью мажоритарных клапанов. В этом случае выход из строя одного из устройств не приведет к появлению неправильных выходных сигналов мажоритарных клапанов, так как их выходные сигналы будут определяться сигналами двух исправных устройств. Если каждое из устройств разбить на несколько блоков, между которыми встроить мажоритарные клапаны, можно еще более повысить надежность устройства в целом. На рис. 144 в качестве примера приведена схема сложного устройства, не выходящего из строя при выходе из строя любого из его блоков, или даже двух, например DD1 и DD7. Если мажоритарные клапаны установить и на выходы DD9 - DD11, любой из этих блоков также может выйти из строя, что не приведет к выходу из строя устройства в целом.

1-4-410.jpg

Наличие входа «Управление» позволяет проверить исправность всех блоков и спрогнозировать надежность устройства. Если на этот вход подать лог. 1, мажоритарное резервирование действовать не будет, устройство разделится на три независимых канала: DD1-DD5-DD9, DD2-DD6-DD10, DD3-DD7-DD11, и при контроле выходных сигналов любая неисправность будет обнаружена.

В радиолюбительской практике микросхема КР1533ЛПЗ может найти применение в качестве двухвходовых элементов И при подсоединении третьего входа к общему проводу, в качестве двухвходового элемента ИЛИ при подсоединении третьего входа к плюсу питания. Интересный вариант использования мажоритарного клапана в качестве RS-триггера приведен на рис. 145 (а). Нормально на входе S должен быть лог. 0, на входе R - лог 1. В этом случае триггер может находиться в одном из двух устойчивых состояний. При подаче на вход S лог. 1, по крайней мере, на двух входах мажоритарного клапана будет лог. 1, на выходе появится лог. 1, она сохраняется при восстановлении на входе S лог. 0 (рис. 145, б). Аналогично произойдет переключение триггера в состояние 0 при подаче лог. 0 на вход R. При строго одновременной подаче лог. 1 на вход S и лог. 0 на вход R триггер должен сохранить исходное состояние, но лучше такого варианта подачи сигналов не допускать.

1-4-411.jpg

 

Рис. 135 Микросхемы полусумматоров

Изображение: 

Рис. 136 Схема сравнения кодов

Изображение: 

Рис. 137 Микросхема К155ИМ1

Изображение: 

Рис. 138 Соединение микросхем К155ИМ1

Изображение: 

Рис. 139 Микросхемы полных сумматоров К155ИМ2, К155ИМ3, К555ИМ5, К555ИМ6

Изображение: 

Рис. 140 Микросхема К155СП1 (К555СП1)

Изображение: 

Рис. 141 Соединение микросхем СП1

Изображение: 

Рис. 142 Схема сравнение кодов

Изображение: 

Рис. 143 Микросхема КР1533ЛП3

Изображение: 

Рис. 144 Мажоритарно резервированное устройство

Изображение: 

Рис. 145 Триггер на микросхеме КР1533ЛП3 и диаграмма его работы

Изображение: 

1.5 Ждущие мультивибраторы и генераторы.

1.5. Ждущие мультивибраторы и генераторы

1-4-51.jpg

Как уже отмечалось выше, ждущие мультивибраторы и генераторы нельзя отнести ни к последовательностным, ни к комбинационным микросхемам, поэтому рассмотрим их отдельно.

МикросхемаК155АГ1 (рис. 146) - одиночный ждущий мультивибратор, имеет три входа запуска, три вывода С, RC и RI для подключения времязадающих цепей, прямой и инверсный выходы. Условие запуска мультивибратора - изменение входных сигналов, в результате которого появляется следующее сочетание - хотя бы на одном из

входов 3 или 4 - лог. 0, на входе 5 - лог. 1. Исходное состояние для запуска - любое, не соответствующее указанному требованию.

1-4-52.jpg

Несколько основных вариантов подачи входных сигналов, обеспечивающих запуск, показано на рис. 147. Для обеспечения запуска фронтом положительного импульса его следует подать на вывод 5, при этом хотя бы на

одном из входов 3 или 4 должен быть лог. 0 (рис. 147, а). Для запуска спадом положительного импульса можно использовать включение по схемам рис. 147 (б или в).

При запуске на прямом выходе генерируется импульс положительной полярности, на инверсном - отрицательной. Длительность импульса при основном варианте подключения времязадающей цепи, приведенном на рис. 148 (а), составляет приблизительно Т - 0,7R1C1. Размерности в этом формуле - килоомы, нанофарады, микросекунды или килоомы, микрофарады, миллисекунды.

Сопротивление резистора R1 может находиться в пределах 1.5...43 кОм. Емкость конденсатора С1 может быть любой, конденсатор

1-4-53.jpg

даже может отсутствовать. В этом случае длительность генерируемого импульса составляет 30... 100 нс в зависимости от сопротивления времязадающего резистора. При применении оксидных конденсаторов их полярность должна соответствовать приведенной на рис. 148. Сопротивление резистора может быть и более 43 кОм, однако стабильность длительности импульса при этом ухудшается.

Микросхема содержит внутренний времязадающий резистор сопротивлением около 2 кОм, включенный между выводами RC и RI, что может обеспечить работу ждущего мультивибратора без внешнего резистора при включении по схеме рис. 148 (б). Внутренний резистор может использоваться как ограничительный при использовании в качестве времязадающего переменного резистора (рис. 148, в).

Если необходимо обеспечить большую длительность выходного импульса при малой емкости конденсатора, времязадающую цепь следует дополнить транзистором (рис. 148, г). В этом случае длительность генерируемого импульса определяется по приведенной выше формуле, однако сопротивление времязадающего резистора R1 может быть выбрано в h21э раз больше, чем указанные выше 43 кОм. При использовании транзисторов серии КТ3102 сопротивление времязадающего резистора может доходить до 20 МОм. Сопротивление ограничительного резистора R2 может находиться в пределах 1.5...20 кОм.

1-4-54.jpg

Длительность генерируемого ждущим мультивибратором импульса не зависит от длительности запускающего импульса. Во время генерации выходного импульса ждущий мультивибратор нечувствителен к изменению входных сигналов. Повторно мультивибратор может быть запущен спустя время t > С1 после окончания генерируемого импульса (размерности в этой формуле те же, что и в предыдущей). Если интервал после окончания импульса меньше, сокращается длительность генерируемого импульса и даже возможен срыв запуска.

МикросхемаК155АГ3 (рис. 149) - сдвоенный ждущий мультивибратор. Каждый из мультивибра

торов микросхемы имеет два входа для запуска - А, В, вход сброса R, выводы С и RC для подключения времязадающих элементов, прямой и инверсный выходы. Условие запуска мультивибратора - изменение входных сигналов, в результате которого появляется следующее сочетание - лог. 0 на входе А, лог. 1 на входах В и R. Исходное состояние для запуска - любое, не соответствующее указанному требованию.

Несколько основных вариантов подачи входных сигналов, обеспечивающих запуск, показано на рис. 150. Для обеспечения запуска фронтом положительного импульса его необходимо подать на вход В (рис. 150, а) или R (рис. 150, б). Для запуска спадом положительного импульса следу-

1-4-55.jpg

ет использовать включение по схеме рис. 150 (в).

Различие между входами В и R в том, что лог. 0 на входе R прекращает генерацию импульса и принудительно устанавливает выходы мультивибратора в исходное состояние независимо от состояния других входов.

Ждущие мультивибраторы микросхемы К155АГЗ обладают способностью повторного запуска. Если во время генерации выходного импульса повторно выполнится условие запуска, длительность выходного импульса увеличится на интервал времени между запускающими импульсами (рис. 151). Однако для повторного запуска этот интервал должен удовлетворять требованию t > 0,224С, где размерности те же, что и в приведенных выше формулах.

Подключение времязадающих цепей проиллюстрировано на рис. 152. В основном варианте включения, приведенном на рис. 152 (а), сопротивление резистора R1 может находиться в пределах 5,1...51 кОм,

1-4-56.jpg

емкость конденсатора С1 - любая. Длительность генерируемого импульса приближенно может быть определена по формуле

Т = 0,32 (R1 + 0,7)С1.

Размерности в этой формуле те же, что и в формуле для микросхемы К155АГ1. При установке оксидного конденсатора во времязадающую цепь рекомендуется

1-4-57.jpg

устанавливать диод (рис. 152, б), в этом случае полярность включения конденсатора меняется. В отсутствие внешнего конденсатора С1 (рис. 152, в) ждущий мультивибратор генерирует импульсы длительностью примерно 50...200 нс при сопротивлении резистора R1 соответственно 5,1...51 кОм.

Так же, как и в случае применения микросхемы К155АГ1, емкость конденсатора может быть существенно уменьшена, если времязадающую цепь дополнить транзистором (рис. 152, г). Ограничения на резисторы этой схемы включения аналогичны ограничениям схемы рис. 148 (г).

Микросхема К555АГЗ - сдвоенный ждущий мультивибратор, схемы включения и условия запуска те же, что и микросхемы К155АГЗ. Длительность импульса при времязадающей емкости С > 1000 пФ рассчитывают по формуле Т = 0,45 RC. Времязадающий резистор может иметь сопротивление 3...200 кОм. В отсутствие внешнего конденсатора и при сопротивлении времязадающего резистора 10 кОм длительность выходного импульса около 2 мкс. Диод во времязадающей цепи не нужен при любой емкости времязадающего конденсатора, полярность подключения оксидных конденсаторов должна соответствовать указанной на рис. 152 (б).

При изменении напряжения питания от 4,5 до 5,5 В длительность генерируемого импульса возрастает не более чем на 5%, имея максимум приблизительно при 5,25 В. Изменение температуры окружающего воздуха от минимальной до максимальной приводит к уменьшению длительности импульса приблизительно на 4%, причем более круто при повышении температуры более 20 °С.

Микросхема АГ3 удобна для построения различных генераторов импульсов. Для примера на рис. 153 приведена схема управляемого генератора импульсов. Если на вход «Запуск» подать лог. 0, генерация импульсов не происходит, на выходах обоих ждущих мультивибраторов лог. 0; если подать лог. 1, на входах ждущего мультивибратора DD1.1 возникнет условие запуска, на его выходе появится

1-4-58.jpg

положительный импульс, спадом которого запустится ждущий мультивибратор DD1.2, спадом выходного импульса последнего - жду-

щий мультивибратор DD1.1 и т. д.

Если лог. 0 на вход «Запуск» будет подан во время генерации ждущим мультивибратором DD1.1 выходного импульса, этот импульс будет укорочен, вслед за чем ждущий мультивибратор DD1.2 сформирует последний импульс (рис. 154). Если в качестве входа «Запуск» использовать

1-4-59.jpg

вход В DD1.1, а на его вход R подать постоянно лог. 1, указанного укорочения импульса не произойдет. Вместо соединения прямого выхода каждого ждущего мультивибратора с инверсным входом запуска А другого можно соединить инверсный выход с прямым входом В. Использование свободных входов ждущих мультивибраторов позволяет создавать различные варианты управляемых генераторов импульсов.

Повторный запуск ждущего мультивибратора можно заблокировать, если инверсный выход мультивибратора соединить с входом В или прямой - с входом А. В этом случае во время формирования выходного импульса условие запуска не может быть выполнено. Однако, если длительность запускающего импульса превышает длительность выходного, сразу после окончания выходного импульса происходит повторный запуск и ждущий генератор превращается в управляемый генератор (рис. 155). Такой генератор формирует на своем прямом выходе короткие импульсы отрицательной полярности, на инверсном - положительной (рис. 156). Длительность импульсов - примерно 50... 100 нс. Период импульсов определяется по последней из приведенных выше формул.

Естественно, что управляемые генераторы по схемам рис. 153 и 155 могут использоваться как автогенераторы, если на их входы «Запуск» постоянно подавать разрешающий генерацию уровень.

1-4-510.jpg

1-4-511.jpg

Микросхема К555АГ4 (рис. 149) - сдвоенный ждущий мультивибратор, по разводке выводов совпадает с АГ3. Каждый из мультивибраторов микросхемы имеет два входа для запуска - А, В, вход сброса R, выводы С и RC для подключения времязадающих цепей, прямой и инверсный выходы. Условие запуска мультивибратора - изменение

входных сигналов, в результате которого появляется следующее сочетание - лог. 0 на входе А, лог. 1 на входе В. Исходным состоянием на входах А и В может быть любое, не соответствующее указанному требованию, на входе R во время запуска должна быть лог. 1.

Два основных варианта подачи входных сигналов, обеспечивающих запуск, показаны на рис. 150 (а, в). Для запуска фронтом положительного импульса его необходимо подать на вход В (рис. 150, а), для запуска спадом положительного импульса следует использовать включение по схеме рис. 150 (в).

Подача лог. 0 на вход R предотвращает запуск или прекращает генерацию импульса и принудительно устанавливает выходы мультивибратора в исходное состояние независимо от состояния других входов.

Ждущие мультивибраторы микросхемы К555АГ4 в отличие от АГЗ не обладают способностью повторного запуска. Если во время генерации выходного импульса повторно выполнится условие запуска, длительность выходного импульса не изменится.

Подключение времязадающих цепей проиллюстрировано на рис. 152 (а, в, г), полярность включения конденсаторов всегда такая, как на рис. 152 (а). В основном варианте включения, приведенном на рис. 152 (а), сопротивление резистора R1 может находиться в пределах 1,4...100 кОм, емкость конденсатора С1 - любая. Длительность генерируемого импульса приближенно может быть определена по формуле Т = 0,7 R1C1. Размерности в этой формуле - килоомы, нанофарады, микросекунды или килоомы, микрофарады, миллисекунды. В отсутствие внешнего конденсатора С1 (рис. 152, в) ждущий мультивибратор генерирует импульсы длительностью 20...70 нс при сопротивлении резистора R1 = 2 кОм.

Если необходимо обеспечить большую длительность выходного импульса при малой емкости конденсатора, времязадающую цепь следует дополнить транзистором (рис. 152, г). В этом случае длительность генерируемого импульса определяется по приведенной выше формуле, однако сопротивление времязадающего резистора R1 может быть выбрано в h21э раз больше, чем указанные выше 100 кОм.

При использовании транзисторов серии КТ3102 сопротивление времязадающего резистора может доходить до 20 МОм. Сопротивление ограничительного резистора R2 может находиться в пределах 1,5...100 кОм.

При использовании микросхем К155АГ1, АГЗ и К555АГ4 следует помнить, что они легко запускаются как от помех по цепи питания, так и по входным цепям. Для исключения ложных запусков рекомендуется в непосредственной близости от микросхем устанавливать по цепи питания блокировочные керамические конденсаторы емкостью не менее 0,033 мкФ, а проводники входных и времязадающих цепей выполнять минимальной длины. Монтажная емкость точки соединения времязадающих конденсатора, резистора и вывода микросхемы К155АГЗ не должна превышать 50 пФ.

Следует также иметь в виду, что приведенные выше формулы для расчета длительности генерируемого импульса приближенные и дают заниженный результат при емкости времязадающего конденсатора менее 1000 пФ.

1-4-512.jpg

МикросхемаКР531ГГ1 (рис. 157) - два генератора импульсов. Частота генерируемых колебаний определяется или кварцевым резонатором, подключаемым к выводам С1 и С2, или конденсатором, подключаемым вместо резонатора. В последнем случае частоту можно регулировать в некоторых пределах, изменяя напряжение на двух управляющих входах, один из которых обычно называют диапазонным Uд, другой - входом управления частотой Uч. При увеличении напряжения

на входе Uч частота увеличивается, при увеличении напряжения на входе Uд - уменьшается. Рекомендуемый интервал изменения напряжения на входе Uд от 2 до 4...4.5 В. В зависимости от напряжения на входе Uд меняется диапазон изменения частоты при изменении напряжения на входе Uч. При Uд=2 В и при изменении напряжения на входе Uч от 1 до 5 В частота может быть изменена приблизительно на 15%, а при Uд= 4 В примерно в 4 раза (рис. 158).

Зависимость частоты f0 генератора при Uд=Uч=2 В от емкости конденсатора приведена на рис. 159, максимальная частота генерации - около 80 МГц. При изменении температуры от -0 до +70 "С частота изменяется в пределах примерно от 107 до 91% частоты при 25 °С, а при колебаниях напряжения питания +-5% частота изменяется примерно на ±2,5%.

1-4-513.jpg

1-4-514.jpg

На выходах генераторов микросхемы установлены ключи, которыми можно перевести вь1ходы в состояние 1 подачей на входы Е лог. 1. Сигналы генераторов проходят на выход при лог. 0 на входе Е.

Цепи питания (выводы 16 и 15) и общего провода (9 и 8) цифровой и аналоговой частей микросхемы для уменьшения влияния генераторов друг на друга разделены. Несмотря на это, существует взаимное влияние генераторов, поэтому одновременная работа двух управляемых напряжением генераторов не рекомендуется.

 

Рис. 146 Микросхема К155АГ1

Изображение: 

Рис. 147 Варианты запуска микросхемы К155АГ1

Изображение: 

Рис. 148 Подключение времязадающих элементов к микросхеме К155АГ1

Изображение: 

Рис. 149 Микросхемы К155АГ3 (К555АГ3) и АГ4 (К555АГ4)

Изображение: 

Рис. 150 Варианты подачи сигнала для запуска микросхемы АГ3 и АГ4

Изображение: 

Рис. 151 Влияние повторного запуска микросхемы АГ3 на длительность входного импульса

Изображение: 

Рис. 152 Подключение времязадающих элементов к микросхемам АГ3 и АГ4

Изображение: 

Рис. 153 Генератор на двух мультивибраторах микросхемы АГ3

Изображение: 

Рис. 154 Временная диаграмма работы генератора

Изображение: 

Рис. 155 Генераторы на одном мультивибраторе микросхемы АГ3

Изображение: 

Рис. 156 Временная диаграмма работы генератора

Изображение: 

Рис. 157 Микросхема КР531ГГ1

Изображение: 

Рис. 158 Зависимость частоты генерации от управляющих напряжений

Изображение: 

Рис. 159 Зависимость частоты генерации от емкости

Изображение: 

2.Микросхемы серии КМОП.

Глава 2. Микросхемы серии КМОП.

 

2.1 Общие сведения.

2.1. Общие сведения

Описанные в предыдущей главе цифровые микросхемы ТТЛ-серий -К155, К555, КР1533, КР531 обеспечивают построение самых различных цифровых устройств, работающих на частотах до 80 МГц, однако их существенный недостаток - большая потребляемая мощность. В ряде случаев, когда не нужно такое высокое быстродействие, а необходима минимальная потребляемая мощность, применяют интегральные микросхемы серий К176, К561, КР1561 и 564.

Микросхемы этих серий изготовляются по технологии комплементарных транзисторов структуры металл-диэлектрик-полупроводник (КМДП). Ранее в качестве диэлектрика использовался окисел кремния, поэтому сокращенным обозначением структуры этих микросхем было КМОП, оно и используется в этой книге.

Основная особенность микросхем КМОП - ничтожное потребление тока в статическом режиме - 0,1...100 мкА. При работе на максимальной рабочей частоте потребляемая мощность увеличивается и приближается к потребляемой мощности наименее мощных микросхем ТТЛ.

2-11.jpg

Рассмотрим внутреннюю структуру микросхем КМОП на примере двухвходового логического элемента ИЛИ-НЕ (рис. 160). Основу этого элемента составляют два транзистора структуры МОП с индуцированным каналом р-типа VT1 и VT2 и два транзистора с каналом n-типа VT3 и VT4. Резисторы и диоды являются вспомогательными и в нормальной работе элемента участия не принимают.

При подаче на оба входа напряжения, близкого к нулю (лог. 0), транзисторы VT3 и VT4 закрыты, транзисторы VT1 и VT2 открыты и соединяют выход элемента с источником питания. На выходе элемента напряжение близко к напряжению источника питания (лог. 1). Если на один из входов, например вход 1, подать лог. 1, транзистор VT2 закроется, транзистор VT4 откроется и соединит выход элемента

с общим проводом, на выходе элемента появится лог. 0. Такой же результат будет при подаче лог. 1 на вход 2 или при подаче лог. 1 на оба входа одновременно.

Таким образом, изображенный на схеме рис. 160 элемент выполняет функцию ИЛИ-НЕ на два входа. Для увеличения числа входов элемента увеличивают число последовательно соединенных транзисторов с каналом р-типа и параллельно соединенных транзисторов с каналом n-типа.

Для построения элементов с функцией И-НЕ транзисторы с каналом р-типа соединяют параллельно, с каналом п-типа - последовательно.

На рис. 161 приведена статическая переключательная характеристика инвертирующего МОП-элемента - зависимость его выходного напряжения от входного. Как видно из зависимости, переключение элемента происходит при входном напряжении, близком к половине напряжения питания.

Диоды VD7 и VD8 (рис. 160) являются неотъемлемой частью МОП-транзисторов, диоды VD1 - VD6 и резисторы R1 и R2 специально вводятся в состав элемента для защиты МОП-

2-12.jpg

транзисторов от статического электричества. При превышении входным напряжением напряжения источника питания открываются диоды VD1 - VD4, что исключает подачу на затворы транзисторов напряжения, превышающего напряжение питания. При снижении входного напряжения до уровня, более низкого, чем потенциал общего провода, открываются диоды VD5 и VD6. В микросхемах серии К176 первых выпусков для защиты входов использовались диоды-стабилитроны с напряжением включения порядка 30 В, которые устанавливались вместо VD5 и VD6.

Микросхемы серий К176, К561, КР1561 выпускаются в пластмассовых корпусах с двухрядным расположением 14, 16 или 24 штыревых выводов, а микросхемы серии 564 - в корпусах с тем же количеством выводов, расположенных в одной плоскости, в так называемых планарных корпусах. Номинальное напряжение питания микросхем серии К176 - 9 В ±5%, однако они, как правило, сохраняют работоспособность в диапазоне питающих напряжений от 5 до 12 В. Для микросхем серий К561 и 564 гарантируется работоспособность при напряжении питания от 3 до 15 В, для КР1561 - от 3 до 18 В. Диапазон

рабочих температур микросхем серии К176 от -10 до +70 "С, серий К561 и КР1561 от -45 до +85 'С, серии 564 от -60 до +125С.

Выходные уровни микросхем при работе на однотипные микросхемы практически не отличаются от напряжения питания и потенциала общего провода. Максимальный выходной ток большинства микросхем серий К176, К561 и 564 не стандартизирован и не превышает единиц миллиампер, что несколько затрудняет непосредственное согласование микросхем этих серий с какими-либо индикаторами и микросхемами ТТЛ-серий.

Отличительной особенностью микросхем серии КР1561 является наличие буферных элементов не только на выходах сложных элементов, как в микросхемах серий К176, К561 и 564, но и на входах и выходах всех микросхем, независимо от их сложности. Кроме того, в микросхемах серии КР1561 улучшена защита от перегрузок как по входу, так и по выходу, в выходные цепи добавлены небольшие токоограничительные резисторы.

Стандартные статические нагрузочные характеристики микросхем серии КР1561 следующие. При лог. 0 на выходе и выходном напряжении 0,4; 0,5; 1,5 В выходной втекающий ток не менее 0,44; 1,1; 3 мА при напряжении питания 5,10,15 В соответственно. Те же нормы существуют и для вытекающих токов в состоянии лог. 1 при выходном напряжении 4,6; 9,5; 13,5 В соответственно. Кроме того, гарантируется, что при напряжении питания 5 В, выходном напряжении 2,5 В выходной вытекающий ток при лог. 1 составит не менее 1,36 мА.

Реально выходные токи микросхем серии КР1561 значительно больше. При лог. 0 на выходе и выходном напряжении 0,5 В выходной ток составляет примерно 3...5, 5...10, 6...15мА при напряжении питания 5, 10, 15 В соответственно. Аналогично вытекающий ток в состоянии лог. 1 при выходном напряжении, на 0,5 В меньшем, чем напряжение питания, составляет при тех же напряжениях питания примерно 1,2... 1,5; 2...3; 3...4 мА.

При напряжении на выходе 1 В в состоянии лог. 0 выходной втекающий ток составляет 6...10,10...20,12...25 мА при указанных выше напряжениях питания, при напряжении, на 1 В меньшем напряжения питания, в состоянии лог. 1 вытекающий ток 2...3, 4...5,5...7 мА соответственно.

Ток короткого замыкания при напряжении 5 В составляет около 10 мА в состоянии лог. 0 и около 6 мА в состоянии лог. 1, что позволяет подключать практически любые светодиоды к выходам микросхем этой серии без ограничительных резисторов. При напряжении питания

10 или 15 В ток короткого замыкания может достигать 20...60 мА, поэтому включение ограничительных резисторов необходимо.

Выходной ток 0,44 мА в состоянии лог. 0 при напряжении на выходе 0,5 В и напряжении питания 5 В гарантирует нормальную работу микросхем серии КР1561 на один вход микросхем серии К555. Поскольку, как указывалось выше, реальный выходной ток в этих условиях больше, микросхемы серии КР1561 можно нагружать на несколько входов микросхем серии К555 или на один вход микросхемы серии К 155.

Напряжение питания на микросхемы рассматриваемых серий подается на вывод с наибольшим номером, общий провод подключается к выводу с вдвое меньшим номером. Исключение составляют микросхемы К561ПУ4 и КР1561ПУ4, а также микросхемы, требующие для своей работы два источника питания. Все исключения отмечены далее при описании конкретных микросхем.

При использовании микросхем следует помнить, что защита входов микросхем диодами от статического электричества не является полной. Поэтому при монтаже устройств с микросхемами КМОП необходимо соблюдать следующие правила.

Для исключения случайного пробоя за счет статического электричества потенциалы монтируемой платы, паяльника и тела монтажника должны быть уравнены. Для этого на ручку паяльника можно намотать несколько витков неизолированного провода или укрепить металлическую пластинку и соединить через резистор 100...200 кОм с металлическими частями паяльника. Конечно, обмотка паяльника не должна иметь контакта с его жалом. При монтаже свободной рукой следует касаться шин питания монтируемой платы. Если микросхема находится в металлической коробке или ее выводы упакованы в фольгу, прежде чем взять микросхему, следует дотронуться до коробки или фольги. При передаче микросхемы из рук в руки следует уравнять потенциалы участвующих в этом, дотронувшись друг до друга до момента передачи.

Применение микросхем КМОП-серий имеет свои особенности. Ни один из входов микросхем не может быть оставлен неподключенным, даже если логический элемент в микросхеме не использован. Свободные входы элементов должны бьггь или соединены с используемыми входами того же элемента или подключены к шине питания или к общему проводу в соответствии с логикой работы микросхемы. Напряжение источника питания должно подаваться ранее или одновременно с подачей входных сигналов.

В любом устройстве, собранном на микросхемах структуры КМОП, рекомендуется перед первым включением проверить прозвонкой подачу напряжения питания на все выводы питания и те выводы микросхем, на которые напряжение питания подается в соответствии с принципиальной схемой. Дело в том, что микросхема КМОП из-за наличия входных защитных диодов может работать без подачи напряжения на вывод питания, если хотя бы на один из входов микросхемы подано напряжение питания или лог. 1. Аналогично следует проверить цепь общего провода по той же причине.

В табл. 7 приведены обозначения большинства микросхем рассматриваемых серий, число выводов корпуса, предельная частота работы некоторых микросхем, а также номер рисунка книги, где дано графическое обозначение микросхемы. Для микросхем серии К176 предельная частота дана для напряжения 9 В, для серий К561 и 564 - для 5 и 10 В, для серии КР1561 - для 5, 10 и 15 В.

Логика работы микросхем с одинаковым буквенноцифровым обозначением у серий К176, К561, КР1561 и 564 полностью совпадает, совпадают реальные электрические параметры у микросхем серий К561 и 564, хотя паспортные нормы у них различны. Поэтому здесь рассматриваются лишь те микросхемы серии 564, которые или отсутствуют в других сериях, или имеют другие буквенноцифровые обозначения.

Изучение работы микросхем удобно начать с простейших комбинационных микросхем - логических элементов И-НЕ, ИЛИ-НЕ, И, повторителей и инверторов.

 

Рис. 160 Принципиальная схема элемента ИЛИ-НЕ

Изображение: 

Рис. 161 Статическая переключательная характеристика КМОП-инвертора

Изображение: 

2.2 Микросхемы комбинационного типа малой степени интеграции.

2.2. Микросхемы комбинационного типа малой степени интеграции

На рис. 162 приведена цоколевка простых логических микросхем рассматриваемых серий. Микросхемы, имеющие в своем обозначении после указания серии буквенное сочетание ЛА, а также четырехвходовые элементы микросхемы К176ЛП12, выполняют функцию И-НЕ. Микросхемы с сочетанием ЛЕ, а также трех- и четырехвходовые элементы микросхем К176ЛП4 и К176ЛП11, выполняют функцию ИЛИ-НЕ. В состав микросхемы К176ЛИ1 входит девятивходовый элемент И и инвертор, микросхема КР1561ЛИ2 - четыре двухвходовых элемента И.

Микросхема564ЛА10 - два логических элемента И-НЕ с открытым стоком (рис. 162). Сопротивление выходных транзисторов

Таблица 7

Обозначение микросхемы

Функциональное назначение

Число выводов корпуса

Предельная частота, МГц при Uпит, В

Номер рис.

5

9,10

15

КР1561АГ1

2 ждущих мультивибратора

16

-

-

-

277

К176ИД1 К561ИД1

Дешифратор 4-10 с прямыми выходами

16

-

-

-

232

К176ИД2 К176ИДЗ

Преобразователи двоично-десятичного кода в код семисегментного индикатора

16 16

-

-

-

235 235

564ИД4 564ИД5

Преобразователи двоично-десятичного кода в код семисегментного индикатора

16 16

-

-

-

235 235

КР1561ИД6

2 дешифратора 2-4 с прямыми выходами

16

-

-

-

238

КР1561ИД7

2 дешифратора 2-4 с инверсными выходами

16

-

-

-

238

К176ИЕ1

Шестиразрядный двоичный счетчик

14

-

1

-

172

К176ИЕ2

Пятиразрядный двоичный и десятичный счетчик

16

-

2

-

173

К176ИЕЗ

Счетчик-делитель на 6 с выходом на семисегментный индикатор

14

-

1

-

176

К176ИЕ4

Декада с выходом на семисегментный индикатор

14

-

1

-

177

К176ИЕ5

Кварцевый генератор и делитель частоты на 32768

14

184

К176ИЕ8 К561ИЕ8

Десятичный счетчик с дешифратором

16

1

2

3

185

К561 ИЕ9

Двоичный счетчик с дешифратором

16

1

3

-

187

К561ИЕ10 КР1561 ИЕ10

2 четырехразрядных двоичных счетчика

16

1,5

4 3

4

195

К561 ИЕ11

Четырехразрядный двоичный реверсивный счетчик

16

-

5

-

200

К176ИЕ12

Кварцевый генератор и делители частоты на 32768 и 60

16

-

1.2

-

203

К176ИЕ13

Счетчик для часов с будильником

16

-

1,2

-

205

К561ИЕ14

Четырехразрядный десятичный реверсивный счетчик

16

1,5

3

-

211

КА561ИЕ15А КА561ИЕ15Б

Делитель частоты с переключаемым коэффициентом деления

24

0,8 0,4

1,5 0,75

-

212

К561ИЕ16

14-разрядный двоичный счетчик

16

1,5

4

-

214

К176ИЕ17

Счетчик-календарь

16

-

-

-

219

К176ИЕ18

Кварцевый генератор и делители частоты на 32768 и 60

16

1

1

-

221

К561ИЕ19

Счетчик с переключаемым коэффициентом деления

16

0,6

1.8

-

222


Таблица 7 (продолжение)

Обозначение микросхемы

Функциональное назначение

Число выводов корпуса

Предельная частота, МГц при Uпит,, В

Номер рис.

5

9, 10

15

КР1561ИЕ20

12-разрядный двоичный счетчик

16

-

-

-

226

КР1561ИЕ21

Четырехразрядный двоичный синхронный счетчик

16

-

-

-

227

К561ИК1

3 мажоритарно-мультиплексорных элемента

16

-

-

-

268

564ИК2

Устройство управлений пятиразрядным индикатором

24

-

-

-

241

К176ИМ1 К561ИМ1

Четырехразрядный двоичный сумматор

16

-

-

-

262

К561ИП2

Элемент сравнения четырехразрядных чисел

16

-

-

-

271

564ИР1

18-разрядный сдвигающий регистр

14

1,5

3

-

228

К176ИР2 К561ИР2

2 четырехразрядных сдвигающих регистра

16

-

2

4.5

-

228

К176ИРЗ

Четырехразрядный сдвигающий регистр

14

-

2

-

228

К561ИР6

Восьмиразрядный сдвигающий регистр (Z)

24

-

-

-

228

К561ИР9

Четырехразрядный сдвигающий регистр

16

-

-

-

228

К176ИР10

18-разрядный сдвигающий регистр

14

-

2

-

228

564ИР13

Регистр последовательного приближения

24

2

5

-

231

КР1561ИР14

Четырехразрядный регистр хранения информации (Z)

16

1.8

3.6

4,8

228

КР1561ИР15

Четырехразрядный реверсивный сдвигающий регистр

16

-

-

-

228

К561КП1 КР1561КП1

2 мультиплексора 4-1

16

-

-

-

251

К561КП2 КР1561КП2

Мультиплексор 8-1

16

-

-

-

259

К176КТ1

4 ключа

14

-

-

-

250

К561КТЗ КР1561КТЗ

4 ключа

14

-

-

-

250

К176ЛА7 К561ЛА7

4 элемента 2И-НЕ

14

-

-

-

162

К176ЛА8 К561ЛА8

2 элемента 4И-НЕ

14

-

-

-

162

К176ЛА9 К561ЛАР КР1561ЛА9

3 элемента ЗИ-НЕ

14

-

-

-

162



Таблица 7 {продолжение)

Обозначение микросхемы

Функциональное назначение

Число выводов корпуса

Предельная частота, МГц при Uпит, В

Номер рис.

5.

9,10.

15

564ЛА10

2 элемента 2И-НЕ (ОС)

14

-

-

-

162

К176ЛЕ5 К561ЛЕ5 КР1561ЛЕ5

4 элемента 2ИЛИ-НЕ

14

-

-

-

162

К176ЛЕ6 К561ЛЕ6 КР1561ЛЕ6

3 элемента 4ИЛИ-НЕ

14

-

-

-

162

К176ЛЕ10 К561ЛЕ10 КР1561ЛЕ10

3 элемента 3 ИЛИ-НЕ

14

-

-

-

162

К176ЛИ1

9И+НЕ

14

-

-

-

162

КР1561ЛИ2

4 элемента 2И

14

-

-

-

162

К561ЛН1

б элемента НЕ (Z)

16

-

-

-

165

К561ЛН2

6 элемента НЕ

14

-

-

-

165

К561ЛНЗ

6 повторителей (Z)

16

-

-

-

165

К176ЛП1

6 транзисторов

14

-

-

-

273

К176ЛП2 К561ЛП2

4 элемента ИЛИ с исключением

14

-

-

-

263

К176ЛП4

2 элемента ЗИЛИ-НЕ+НЕ

14

-

-

-

162

К176ЛП11

2 элемента 4ИЛИ-НЕ + НЕ

14

-

-

-

162

К176ЛП12

2 элемента 4И-НЕ + НЕ

14

-

-

-

162

К561ЛП13

3 мажоритарных элемента

14

-

-

-

267

КР1561ЛП14

4 элемента ИЛИ с исключением

14

-

-

-

263

К176ЛС1

3 мультиплексора 2-1

14

-

-

-

269

К561ЛС2

4 элемента И-ИЛИ

16

-

-

-

270

К176ПУ1

5 преобразователей уровня КМОП-ТТЛ с инверсией

14

-

-

-

164

К176ПУ2

6 преобразователей уровня КМОП-ТТЛ с инверсией

16

-

-

-

164

К176ПУЗ

6 преобразователей уровня КМОП-ТТЛ

16

-

-

-

164

К176ПУ4 КР1561ПУ4

6 преобразователей уровня КМОП-ТТЛ

16

-

-

-

164

К176ПУ5

4 преобразователя уровня ТТЛ-КМОП

16

-

-

-

164

564ПУ6

4 преобразователя уровня ТТЛ-КМОП (Z)

16

-

-

-

164

К561ПУ7

6 преобразователей уровня ТТЛ-КМОП с инверсией

14

-

-

-

164

К561ПУ8

6 преобразователей уровня ТТЛ-КМОП

14

-

-

-

164

К561СА1

13-входовый сумматор по модулю 2

16

-

-

-

266



Таблица 7 (окончание)

Обозначение микросхемы

Функциональное назначение

Число выводов

корпуса

Предельная частота, МГц при Uпит, В

Номер рис.

5

9,10

15

К176ТВ1 К561 ТВ 1 КР1561ТВ1

2 JK-триггера

14

3.5

2 8 8

12

169

К561ТЛ1 КР156ГГЛ1

4 триггера Шмитта 2И-НЕ

14

-

2

-

163

К176ТМ1

2 D-триггера

14

-

1

-

169

К176ТМ2 К561ТМ2

2 D-триггера

14

-

1 4.5

-

169

К561ТМЗ

4 D-триггера

16

-

2

-

168

К561ТР2

4 RS-триггера (Z)

16

-

-

-

166

564УМ1

4 D-триггера с увеличенной амплитудой выходного сигнала

16

-

-

-

168


 

микросхемы в открытом состоянии достаточно низкое - около 30 Ом при напряжении питания 3 В, 15 Ом при 5 В, 6 Ом при 10 В, и 4,5 Ом при 15В. Допустимый выходной ток определяется рассеиваемой мощностью 100 мВт на выход и составляет от 80 до 150 мА при напряжении питания от 5 до 15 В. Выходное напряжение, которое можно подавать на выходы микросхемы в закрытом состоянии, составляет 15В.

2-21.jpg

Микросхема может применяться для согласования КМОП-микросхем с ТТЛ-микросхемами, для работы на светодиодные индикаторы, электромагнитные реле и в других случаях, когда нагрузочной способности стандартных КМОП-микросхем недостаточно или требуется коммутация нагрузки от источника с открытым стоком.

МикросхемыК561ТЛ1 и КР1561ТЛ1 - четыре двухвходовых триггера Шмитта, выполняющих функцию И-НЕ (рис. 163, а). Основное свойство инвертирующего триггера Шмитта - скачкообразное изменение выходного напряжения от лог. 1 до лог. 0 при плавном повышении входного напряжения и переходе величины U1пор и изменении выходного напряжения от лог. 0 до лог. 1 при плавном снижении входного сигнала ниже U0пор , причем U1пор > U0пор . На рис. 163 (б) приведены зависимости U0пор и U1пор триггеров микросхемы К561ТЛ1 от напряжения питания. Порог U1пор почти во всем диапазоне напряжений питания выше половины напряжения питания, U0пор - ниже.

Триггеры Шмитта широко применяются для приема цифровых сигналов при большом уровне помех, для формирования сигналов с крутыми фронтами из плавно меняющихся сигналов, например из синусоидальных, в генераторах импульсов и в других случаях.

2-22.jpg

Микросхемы К176ПУ1, К176ПУ2, К176ПУЗ (рис. 164) служат для согласования относительно маломощных выходов КМОП-микросхем с микросхемами ТТЛ-серий. Микросхемы К176ПУ1 и К176ПУ2 -инверторы, К176ПУЗ сигналы не инвертирует. Стандартное напряжение питания - Uпит1=9 В подается на вывод 14 для К176ПУ1 и на вывод 16 для К176ПУ2 и К176ПУЗ, а дополнительное напряжение Uпит2=5 В на вывод 1 для всех микросхем. При таких напряжениях питания выходные сигналы имеют уровни, соответствующие микросхемам ТТЛ-серий. Паспортная нагрузочная способность - один

логический элемент серии К 155. Реальная нагрузочная способность существенно выше - в состоянии лог. 0 при напряжении на выходе 0,5 В втекающий ток может составлять 6... 10 мА, в состоянии лог. 1 при напряжении на выходе 2,4 В вытекающий ток 3...6 мА. Если выход микросхемы в состоянии лог. 0 замкнуть на источник питания +5 В, ток короткого замыкания составит 30...50 мА. При замыкании выхода, находящегося в состоянии лог. 1, на общий провод, ток короткого замыкания 6...9 мА. Указанные выходные токи измерены при двух указанных напряжениях питания 9 и 5 В. Для обоих источников питания техническими условиями допускаются напряжения от 5 до 10 В, реально микросхемы работоспособны при напряжениях питания от 4 до 15 В, однако необходимо, чтобы напряжение Uпит1 было не менее, чем Uпит2 Максимальные выходные токи в первом приближении пропорциональны напряжениям питания.

2-23.jpg

МикросхемыК561ПУ4 и КР1561ПУ4 (рис. 164) аналогичны по своему функционированию микросхеме К176ПУЗ, но требуют лишь одного источника питания, который подключается к выводу 1 микросхемы, вывод 16 свободен. При напряжении питания 10В микросхема К561ПУ4 может обеспечить выходной ток 8 мА в состоянии лог. 0 и 1,25 мА в состоянии лог. 1. Особенность этой микросхемы - возможность подачи на ее входы напряжения, большего, чем напряжение питания, что недопустимо для других типов микросхем (кроме К561ЛН2). Эта возможность позволяет использовать микросхемы К561ПУ4 и КР1561ПУ4 для сопряжения КМОП-микросхем, имеющих напряжение питания 5...15 В, с ТТЛ-микросхемами. В этом случае на микросхему К561ПУ4 (КР1561ПУ4) подают напряжение питания 5 В входы подключают к выходам КМОП-микросхем, выходы -ко входам ТТЛ-микросхем. Нагрузочная способность микросхемы

К561ПУ4 для такого включения - 3 мА в состоянии лог. 0, что практически позволяет подключать два входа микросхем серии К155.

Нагрузочная способность микросхемы КР1561ПУ4 больше. При выходном напряжении 0,4; 0,5; 1,5 В в состоянии лог. 0 гарантированный выходной втекающий ток элементов этой микросхемы составляет не менее 3,2; 8 и 24 мА при напряжении питания 5,10 и 15 В соответственно. Вытекающий выходной ток в состоянии лог. 1 при напряжении на выходе 4,6; 9,5; 13,5 В составляет не менее 0,16; 1,25 и 3,75 мА при тех же напряжениях питания. Дополнительно гарантируется выходной вытекающий ток не менее 1,25 мА в состоянии лог. I при напряжении питания 5 В и выходном напряжении 2,5 В.

Таким образом, элементы микросхемы КР1561ПУ4 при питании от напряжения 5 В позволяют нагружать их на 2 входа микросхем серии К155 или 8 входов микросхем серии К555.

МикросхемаК176ПУ5 (рис. 164) предназначена для согласования выходов микросхем ТТЛ со входами микросхем КМОП. При напряжении питания 5 В на выводе 15 и 9...10 В на выводе 16 на входы микросхемы можно подавать сигналы с выходов микросхем ТТЛ, выходные сигналы будут соответствовать уровням микросхем КМОП.

Микросхема564ПУ6 (рис. 164) - четыре преобразователя уровней ТТЛ в уровни КМОП с индивидуальной возможностью перевода выходов в высокоимпедансное состояние. Микросхема имеет два вывода для подачи питания - вывод 1 для подачи напряжения 5 В (питание микросхем ТТЛ) и вывод 16 для подачи напряжения питания микросхем КМОП, оно должно находиться в пределах 5...15 В, вывод 8 - общий провод.

Каждый преобразователь уровня имеет вход Е для управления выходом. При лог. 1 на этом входе выход преобразователя активен и повторяет входной сигнал, увеличенный по амплитуде до напряжения питания, поданного на вывод 16, при лог. 0 на входе Е выход переходит в высокоимпедансное состояние.

МикросхемыК561ПУ7 и К561ПУ8 (рис. 164) - соответственно шесть инвертирующих и шесть неинвертирующих преобразователей уровней ТТЛ-микросхем в уровни КМОП-микросхем. Принципиальное отличие этих микросхем от микросхем К176ПУ5 и 564ПУ6, выполняющих ту же функцию, - использование одного источника питания. При напряжении питания 10... 15 В порог переключения элементов микросхем составляет 1,5... 1,8 В, что хорошо согласуется с выходными уровнями микросхем серий ТТЛ. Выходные сигналы

микросхем имеют уровни, близкие к напряжению питания и потенциалу общего провода.

Гарантированная величина выходного тока микросхем при напряжении питания 12 В составляет не менее 1,3 мА в состоянии лог. 0 и напряжении на выходе 0,5 В или в состоянии лог. 1 и напряжении на выходе 11,5 В, реально выходные токи больше.

Из-за того, что микросхемы К561ПУ7 и К561ПУ8 используют один источник питания, при их управлении от микросхем ТТЛ теряется одно из наиболее интересных и полезных свойств микросхем КМОП - крайне малое потребление тока от источника питания в статическом режиме. При напряжении питания 12 В и напряжении на входах 0,5 или 3 В ток потребления микросхем К176ПУ7 и К176ПУ8 не превышает 4 мА. В то же время, если входные уровни соответствуют 0 В или напряжению источника питания, гарантируется, что ток потребления не превышает 20 мкА, реально - значительно меньше.

При напряжении питания 5 В порог переключения микросхем составляет 0,2...0,4 В, что позволяет использовать их в качестве усилителей-ограничителей импульсных сигналов малой амплитуды. Естественно, что микросхемы К561ПУ7 и К561ПУ8 можно использовать и в устройствах, целиком выполненных на микросхемах КМОП в качестве инверторов и буферных повторителей соответственно, но при напряжении питания менее 9 В это делать нецелесообразно из-за снижения помехоустойчивости.

МикросхемаК561ЛН1 (рис. 165) - шесть инверторов со стробированием и возможностью перевода выходов в высокоимпедансное состояние. Она имеет шесть информационных входов D1 - D6, вход стробирования С, вход переключения в высокоимпедансное состояние Е, шесть выходов. Вход Е является преобладающим - при подаче на него лог. 1 все выходы переходят в высокоимпедансное состояние независимо от других входных сигналов. При лог. 0 на входе Е и лог. 1 на входе С на всех выходах устанавливается лог. 0. При лог. 0 на обоих управляющих входах Е и С на выходах - инверсия сигналов с информационных входов.

Микросхема К561ЛН1 имеет повышенную по сравнению с другими микросхемами этой серии нагрузочную способность - при напряжении питания 10 В ее выходной ток может достигать 5,3 мА в состоянии лог. 0 и 0,5 мА в состоянии лог. 1, что позволяет использовать ее при работе на нагрузку с большой емкостью.

МикросхемаК561ЛН2 (рис. 165) - шесть инверторов с повышенной нагрузочной способностью. Ее электрические параметры аналогичны

2-24.jpg

параметрам микросхемы К561ПУ4, она также позволяет подавать на входы напряжение, большее напряжения питания, и может применяться для согласования КМОП-микросхем с ТТЛ-микросхемами.

МикросхемаК561ЛНЗ (рис. 165) - шесть повторителей сигнала с возможностью перевода выходов в высокоимпедансное состояние. Повторители разбиты на две группы - четыре и два элемента, в каждой группе управляющие входы Е элементов объединены. При подаче на входы Е соответствующей группы лог. 0 выходы элементов этой группы активны и повторяют входные сигналы. Если на входы Е подать лог. 1, выходы элементов переходят в высокоимпедансное состояние. На рис. 165 приведено также более компактное графическое обозначение микросхемы.

Нагрузочная способность элементов микросхемы К561ЛНЗ в активном состоянии весьма высока. Гарантируется, что выходное напряжение в состоянии лог. 0 не превышает 0,4; 0,5 и 1,5 В при втекающем токе соответственно 2,3; 6 и 15,2 мА и напряжении питания 5, 10 и 15 В. Аналогично выходное напряжение в состоянии лог. 1 составляет не менее 4,6; 9,5 и 13,5 В при выходном вытекающем токе 0,88;

2,2 и 6 мА и указанных выше напряжениях питания. Дополнительно гарантируется, что при напряжении питания 5 В в состоянии лог. 1 выходное напряжение превышает 2,5 В при вытекающем токе 4,2 мА.

Реально нагрузочная способность микросхемы больше. При напряжении питания 5 В в состоянии лог. О0выходной втекающий ток может достигать 16 мА при выходном напряжении 0,5 В, в состоянии лог. 1 вытекающий ток не менее 3 мА при выходном напряжении 4 В, что позволяет при необходимости нагружать на каждый выход микросхемы К561ЛНЗ до 10 входов микросхем серии К155.

Основное назначение микросхем К561ЛНЗ - поочередная подача на одну магистраль сигналов от различных источников, причем

благодаря большой нагрузочной способности микросхемы магистраль может иметь большую емкость и большое число подключенных к ней нагрузок и источников сигналов. Эти микросхемы могут найти также широкое применение в качестве буферных элементов, в особенности в микропроцессорных системах.

 

 

Рис. 162 Простые логические микросхемы серий К176, К561, КР1561 и 564

Изображение: 

Рис. 163 Микросхемы К561ТЛ1 и КР1561ТЛ1 в зависимости от порогов переключения

Изображение: 

Рис. 164 Преобразователи уровня

Изображение: 

Рис. 165 Буферные микросхемы

Изображение: 

2.3 Микросхемы последовательностного типа.

2.3. Микросхемы последовательностного типа

 

 

2.3.1. Триггеры.

2.3.1. Триггеры

JK-триггеры К176ТВ1, К561ТВ1, КР1561ТВ1 и D-триггеры К176ТМ1, К176ТМ2, К561ТМ2 имеют динамические входы и могут работать в счетном режиме, то есть менять свое состояние на противоположное на каждый импульс, приходящий на счетный вход триггера. Триггеры микросхем К561ТР2, К561ТМЗ и 564УМ1 со статическими входами могут работать только в режимах записи и хранения записываемой в них информации. Рассмотрим более подробно работу микросхем, содержащих триггеры.

МикросхемаК561ТР2 (рис. 166) - четыре триггера RS-типа с возможностью перевода выходов в высокоимпедансное состояние. Каждый триггер микросхемы имеет входы R и S. Подача лог. 1 на вход R устанавливает триггер в состояние 0, подача лог. 1 на вход S - в состояние 1. Если лог. 1 подать на оба входа R и S, на выходе будет также лог. 1.

2-3-11.jpg

Особенность микросхемы - возможность перевода выходов в высокоимпедансное состояние. Если на выводе 5 (вход Е на рис. 166, б) лог. 1, разрешена подача выходных сигналов триггеров на выходы микросхемы через выходные ключи. Если же на вход Е подать лог. 0, выходы триггеров отключаются от выходов микросхемы, выходы микросхемы переходят в высокоимпедансное состояние. Указанное свойство позволяет объединять выходы нескольких микросхем

К561ТР2 между собой, сигнал в точках объединения будет определяться той микросхемой, на вход которой подана лог. 1, естественно, что на входы Е всех других микросхем должны быть поданы лог. 0.

Пример применения микросхем К561ТР2 для подавления дребезга механических контактов и их опроса приведен на рис. 167. При подаче лог. 1 на вход Е1, лог. 0 на вход Е2 в активное состояние переходят выходы микросхемы DD1, выходные сигналы определяются положением контактов S1 - S4. При подаче лог. 1 на вход Е2, лог. 0 на вход Е1 выходные сигналы определяются контактами S5 - S8, Сигналы на входы Е нескольких микросхем могут подаваться, например, с выходов счетчика с дешифратором, что обеспечит их последовательный опрос.

2-3-12.jpg

МикросхемаК561ТМЗ (рис. 168) - четыре D-триггера с прямыми и инверсными выходами. Микросхема имеет два общих для всех триггеров равноправных входа стробирования С1 и С2. При одинаковых сигналах на обоих входах (на С1 и С2 - лог. 0 или на С1 и С2 -лог. 1) триггеры повторяют сигналы со входов D на своих прямых выходах (соответственно, инвертируют их на инверсных выходах). При подаче разных сигналов на входы С1 и С2 триггеры переходят в режим хранения - на выходах будут те сигналы, которые имелись на входах D перед изменением сигнала на входе С1 или С2.

Можно объяснить логику работы входов С1 и С2 по другому. При лог. 1 на входе С2 запись в триггеры микросхемы происходит при подаче лог. 1 на вход С1, хранение - при подаче лог. 0. Если на вход С2 подать лог. 0, запись будет происходить при лог. 0 па С1, хранение -при лог. 1. Таким образом, сигнал на входе С2 определяет полярность

импульсов записи по входу С1. Входы С1 и С2 можно поменять местами - они равноправны.

2-3-13.jpg

Микросхема564УМ1 (рис. 168) представляет собой четыре D-триггера с подключенными к их выходам усилителями, позволяющими увеличить амплитуду выходного сигнала. Запись информации в триггеры со входов D производится подачей на их входы С импульсов положительной полярности. Триггеры микросхемы 564УМ1, так же как и микросхемы К561ТМЗ, во время записи «прозрачны», и изменение сигналов на входах D проходит на вы

ходы триггеров. Переход триггеров в режим хранения происходит по спаду импульса положительной полярности на входах С.

При лог. 0 на входе S выходные сигналы имеют ту же полярность, что и входные, при лог. 1 сигналы инвертируются.

Особенность микросхемы - возможность увеличения амплитуды выходного сигнала по сравнению с входным. Микросхема имеет три вывода для подачи напряжения питания - вывод 16 Uпит1, вывод 7 -Uпит2 вывод 8 - общий провод. Напряжение Uпит1, должно быть положительным и находиться в пределах от 3 до 15 В, напряжение Uпит2 -равно нулю или отрицательное, сумма абсолютных величин Uпит1 и Uпит2 не должна превышать 15 В. Входные сигналы должны иметь уровни Uпит1, (лог. 1) и 0 В (лог. 0), выходные сигналы имеют значения Uпит1 и Uпит2. Паспортная нагрузочная способность микросхемы при разности

напряжений питания между выводами 16 и 7 (далее - напряжении питания), равной 10 В в состоянии лог. 0 0,9 мА, в состоянии лог. 1 -0,45 мА. Реальные значения втекающих выходных токов в состоянии лог. 0 и напряжении 1 В между выходом и выводом 7 составляют около 1, 3, 8 и 12 мА при напряжении питания 3, 5, 10 и 15 В соответственно, в состоянии лог. 1 и напряжении 1 В между выходом и выводом 16 вытекающие токи составляют 0,8; 1,6; 3 и 4 мА при указанных выше напряжениях питания. Токи короткого замыкания в состоянии лог. 0 составляют 1,2; 4,5; 20 и 36 мА, в состоянии лог. 1 - 1; 3; 12 и 20 мА при тех же напряжениях питания.

МикросхемыК176ТВ1, К561ТВ1 и КР1561ТВ1 содержат по два JK-триггера (рис. 169). Каждый триггер имеет вход J, вход К, вход R - установки триггера в 0, вход S - установки в 1 и вход подачи тактовых импульсов С. Установка триггера в нулевое состояние

происходит при подаче лог. 1 на вход R, установка в единичное - при подаче лог. 1 на вход S.

Если на входах J и К - лог. 1, по каждому спаду импульса отрицательной полярности на тактовом входе С триггер переключается в противоположное состояние. Если на входах J и К лог. 0, изменения состояния по импульсам на входе С не происходит. Если перед спадом импульса отрицательной полярности на входе С лог. 1 имеется на входе J, лог. 0 на входе К, по спаду триггер установится в единичное состояние независимо от предыдущего. Если перед спадом на входе J - лог. 0, на входе К - лог. 1, по спаду импульса на входе С триггер устанавливается в нулевое состояние. Триггер непосредственно не реагирует на изменение сигналов на входах J и К, играют роль лишь уровни сигналов на этих входах перед спадом импульса отрицательной полярности на входе С.

Микросхемы К176ТМ2 и К561ТМ2 содержат по два D-триггера (рис. 169). Установка триггеров в нулевое и единичное состояние про-

2-3-14.jpg

изводится, как и у JK-триггера, подачей лог. 1 на входы R и S. По спадам тактовых импульсов отрицательной полярности на входе С происходит установка триггера в состояние, соответствующее уровню на входе D перед спадом. Триггер непосредственно не реагирует на изменение сигналов на входе D, играет роль лишь сигнал на этом входе перед спадом импульса отрицательной полярности на входе С.

МикросхемаК176ТМ1 (рис. 169) отличается от К176ТМ2 отсутствием входов S.

При построении счетчиков на описанных выше триггерах К176ТВ1, К176ТМ1, К176ТМ2, К561ТМ2 входы С триггеров следует подключать к инверсным выходам предыдущих триггеров. На рис. 170 (а) приведена схема декады (десятичного счетчика) на JK-триггерах, временная диаграмма работы - на рис. 170 (б). Схема декады на D-триггерах приведена на рис. 171 (а), временная диаграмма- на рис. 171 (б). Обе декады работают в различных невесовых кодах.

 

Рис. 166 Микросхема К561ТР2

Изображение: 

Рис. 167 Переключатель с подавлением дребезга контактов

Изображение: 

Рис. 168 Микросхемы К561ТМ2 и 564УМ1

Изображение: 

Рис. 169 Триггеры со счетным входом

Изображение: 

2.3.2 Счетчики.

2.3.2. Счетчики

В состав рассматриваемых серий микросхем входит большое количе-ство счетчиков различных типов, большинство из которых работает в весовых кодах.

2-3-21.jpg

МикросхемаК176ИЕ1 (рис. 172) - шестиразрядный двоичный счетчик, работающий в коде 1-2-4-8-16-32. Микросхема имеет два входа: вход R - установки триггеров счетчика в 0 и вход С - вход для подачи счетных импульсов. Установка в 0 происходит при подаче лог. 1 на вход R, переключение триггеров микросхемы - по спаду импульсов положительной полярности, подаваемых на вход С. При построении

2-3-22.jpg

многоразрядных делителей частоты входы С микросхем следует подключать к выходам 32 предыдущих.

МикросхемаК176ИЕ2 (рис. 173) - пятиразрядный счетчик, который может работать как двоичный в коде 1-2-4-8-16 при подаче лог. 1 на управляющий вход А, или как декада с подключенным к выходу декады триггером при лог. 0 на входе А. Во втором случае код работы счетчика 1-2-4-8-10, общий коэффициент деления - 20. Вход R служит для установки триггеров счетчика в 0 подачей на этот вход лог. 1. Первые четыре триггера счетчика могут быть установлены в единичное состояние подачей лог. 1 на входы SI - S8. Входы S1 - S8 являются преобладающими над входом R.

Микросхема К176ИЕ2 встречается двух разновидностей. Микросхемы ранних выпусков имеют входы СР и CN для подачи тактовых импульсов положительной и отрицательной полярности соответственно, включенные по ИЛИ. При подаче на вход СР импульсов положительной полярности на входе CN должна быть лог. 1, при подаче на вход CN импульсов отрицательной полярности на входе СР должен быть лог. 0. В обоих случаях счетчик переключается по спадам импульсов.

Другая разновидность имеет два равноправных входа для подачи тактовых импульсов (выводы 2 и 3), собранных по И. Счет происходит по спадам импульсов положительной полярности, подаваемых на любой из этих входов, причем на второй из этих входов должна быть подана лог. 1. Можно подавать импульсы и на объединенные выводы 2 и 3. Исследованные автором микросхемы, выпущенные в феврале и ноябре 1981 г., относятся к первой разновидности, выпущенные в июне 1982 г. и июне 1983 г., - ко второй.

Если на вывод 3 микросхемы К176ИЕ2 подать лог. 1, обе разновидности микросхем по входу СР (вывод 2) работают одинаково.

При лог. 0 на входе А порядок работы триггеров соответствует временной диаграмме, приведенной на рис. 174. В этом режиме на выходе Р, представляющем собой выход элемента И-НЕ, входы которого подключены к выходам 1 и 8 счетчика, выделяются импульсы отрицательной полярности, фронты которых совпадают со спадом каждого девятого входного импульса, спады - со спадом каждого десятого.

При соединении микросхем К176ИЕ2 в многоразрядный счетчик входы СР последующих микросхем следует подключать к выходам 8 или 16/10 непосредственно, на входы CN подавать лог. 1. В момент включения напряжения питания триггеры микросхемы К176ИЕ2 могут установиться в произвольное состояние. Если при этом счетчик включен в режим десятичного счета, то есть на вход А подан лог. 0, а это состояние более 11, счетчик «зацикливается» между состояния-ми 12-13 или 14-15. При этом на выходах 1 и Р формируются им-пульсы с частотой, в 2 раза меньшей частоты входного сигнала. Для того чтобы выйти из такого режима, счетчик необходимо установить в нулевое состояние подачей импульса на вход R. Можно обеспечить надежную работу счетчика в десятичном режиме, соединив вход А с выходом 4. Тогда, оказавшись в состоянии 12 или большем, счетчик переходит в режим двоичного счета и выходит из «запретной зоны», устанавливаясь после состояния 15 в нулевое. В моменты перехода из состояния 9 в состояние 10 на вход А с выхода 4 поступает лог. 0 и счетчик обнуляется, работая в режиме десятичного счета.

2-3-23.jpg

Для индикации состояния декад, использующих микросхему К176ИЕ2, можно использовать газоразрядные индикаторы, управляемые через дешифратор К155ИД1. Для согласования микросхем К155ИД1 и К176ИЕ2 можно использовать микросхемы К176ПУЗ либо К561ПУ4 (рис. 175, а) или транзисторы р-n-р (рис. 175, б).

МикросхемыК176ИЕЗ (рис. 176),К176ИЕ4 (рис. 177) иК176ИЕ5 разработаны специально для использования в электронных часах с семисегментными индикаторами. Микросхема К176ИЕ4 (рис. 177) -декада с преобразователем кода счетчика в код семисегментного индикатора. Микросхема имеет три входа - вход R, установка триггеров счетчика в 0 происходит при подаче лог. 1 на этот вход, вход С - переключение триггеров происходит по спаду импульсов положительной

2-3-24.jpg

полярности на этом входе. Сигнал на входе S управляет полярностью выходных сигналов.

На выходах а, b, с, d, e, f, g - выходные сигналы, обеспечивающие формирование цифр на семисегментном индикаторе, соответствующих состоянию счетчика. При подаче лог. 0 на управляющий вход S лог. 1 на выходах а, Ь, с, d, e, f, g соответствуют включению соответствующего сегмента. Если же на вход S подать лог. 1, включению сегментов будет соответствовать лог. 0 на выходах а, Ь, с, d, e, f, g. Возможность переключения полярности выходных сигналов существенно расширяет область применения микросхем.

2-3-25.jpg

Выход Р микросхемы - выход переноса. Спад импульса положительной полярности на этом выходе формируется в момент перехода счетчика из состояния 9 в состояние 0.

Следует иметь в виду, что разводка выводов а, Ь, с, d, e, f, g в паспорте микросхемы и в некоторых справочниках приведена для нестандартного расположения сегментов индикаторов. На рис. 176, 177 дана разводка выводов для стандартного расположения сегментов, приведенного на рис. 111.

Два варианта подключения к микросхеме К176ИЕ4 вакуумных семисегментных индикаторов при помощи транзисторов приведено на рис. 178. Напряжение накала Uh выбирается в соответствии с типом используемого индикатора, подбором напряжения +25...30 В в схеме рис. 178 (а) и -15...20 В в схеме рис. 178 (б) можно в некоторых пределах регулировать яркость свечения сегментов

индикатора. Транзисторы в схеме рис. 178 (6) могут быть любыми кремниевыми р-n-р с обратным током коллекторного перехода, не превышающим 1 мкА при напряжении 25 В, Если обратный ток транзис-торов больше указанной величины или используются германиевые транзисторы, между анодами и одним из выводов нити накала индикатора необходимо включить резисторы 30...60 кОм.

Для согласования микросхемы К176ИЕ4 с вакуумными индикаторами удобно, кроме того, использовать микросхемы К168КТ2Б или К168КТ2В (рис. 179), а также КР168КТ2Б.В, К190КТ1, К190КТ2, К161КН1, К161КН2. Подключение микросхем К161КН1 и К161КН2 проиллюстрировано на рис. 180. При использовании инвертирующей микросхемы К161КН1 на вход S микросхемы К176ИЕ4 следует подать лог. 1, при использовании неинвертирующей микросхемы К161КН2 - лог. 0.

2-3-26.jpg

2-3-27.jpg

На рис. 181 показаны варианты подключения к микросхеме К176ИЕ4 полупроводниковых индикаторов, на рис. 181 (а) с общим катодом, на рис. 181 (б) - с общим анодом. Резисторами R1 - R7 устанавливается необходимый ток через сегменты индикатора.

Самые маленькие индикаторы могут быть подключены к выходам микросхемы непосредственно (рис. 181, в). Однако из-за большого разброса тока короткого замыкания микросхем, не нормируемого техническими условиями, яркость свечения индикаторов может также иметь большой разброс. Частично его можно компенсировать подбором напряжения питания индикаторов.

Для согласования микросхемы К176ИЕ4 с полупроводниковыми индикаторами с общим анодом можно использовать микросхемы К176ПУ1, К176ПУ2, К176ПУЗ, К561ПУ4, КР1561ПУ4, К561ЛН2 (рис. 182). При использовании неинвертирующих микросхем на вход S микросхемы следует подать лог. 1, при использовании инвертирующих - лог. 0.

2-3-28.jpg

2-3-29.jpg

По схеме рис 181 (б), исключив резисторы R1 - R7, можно подключить и накальные индикаторы, при этом напряжение питания индикаторов необходимо установить примерно на 1 В больше номи-нального для компенсации падения напряжения на транзисторах Это напряжение может быть как постоянным, так и пульсирующим, полученным в результате выпрямления без фильтрации

Жидкокристаллические индикаторы не требуют специального согласования, но для их включения необходим источник прямоугольных импульсов с частотой 30 100 Гц и скважностью 2, амплитуда импульсов должна соответствовать напряжению питания микросхем

2-3-210.jpg

2-3-211.jpg

Импульсы подаются одновременно на вход S микросхемы и на общий электрод индикатора (рис. 183) В результате на сегменты, которые необходимо индицировать, относительно общего электрода индикатора подается напряжение меняющейся полярности, на сегментах, которые не надо индицировать, напряжение относительно общего электрода равно нулю

МикросхемаК176ИЕЗ (рис 176) отличается от К176ИЕ4 тем, что ее счетчик имеет коэффициент пересчета 6, а лог 1 на выходе 2 появляется при установке счетчика в состояние 2

МикросхемаК176ИЕ5 содержит кварцевый генератор с внешним резонатором на 32768 Гц и подключенным к нему девятиразрядным делителем частоты и шестиразрядный делитель частоты, структура микросхемы приведена на рис 184 (а) Типовая схема включения микросхемы приведена на рис 184 (б) К выводам Z и Z подключаются кварцевый резонатор, резисторы R1 и R2, конденсаторы С1 и С2 Выходной сигнал кварцевого генератора может быть проконтролирован на выходах К и R Сигнал с частотой 32768 Гц поступает на вход девятиразрядного двоичного делителя частоты, с его выхода 9 сигнал с частотой 64 Гц может быть подан на вход 10 шестиразрядного делителя На выходе 14 пятого разряда этого делителя формируется частота 2 Гц, на выходе 15 шестого разряда - 1 Гц. Сигнал с частотой 64 Гц может использоваться для подключения жидкокристаллических индикаторов к выходам микросхем К176ИЕЗ и К176ИЕ4

Вход R служит для сброса триггеров второго делителя и установки исходной фазы колебаний на выходах микросхемы. При подаче

2-3-212.jpg

лог. 1 на вход R на выходах 14 и 15 - лог. 0, после снятия лог. 1 на этих выходах появляются импульсы с соответствующей частотой, спад пер-вого импульса на выходе 15 происходит через 1 с после снятия лог. 1.

При подаче лог. 1 на вход S происходит установка всех триггеров второго делителя в состояние 1, после снятия лог. 1 с этого входа спад первого импульса на выходах 14 и 15 происходит практически сразу. Обычно вход S постоянно подключают к общему проводу.

Конденсаторы С1 и С2 служат для точной установки частоты кварцевого генератора. Емкость первого из них может находиться в пределах от единиц до ста пикофарад, емкость второго - З0...100 пф. При увеличении ёмкости конденсаторов частота генерации уменьшается. Точную установку частоты удобнее производить при помощи подстроечных конденсаторов, подключенных параллельно С1 и C2. При этом конденсатором, подключенным параллельно С2, осуществляют грубую настройку, подключенным параллельно С1 - точную.

Сопротивление резистора R 1 может находиться в пределах 4,7...68 МОм, однако при его значении менее 10 МОм возбуждаются

2-3-213.jpg

не все кварцевые резонаторы.

МикросхемыК176ИЕ8 и К561ИЕ8- десятичные счетчики с дешифратором (рис. 185). Микросхемы имеют три входа - вход установки исходного состояния R, вход для подачи счетных импульсов отрицательной полярности CN и вход для подачи счетных импульсов положительной полярности СР. Установка счетчика в 0 происходит при подаче на вход R лог. 1, при этом на выходе 0 появляется лог. 1, на выходах 1-9 - лог. 0.

2-3-214.jpg

Переключение счетчика происходит по спадам импульсов отрицательной полярности, подаваемых на вход CN, при этом на входе СР должен быть лог. 0. Можно также подавать импульсы положительной полярности на вход СР, переключение будет происходить по их спадам. На входе CN при этом должна быть лог. 1. Временная диаграмма работы микросхемы приведена на рис. 186.

МикросхемаК561ИЕ9 (рис. 187) - счетчик с дешифратором, работа микросхемы аналогична работе микросхем К561ИЕ8

2-3-215.jpg

и К176ИЕ8, но коэффициент пересчета и число выходов дешифратора 8, а не 10. Временная диаграмма работы микросхемы приведена на рис. 188. Также, как и микросхема К561ИЕ8, микросхема:

К561ИЕ9 построена на основе сдвигающего регистра с перекрестными связями. При подаче напряжения питания и отсутствии импульса сброса. триггеры этих микросхем могут стать в произвольное состояние, не соответствующее разрешен

ному состоянию счетчика. Однако в указанных микросхемах есть спе-циальная цепь формирования разрешенного состояния счетчика, и при подаче тактовых импульсов счетчик через несколько тактов перейдет в нормамльный режим работы. Поэтому в делителях частоты, в которых точная фаза выходного сигнала не важна, допустимо не подавать на входы R микросхем К176ИЕ8, К561ИЕ8 и К561ИЕ9 импульсы начальной установки.

Микросхемы К176ИЕ8, К561ИЕ8, К561ИЕ9 можно объединять в многоразрядные счетчики с последовательным переносом, соединяя выход переноса Р предыдущей микросхемы с входом CN последующей и подавая на вход СР лог. 0. Возможно также соединение старшего

2-3-216.jpg

выхода дешифратора (7 или 9) со входом СР следующей микросхемы и подача на вход CN лог. 1. Такие способы соединения приводят к на-коплению задержек в многоразрядном счетчике. Если необходимо, чтобы выходные сигналы микросхем многоразрядного счетчика изменялись одновременно, следует использовать параллельный перенос с введением дополнительных элементов И-НЕ. На рис. 189 показана схема трехдекадного счетчика с параллельным переносом. Инвертор DD1.1 необходим лишь для того, чтобы компенсировать задержки в элементах DD1.2 и DD1.3. Если высокая точность одновременности переключения декад счетчика не требуется, входные счетные импульсы можно подать на вход СР микросхемы DD2 без инвертора, а на вход CN DD2 - лог.1. Максимальная рабочая частота многоразрядных счетчиков как с последовательным, так и с параллельным переносом не снижается относительно частоты работы отдельной микросхемы.

На рис. 190 приведен фрагмент схемы таймера с использованием микросхем К176ИЕ8 или К561ИЕ8. В момент пуска на вход CN микросхемы DD1 начинают поступать счетные импульсы. Когда микросхемы счетчика установятся в положения, набранные на переключателях, на всех входах элемента И-НЕ DD3 появятся лог. 1, элемент

2-3-217.jpg

2-3-218.jpg

DD3 включится, на выходе инвертора DD4 появится лог. 1, сигнализирующая об окончании временного интервала.

Микросхемы К561ИЕ8 и К561 ИЕ9 удобно использовать в делителях частоты с переключаемый коэффициентом деления. На рис. 191 приведен пример трехдекадного делителя частоты. Переключателем SA1 устанавливают единицы необходимого коэффициента пересчета, переключателем SA2 - десятки, переключателем SA3 - сотни. При достижении счетчиками DD1 - DD3 состояния, соответствующего положениям переключателей, на все входы элемента DD4.1 приходит лог. 1. Этот элемент включается и устанавливает триггер на элементах DD4.2 и DD4.3 в состояние, при котором на выходе элемента DD4.3 появляется лог. 1, сбрасывающая счетчики DD1 - DD3 в исходное состояние (рис. 192). В результате на выходе элемента DD4.1 также появляется лог. 1 и следующий входной импульс отрицательной полярности устанавливает триггер DD4.2, DD4.3 в исходное состояние, сигнал сброса со входов R микросхем DD1 - DD3 снимается и счетчик продолжает счет.

Триггер на элементах DD4.2 и DD4.3 гарантирует сброс всех микросхем DD1 - DD3 при достижении счетчиком нужного состояния. При его отсутствии и большом разбросе порогов переключения микросхем

2-3-219.jpg

DD1 - DD3 по входам R возможен случай, когда одна из микросхем DD1 - DD3 устанавливается в 0 и снимает сигнал сброса со входов R остальных микросхем ранее, чем сигнал сброса достигнет порога их переключения. Однако такой случай маловероятен, и обычно можно обойтись без триггера, точнее, без элемента DD4.2.

2-3-220.jpg

Для получения коэффициента пересчета менее 10 для микросхемы К561ИЕ8 и менее 8 для К561ИЕ9 можно соединить выход дешифратора с номером, соответствующим необходимому коэффициенту пересчета, со входом R микросхемы непосредственно, например, как это показано на рис. 193 (а) для коэффициента пересчета, равного 6. Временная

2-3-221.jpg

диаграмма работы этого делителя приведена на рис. 193 (6). Сигнал переноса можно снимать с выхода Р лишь в случае, если коэффициент пересчета составляет 6 и более для К561ИЕ8 и 5 и более для К561ИЕ9. При любом коэффициенте сигнал переноса можно снимать с выхода дешифратора с номером, на единицу меньшим коэффициента пересчета.

Индикацию состояния счетчиков микросхем К176ИЕ8 и К561ИЕ8 удобно производить на газоразрядных индикаторах, согласуя их при помощи ключей на высоковольтных транзисторах n-р-n, например, серий П307 - П309, КТ604, КТ605 или сборках К166НТ1 (рис. 194).

2-3-222.jpg

2-3-223.jpg

МикросхемыК561ИЕ10 и КР1561ИЕ10 (рис. 195) содержат по два раздельных четырехразрядных двоичных счетчика, каждый из которых имеет входы СР, CN, R. Установка триггеров счетчиков в исходное состояние происходит при подаче на вход R лог. 1. Логика работы входов СР и CN отлична от работы аналогичных входов микросхем К561ИЕ8 и К561ИЕ9. Триггеры микросхем К561ИЕ10 и КР1561ИЕ10 срабатывают по спаду импульсов положительной полярности на входе СР при лог. 0 на входе CN (для К561ИЕ8 и К561ИЕ9 на входе CN должна быть

лог. 1) Возможна подача импульсов отрицательной полярности на вход CN, при этом на входе СР должна быть лог 1 (для К561ИЕ8 и К561ИЕ9 - лог. 0). Таким образом, входы СР и CN в микросхемах К561ИЕ10 и КР1561ИЕ10 объединены по схеме элемента И, в мик-росхемах К561ИЕ8 и К561ИЕ9 - ИЛИ.

Временная диаграмма работы одного счетчика микросхемы приве-дена на рис. 196. При соединении микросхем в многоразрядный счет-чик с последовательным переносом выходы 8 предыдущих счетчиков соединяют со входами СР последующих, а на входы CN подают лог. 0 (рис. 197). Если необходимо обеспечить параллельный перенос, сле-дует установить дополнительные элементы И-НЕ и ИЛИ-НЕ. На рис. 198 приведена схема счетчика с параллельным переносом. Про-хождение счетного импульса на вход СР счетчика DD2.2 через эле-мент DD1.2 разрешается при состоянии 1111 счетчика DD2.1, при ко-тором на выходе элемента DD3.1 лог. 0. Аналогично прохождение счетного импульса на вход СР DD4.1 возможно лишь при состоянии 1111 счетчиков DD2.1 и DD2.2 и т. д. Назначение элемента DD1.1 такое же, как и DD1.1 в схеме рис. 189, и он при тех же условиях может быть исключен. Максимальная частота входных импульсов для обоих вариантов счетчиков одинакова, но в счетчике с параллельным переносом переключение всех выходных сигналов происходит одновременно.

Один счетчик микросхемы может быть использован для построения делителей частоты с коэффициентом деления от 2 до 16. Для примера на рис. 199 приведена схема счетчика с коэффициентом, пересчета 10 Для Получения коэффициентов пересчета З,5,6,9,12 можно воспользоваться той же схемой, соответствующим образом выбрав выходы счетчика для подключения ко входам DD2.1 Для получения коэффициентов пересчета 7, 11, 13, l4 элемент DD2.1 должен иметь три входа, для коэффициента 15 - четыре входа.



2-3-224.jpg

2-3-225.jpg

МикросхемаК561ИЕ11 - двоичный четырехразрядный реверсивный счетчик с возможностью параллельной записи информации (рис. 200). Микросхема имеет четыре информационных выхода 1, 2, 4,8, выход переноса Р и следующие входы: вход переноса PI, вход установки исходного состояния R, вход для подачи счетных импульсов С, вход направления счета U, входы для подачи информации при параллельной записи Dl - D8, вход параллельной записи S.

Вход R имеет приоритет над остальными входами: если на него подать лог. 1, на выходах 1, 2, 4, 8 будет лог.0 независимо от состояния

2-3-226.jpg

2-3-227.jpg

других входов. Если на входе R лог. 0, приоритет имеет вход S. При подаче на него лог. 1 происходит асинхронная запись информации со входов D1 -D8 в триггеры счетчика.

Если на входах R, S, PI лог. 0, разрешается рабо-та микросхемы в счетном режиме. Если на входе U лог. 1, по каждому спаду входного импульса отрицательной полярности, поступающему на вход С, состояние счетчика будет увеличиваться на единицу. При лог. 0 на входе U счетчик переключается

в режим вычитания - по каждому спаду импульса отрицательной полярности на входе С состояние счетчика уменьшается на единицу. Если на вход переноса PI подать лог. 1, счетный режим запрещается.

На выходе переноса Р лог. 0, если на входе PI лог. 0 и все триггеры счетчика находятся в состоянии 1 при счете вверх или в состоянии 0 при счете вниз.

Для соединения микросхем в счетчик с последовательным переносом необходимо объединить между собой все входы С, выходы Р микросхем соединить со входами PI следующих, а на вход PI младшего разряда подать лог. 0 (рис. 201). Выходные сигналы всех микросхем счетчика изменяются одновременно, однако максимальная частота работы счетчика меньше, чем отдельной микросхемы из-за накопления задержек в цепи переноса. Для обеспечения максимальной рабочей частоты многоразрядного счетчика необходимо обеспечить параллельный перенос, для чего на входы PI всех микросхем подать лог. О, а сигналы на входы С микросхем подать через дополнительные элементы ИЛИ, как это показано на рис. 202. В этом случае прохождение счетного импульса на входы С микросхем будет разрешено только тогда, когда на выходах Р всех предыдущих микросхем лог. 0,

2-3-228.jpg

2-3-229.jpg

причем время задержки этого разрешения после одновременного срабатывания микросхем не зависит от числа разрядов счетчика.

Особенности построения микросхемы К561 ИЕ11 требуют, чтобы изменение сигнала направления счета на входе U происходило в паузе между счетными импульсами на входе С, то есть при лог. 1 на этом входе, или по спаду этого импульса.

МикросхемаК176ИЕ12 предназначена для использования в электронных часах (рис. 203). В ее состав входят кварцевый генератор G с внешним кварцевым резонатором на частоту 32768 Гц и два делителя частоты: СТ2 на 32768 и СТ60 на 60. При подключении к микросхеме кварцевого резонатора по схеме рис. 203 (б) она обеспечивает получение частот 32768, 1024, 128, 2, 1, 1/60 Гц. Импульсы с частотой 128 Гц формируются на выходах микросхемы Т1 - Т4, их скважность равна 4, сдвинуты они между собой на четверть периода. Эти импульсы предназначены для коммутации знакомест индикатора часов при динамической индикации. Импульсы с частотой 1/60 Гц подаются на счетчик минут, импульсы с частотой 1 Гц могут использоваться для подачи на счетчик секунд и для обеспечения мигания разделительной точки, для установки показаний часов могут использоваться импульсы с частотой 2 Гц. Частота 1024 Гц предназначена для звукового сигнала

будильника и для опроса разрядов счетчиков при динамической индикации, выход частоты 32768 Гц - контрольный. Фазовые соотношения колебаний различных частот относительно момента снятия сигнала сброса продемонстрированы на рис. 204, временные масштабы различных диаграмм на этом рисунке различны. При использовании

2-3-230.jpg

импульсов с выходов Т1 - Т4 для других целей следует обратить внимание на наличие коротких ложных импульсов на этих выходах.

Особенностью микросхемы является то, что первый спад на выходе минутных импульсов М появляется спустя 59 с после снятия сигнала установки 0 со входа R. Это заставляет при пуске часов отпускать кнопку, формирующую сигнал установки 0, спустя одну секунду после шестого сигнала поверки времени. Фронты и спады сигналов на выходе М синхронны со спадами импульсов отрицательной полярности на входе С.

Сопротивление резистора R1 может иметь ту же величину, что и для микросхемы К176ИЕ5. Конденсатор С2 служит для точной подстройки частоты, СЗ - для грубой. В большинстве случаев конденсатор С4 может быть исключен.

2-3-231.jpg

МикросхемаК176ИЕ13 предназначена для построения электронных часов с будильником. Она содержит счетчики минут и часов, регистр памяти будильника, цепи сравнения и выдачи звукового сигнала, цепи динамической выдачи кодов цифр для подачи на индикаторы. Обычно микросхема К176ИЕ13 используется совместно с К176ИЕ12. Стандартное соединение этих микросхем показано на рис. 205. Основными выходными сигналами схемы рис. 205 являются импульсы Т1 - Т4 и коды цифр на выходах 1, 2, 4, 8. В моменты времени, когда на выходе Т1 лог. 1, на выходах 1,2,4,8 присутствует код цифры единиц минут, когда лог. 1 на выходе Т2 - код цифры десятков минут и т. д. На выходе S - импульсы с частотой 1 Гц для зажигания разделительной точки. Импульсы на выходе С служат для стробирования записи кодов цифр в регистр памяти микросхем К176ИД2 или К176ИДЗ, обычно используемых совместно с К176ИЕ12 и К176ИЕ13, импульс на выходе К может использоваться для гашения индикаторов во время коррекции показаний часов. Гашение индикаторов необходимо, поскольку в момент коррекции происходит остановка динамической индикации и при отсутствии гашения светится лишь один разряд с увеличенной в четыре раза яркостью.

На выходе HS - выходной сигнал будильника. Использование выходов S, К, HS не обязательно. Подача лог. 0 на вход V микросхемы переводит ее выходы 1, 2, 4, 8 и С в высокоимпедансное состояние.

При подаче питания на микросхемы в счетчик часов и минут и в регистр памяти будильника автоматически записываются нули. Для введения в счетчик минут начального показания следует нажать

2-3-232.jpg

кнопку SB1, показания счетчика начнут меняться с частотой 2 Гц от 00 до 59 и далее снова 00, в момент перехода от 59 к 00 показания счетчика часов увеличатся на единицу. Показания счетчика часов бу-дут также изменяться с частотой 2 Гц от 00 до 23 и снова 00, если нажать кнопку SB2. Если нажать кнопку SB3, на индикаторах появится время включения сигнала будильника. При одновременном нажатии кнопок SB1 и SB3 показание разрядов минут времени включения будильника будет изменяться от 00 до 59 и снова 00, однако переноса в разряды часов не происходит. Если нажать кнопки SB2 и SB3, будет изменяться показание разрядов часов времени включения будильника, при переходе из состояния 23 в 00 произойдет сброс показаний разрядов минут. Можно нажать сразу три кнопки, в этом случае будут изменяться показания как разрядов минут, так и часов.

Кнопка SB4 служит для пуска часов и коррекции хода в процессе эксплуатации. Если нажать кнопку SB4 и отпустить ее спустя одну секунду после шестого сигнала поверки времени, установится правильное показание и точная фаза работы счетчика минут. Теперь можно установить показания счетчика часов, нажав кнопку SB2, при этом ход счетчика минут не будет нарушен. Если показания счетчика минут находятся в пределах 00...39, показания счетчика часов при нажатии и отпускании кнопки SB4 не изменятся. Если же показания счетчика минут находятся в пределах 40...59, после отпускания кнопки SB4 показания счетчика часов увеличиваются на единицу. Таким образом, для коррекции хода часов независимо от того, опаздывали часы или спешили, достаточно нажать кнопку SB4 и отпустить ее спустя секунду после шестого сигнала поверки времени.

Стандартная схема включения кнопок установки времени обладает тем недостатком, что при случайном нажатии на кнопки SB1 или SB2 происходит сбой показаний часов. Если в схему рис. 205 добавить один диод и одну кнопку (рис. 206), показания часов можно будет изменять, лишь нажав сразу две кнопки - кнопку SB5 («Установ-

2-3-233.jpg

ка») и кнопку SB1 или SB2, что случайно сделать значительно менее вероятно.

Если показания часов и время включения сигнала будильника не со-впадают, на выходе HS микросхемы К176ИЕ13 лог. 0. При совпадении по-казаний на выходе HS появляются им-пульсы положительной полярности

с частотой 128 Гц и длительностью 488 мкс (скважность 16). При по-даче их через эмиттерный повторитель на любой излучатель сигнал напоминает звук обычного механического будильника.Сигнал пре-кращается, когда показания часов и будильника перестают совпадать.

Схема согласования выходов микросхем К176ИЕ12 и К176ИЕ13 с индикаторами зависит от их типа. Для примера на рис. 207 приве-дена схема для подключения полупроводниковых семисегментных индикаторов с общим анодом. Как катодные (VT12 - VT18), так и анодные (VT6, VT7, VT9, VT10) ключи выполнены по схемам эмит-терных повторителей. Резисторами R4 - R10 определяется импульс-ный ток через сегменты индикаторов.

Указанная на рис. 207 величина сопротивлений резисторов R4 -R10 обеспечивает импульсный ток через сегмент примерно 36 мА, что соответствует среднему току 9мА. При таком токе индикаторы АЛ305А, АЛС321Б, АЛС324Б и другие имеют достаточно яркое све-чение. Максимальный коллекторный ток транзисторов VT12 - VT18 соответствует току одного сегмента 36 мА и поэтому здесь можно ис-пользовать практически любые маломощные транзисторы р-n-р с до-пустимым током коллектора 36 мА и более.

Импульсные токи транзисторов анодных ключей могут достигать 7 х 36 - 252 мА, поэтому в качестве анодных ключей можно исполь-зовать транзисторы, допускающие указанный ток, с коэффициентом передачи тока базы h21э не менее 120 (серий КТ3117, КТ503, КТ815).

2-3-234.jpg

Если транзисторы с таким коэффициентом подобрать нельзя, можно использовать составные транзисторы (КТ315 + КТ503 или КТ315 + КТ502). Транзистор VT8 - любой маломощный, структуры n-р-n.

Транзисторы VT5 и VT11 - эмиттерные повторители для подключения излучателя звука будильника НА1, в качестве которого можно использовать любые телефоны, в том числе и малогабаритные от слуховых аппаратов, любые динамические головки, включенные через выходной трансформатор от любого радиоприемника. Подбором емкости конденсатора С1 можно добиться необходимой громкости звучания сигнала, можно также установить переменный резистор 200...680 Ом, включив его потенциометром между С1 и НА1. Выключатель SA6 служит для отключения сигнала будильника.

Если используются индикаторы с общим катодом, эмиттерные повторители, подключаемые к выходам микросхемы DD3, следует выполнить на транзисторах n-р-n (серии КТ315 и др.), а вход S DD3 соединить с общим проводом. Для подачи импульсов на катоды . индикаторов следует собрать ключи на транзисторах n-р-n по схеме с общим эмиттером. Их базы следует соединить с выходами Т1 - Т4 микросхемы DD1 через резисторы 3,3 кОм. Требования к транзисторам те же, что и к транзисторам анодных ключей в случае индикаторов с общим анодом.

Индикация возможна и при помощи люминесцентных индикаторов. В этом случае необходима подача импульсов Т1 - Т4 на сетки индикаторов и подключение объединенных между собой одноименных анодов индикаторов через микросхему К176ИД2 или К176ИДЗ к выходам 1, 2, 4, 8 микросхемы К176ИЕ13.

Схема подачи импульсов на сетки индикаторов приведена на рис. 208. Сетки С1, С2, С4, С5 - соответственно сетки знакомест единиц и десятков минут, единиц и десятков часов, СЗ - сетка разделительной точки. Аноды индикаторов следует подключить к выходам микросхемы К176ИД2, подключенной к DD2 в соответствии с включением DD3 на рис. 207 при помощи ключей, подобных ключам рис. 178 (б), 179,180, на вход S микросхемы К176ИД2 должна быть подана лог. 1.

Возможно использование микросхемы К176ИДЗ без ключей, ее вход S должен быть подключен к общему проводу. В любом случае аноды и сетки индикаторов должны быть через резисторы 22...100 кОм подключены к источнику отрицательного напряжения, которое по абсолютной величине на 5...10 В больше отрицательного напряжения, подведенного к катодам индикаторов. На схеме рис. 208 это резисторы R8 - R12 и напряжение -27 В.

2-3-235.jpg

Подачу импульсов Т1 - Т4 на сетки индикаторов удобно производить при помощи микросхемы К161КН2, подав на нее напряжения питания в соответствии с рис. 180.

В качестве индикаторов могут использоваться любые одноместные вакуумные люминесцентные индикаторы, а также плоские четырехместные индикаторы с разделительными точками ИВЛ1 - 7/5 и ИВЛ2 - 7/5, специально предназначенные для часов. В качестве DD4 схемы рис. 208 можно использовать любые инвертирующие логические элементы с объединенными входами.

На рис. 209 приведена схема согласования с газоразрядными индикаторами. Анодные ключи могут быть выполнены на транзисторах серий КТ604 или КТ605, а также на транзисторах сборок К166НТ1.

Неоновая лампа HG5 служит для индикации разделительной точки. Одноименные катоды индикаторов следует объединить и подключить к выходам дешифратора DD7. Для упрощения схемы можно исключить инвертор DD4, обеспечивающий гашение индикаторов на время нажатия кнопки коррекции.

Возможность перевода выходов микросхемы К176ИЕ13 в высокоимпедансное состояние позволяет построить часы с двумя вариантами показаний (например, MSK и GMT) и двумя будильниками, один из которых можно использовать для включения какого-либо устройства, другой - для выключения (рис. 210).

Одноименные входы основной DD2 и дополнительной DD2 микросхем К176ИЕ13 соединяют между собой и с другими элементами по схеме рис. 205 (можно с учетом рис. 206), за исключением входов Р и V. В верхнем по схеме положении переключателя SA1 сигналы

2-3-236.jpg

установки от кнопок SB1 - SB3 могут поступать на вход Р микросхемы DD2, в нижнем - на DD2'. Подачей сигналов на микросхему DD3 управляют секцией SA1.2 переключателя. В верхнем положении пе-реключателя SA1 лог. 1 поступает на вход V микросхемы DD2 и на входы DD3 проходят сигналы с выходов DD2. В нижнем положении переключателя лог. 1 на входе V микросхемы DD2' разрешает передачу сигналов с ее выходов.

В результате при верхнем положении переключателя SA1 можно управлять первыми часами и будильником и индицировать их состояние, в нижнем - вторыми.

Срабатывание первого будильника включает триггер DD4.1, DD4.2, на выходе DD4.2 появляется лог. 1, которую можно использовать для включения какого-либо устройства, срабатывание второго будильника выключает это устройство. Кнопки SB5 и SB6 также можно использовать для его включения и выключения.

При использовании двух микросхем К176ИЕ13 сигнал сброса на вход R микросхемы DD1 следует взять непосредственно с кнопки SB4. В этом случае коррекция показаний происходит, как при показанном на рис. 205 соединении, но блокировки кнопки SB4 «Корр.»

2-3-237.jpg

при нажатии кнопки SB3 «Буд.» (рис. 205), существующей в стандартном варианте, не происходит. При одновременном нажатии кнопок SB3 и SB4 в часах с двумя микросхемами К176ИЕ13 происходит сбой показаний, но не хода часов. Правильные показания восстанавливаются, если повторно нажать кнопку SB4 при отпущенной SB3.

МикросхемаК561ИЕ14 - двоичный и двоичнодесятичный четырехразрядный десятичный счет-чик (рис. 211). Ее отличие от микросхемы К561 ИЕ11 заключается в замене входа R на вход В - вход переключения модуля счета. При лог. 1 на входе В микросхема К561ИЕ14 производит двоичный счет, так же, как и К561ИЕ11, при лог. 0 на входе В - двоично-десятичный. Назначение остальных входов, режимы работы и правила включения для этой микросхемы такие же, как и для К561ИЕ11.

МикросхемаКА561ИЕ15 - делитель частоты с переключаемым коэффициентом деления (рис. 212). Микросхема имеет четыре управляющих входа Kl, K2, КЗ, L, вход для подачи тактовых импульсов С, шестнадцать входов для установки коэффициента деления 1-8000 и один выход.

2-3-238.jpg

Микросхема позволяет иметь несколько вариантов задания коэффициента деления, диапазон изменения его составляет от 3 до 21327. Здесь будет рассмотрен наиболее простой и удобный вариант, для которого, однако, максимально возможный коэффициент деления составляет 16659. Для этого варианта на вход КЗ следует постоянно подавать лог. 0.

Вход К2 служит для установки начального состояния счетчика, которая происходит за три периода входных импульсов при подаче на вход К2 лог. 0. После подачи лог. 1 на вход К2 начинается работа счетчика в режиме деления частоты. Коэффициент деления частоты при подаче лог. 0 на входы L и К1 равен 10000 и не зависит от сигналов, поданных на входы 1-8000. Если на входы L и К1 подать различные входные сигналы (лог.0 и лог. 1 или лог. 1 и лог. 0), коэффициент деления частоты входных импульсов определится двоично-десятичным кодом, поданным на входы 1-8000. Для примера на рис. 213 показана временная диаграмма работы микросхемы в режиме деления на 5, для обеспечения которого на входы 1 и 4 следует подать лог. 1, на входы 2, 8-8000 - лог. 0 (К1 не равно L).

2-3-239.jpg

Длительность выходных импульсов положительной полярности равна периоду входных импульсов, фронты и спады выходных импульсов совпадают со спадами входных импульсов отрицательной полярности.

Как видно из временной диаграммы, первый импульс на выходе микросхемы появляется по спаду входного импульса с номером, на единицу большим коэффициента деления.

При подаче лог. 1 на входы L и К1 осуществляется режим однократного счета. При подаче на вход К2 лог. 0 на выходе микросхемы появляется лог. 0. Длительность импульса начальной установки на входе К2 должна быть, как и в режиме деления частоты, не менее трех периодов входных импульсов. После окончания на входе К2 импульса начальной установки начнется счет, который будет происходить по спадам входных импульсов отрицательной полярности. После окончания импульса с номером, на единицу большим кода, установленного на

входах 1-8000, лог. 0 на выходе изменится на лог. 1, после чего изменяться не будет (рис. 213, К1 - L - 1). Для очередного запуска необходимо на вход К2 вновь подать импульс начальной установки.

Данный режим работы микросхемы подобен работе ждущего мультивибратора с цифровой установкой длительности импульса, следует только помнить, что в длительность входного импульса входит длительность импульса начальной установки и, сверх того, еще один период входных импульсов.

Если после окончания формирования выходного сигнала в режиме однократного счета на вход К1 подать лог. 0, микросхема перейдет в режим деления входной частоты, причем фаза выходных импульсов будет определяться импульсом начальной установки, поданным ранее в режиме однократного счета. Как уже указывалось выше, микросхема может обеспечить фиксированный коэффициент деления частоты, равный 10000, если на входы L и К1 подать лог. 0. Однако после импульса начальной установки, поданного на вход К2, первый выходной импульс появится после подачи на вход С импульса с номером, на единицу большим кода, установленного на входах 1-8000. Все последующие выходные импульсы будут появляться через 10000 периодов входных импульсов после начала предыдущего.

На входах 1-8 допустимые сочетания входных сигналов должны соответствовать двоичному эквиваленту десятичных чисел от 0 до 9. На входах 10-8000 допустимы произвольные сочетания, то есть возможна подача на каждую декаду кодов чисел от 0 до 15. В результате максимально возможный коэффициент деления К составит:

К - 15000 + 1500 + 150 + 9 = 16659.

Микросхема может найти применение в синтезаторах частоты, электромузыкальных инструментах, программируемых реле времени, для формирования точных временных интервалов в работе различных устройств.

2-3-240.jpg

МикросхемаК561ИЕ16 - четырнадцатиразрядный двоичный счетчик с последовательным переносом (рис. 214). У микросхемы два входа -вход установки начального состояния R и вход для подачи тактовых импульсов С.Установка триггеров счетчика в 0 производится при подаче на вход R лог. 1, счет - по спадам импульсов положительной полярности, подаваемых на вход С.

Счетчик имеет выходы не всех разрядов - отсутствуют выходы разрядов 21 и 22, поэтому, если

необходимо иметь сигналы со всех двоичных разрядов счетчика, следует использовать еще один счетчик, работающий синхронно и имеющий выходы 1, 2, 4, 8, например половину микросхемы К561ИЕ10 (рис. 215).

2-3-241.jpg

Коэффициент деления одной микросхемы К561ИЕ16 составляет 214 = 16384, при необходимости получения большего коэффициента деления можно выход 213 микросхемы соединить со входом еще одной такой же микросхемы или со входом СР любой другой микросхемы - счетчика. Если вход второй микросхемы К561ИЕ16 подключить к выходу 2^10 предыдущей, можно за счет уменьшения разрядности счетчика получить недостающие выходы двух разрядов второй микросхемы (рис. 216). Подключая ко входу микросхемы К561ИЕ16 половину микросхемы К561ИЕ10, можно не только получить недостающие выходы, но и увеличить разрядность счетчика на единицу (рис. 217) и обеспечить коэффициент деления 215 =32768.

Микросхему К561ИЕ16 удобно применять в делителях частоты с перестраиваемым коэффициентом деления по схеме, аналогичной рис. 199. В этой схеме элемент DD2.1 должен иметь столько входов, сколько единиц в двоичном представлении числа, определяющего необходимый коэффициент деления. Для примера на рис. 218 приведена схема делителя частоты с коэффициентом пересчета 10000. Двоичный эквивалент десятичного числа 10000 составляет 10011100010000, необходим элемент И на пять входов, которые должны быть подключены к выходам 2^4=16,2^8 =256,2^9= 512,2^10=1024 и 2^13=8192. Если необходимо подключение к выходам 2^2 или 2^3, следует использовать схему рис. 215 или 59, при коэффициенте более 16384 - схему рис. 216.

Для перевода числа в двоичную форму его нацело следует разделить на 2, остаток (0 или 1) записать. Получившийся результат вновь разделить на 2, остаток записать и так далее, пока после деления не останется нуль. Первый остаток является младшим разрядом двоичной формы числа, последний - старшим.

МикросхемаК176ИЕ17 - календарь. Она содержит счетчики дней недели, чисел месяца и месяцев. Счетчик чисел считает от 1 до 29, 30 или 31 в зависимости от месяца. Счет дней недели производится от 1 до 7, счет месяцев - от 1 до 12. Схема подключения микросхемы К176ИЕ17 к микросхеме К176ИЕ13 часов приведена на рис. 219. На выходах 1-8 микросхемы DD2 присутствуют поочередно коды цифр числа и месяца аналогично кодам часов и минут на выходах

2-3-242.jpg

микросхемы К176ИЕ13. Подключение индикаторов к указанным вы-ходам микросхемы К176ИЕ17 производится аналогично их подключению к выходам микросхемы К176ИЕ13 с использованием импульсов записи с выхода С микросхемы К176ИЕ13.

На выходах А, В, С постоянно присутствует код 1-2-4 порядкового номера дня недели. Его можно подать на микросхему К176ИД2 или К176ИДЗ и далее на какой-либо семисегментный индикатор, в результате чего на нем будет индицироваться номер дня недели. Однако более интересной является возможность вывода двухбуквенного обозначения дня недели на цифробуквенные индикаторы ИВ-4 или ИВ-17, для чего необходимо изготовить специальный преобразователь кода.

Установка числа, месяца и дня недели производится аналогично установке показаний в микросхеме К176ИЕ13. При нажатии кнопки SB1 происходит установка числа, кнопки SB2 - месяца, при совместном нажатии SB3 и SB1 - дня недели. Для уменьшения общего

2-3-243.jpg

2-3-244.jpg

2-3-245.jpg

числа кнопок в часах с календарем можно использовать кнопки SB1 -SB3, SB5 схемы рис. 206 для уста-новки показаний календаря, переключая их общую точку тумблером со входа Р микросхемы К176ИЕ13 на вход Р микросхемы К176ИЕ17. Для каждой из указанных микросхем цепь R1C1 должна быть своя подобно схеме рис. 210.

Подача лог. 0 на вход V микросхемы переводит ее выходы 1-8 в высокоимпедансное состояние. Это свойство микросхемы позволяет относительно несложно организовать поочередную выдачу показаний часов и календаря на один четырехразрядный индикатор (кроме дня недели). Схема

подключения микросхемы К176ИД2 (ИДЗ) к микросхемам ИЕ13 и ИЕ17 для обеспечения указанного режима приведена на рис. 220, цепи соединения микросхем К176ИЕ13, ИЕ17 и ИЕ12 между собой не показаны. В верхнем по схеме положении переключателя SA1 («Часы») выходы 1-8 микросхемы DD3 находятся в высокоимпедансном состоянии, выходные сигналы микросхемы DD2 через резисторы R4 - R7 поступают на входы микросхемы DD4, индицируется состояние микросхемы DD2 - часы и минуты. При нижнем положении переключателя SA1 («Календарь») выходы микросхемы DD3 активизируются, и теперь уже микросхема DD3 определяет входные сигналы микросхемы DD4. Переводить выходы микросхемы DD2 в высокоимпедансное состояние, как это сделано в схеме

2-3-246.jpg

рис. 210, нельзя, так как при этом перейдет в высокоимпедансное состояние и выход С микросхемы DD2, а аналогичного выхода микросхема DD3 не имеет. В схеме рис. 220 реализовано упомянутое выше использование одного комплекта кнопок для установки показаний часов и календаря. Импульсы от кнопок SB1 - SB3 поступают на вход Р микросхемы DD2 или DD3 в зависимости от положения того же переключателя SA1.

МикросхемаК176ИЕ18 (рис. 221) по своему строению во многом напоминает К176ИЕ12. Ее основным отличием является выполнение выходов Т1 - Т4 с открытым стоком, что позволяет подключать сетки вакуумных люминесцентных индикаторов к этой микросхеме без согласующих ключей.

Для обеспечения надежного запирания индикаторов по их сеткам скважность импульсов Т1 - Т4 в микросхеме К176ИЕ18 сделана несколько более четырех и составляет 32/7. При подаче лог. 1 на вход R микросхемы на выходах Т1 - Т4 лог. 0, поэтому подача специального сигнала гашения на вход К микросхем К176ИД2 и К176ИДЗ не требуется.

Вакуумные люминесцентные индикаторы зеленого свечения в темноте кажутся значительно более яркими, чем на свету, поэтому желательно иметь возможность изменения яркости индикатора. Микро-схема К176ИЕ18 имеет вход Q, подачей лог. 1 на этот вход можно в 3,5 раза увеличить скважность импульсов на выходах Т1 - Т4 и во

2-3-247.jpg

столько же раз уменьшить яркость свечения индикаторов. Сигнал на вход Q можно подать или с переключателя яркости, или с фоторезистора, второй вывод которого подключен к плюсу питания. Вход Q в этом случае следует соединить с общим проводом через резистор 100 к0м...1 МОм, который необходимо подобрать для получения требуемого порога внешней освещенности, при котором будет происходить автоматическое переключение яркости.

Следует отметить, что при лог. 1 на входе Q (малая яркость) установка показаний часов не действует.

Микросхема К176ИЕ18 имеет специальный формирователь звукового сигнала. При подаче импульса положительной полярности на вход HS на выходе HS появляются пачки импульсов отрицательной полярности с частотой 2048 Гц и скважностью 2. Длительность пачек - 0,5 с, период повторения - 1 с. Выход HS выполнен с открытым стоком и позволяет подключать излучатели с сопротивлением 50 Ом и выше между этим выходом и плюсом питания без эмиттерного повторителя. Сигнал присутствует на выходе HS до окончания очередного минутного импульса на выходе М микросхемы.

Следует отметить, что допустимый выходной ток микросхемы К176ИЕ18 по выходам Т1 - Т4 составляет 12 мА, что значительно превышает ток микросхемы К176ИЕ12, поэтому требования к коэффициентам усиления транзисторов в ключах при применении микросхем К176ИЕ18 и полупроводниковых индикаторов (рис. 207) значительно менее жестки, достаточно h21э > 20. Сопротивление базовых

резисторов в катодных ключах может быть уменьшено до 510 Ом при h21э > 20 или до 1к0м при h21э > 40.

Микросхемы К176ИЕ12, К176ИЕ13, К176ИЕ17, К176ИБ18 допускают напряжение питания такое же, как и микросхемы серии К561 - от 3 до 15 В.

2-3-248.jpg

МикросхемаК561ИЕ19 - пятиразрядный сдвигающий регистр с возможностью параллельной записи информации, предназначенный для построения счетчиков с программируемым модулем счета (рис. 222). Микросхема имеет пять информационных входов для параллельной записи D1 -D5, вход информации для последовательной записи DO, вход параллельной записи S, вход сброса R, вход для подачи тактовых импульсов С и пять инверсных выходов 1-5.

Вход R является преобладающим - при подаче на него лог. 1 все Триггеры микросхемы устанавливаются в 0, на всех выходах появляется лог. 1 независимо от сигналов на других входах. При подаче на вход R лог. 0, на вход S лог. 1 происходит запись информации со входов D1 - D5 в триггеры микросхемы, на выходах 1-5 она появляется в инверсном виде.

При подаче на входы R и S лог. 0 возможен сдвиг информации в триггерах микросхемы, который будет происходить по спадам импульсов отрицательной полярности, поступающим на вход С. В первый триггер ин-формация будет записываться со входа D0.

2-3-249.jpg

Если соединить вход DO с одним из выходов 1-5, можно получить счетчик с коэффициентом пересчета 2, 4, 6, 8, 10. Для примера на рис. 223 показана временная диаграмма работы микросхемы в режиме деления на 6, который организуется в случае соединения входа D0 с выходом 3. Если необходимо получить нечетный коэффициент

пересчета 3,5,7 или 9, следует использовать двухвходовый элемент И, входы которого подключить соответственно к выходам 1 и 2, 2 и 3, 3 и 4,4 и 5, выход - ко входу DO. Для примера на рис. 224 приведена схема делителя частоты на 5, на рис. 225 - временная диаграмма его работы.

2-3-250.jpg

Следует иметь в виду, что использование микросхемы К561ИЕ19 в качестве сдвигающего регистра невозможно, так как она содержит цепи коррекции, в результате чего комбинации состояний триггеров, не являющиеся рабочими для счетного режима, автоматически исправляются. Наличие цепей коррекции позволяет

2-3-251.jpg

2-3-252.jpg

аналогично использованию микросхем К561ИЕ8 и К561 ИЕ9 не подавать импульс начальной установки на счетчик, если фаза выходных импульсов не важна.

МикросхемаКР1561ИЕ20 (рис. 226) - двенадцатиразрядный двоичный счетчик с коэффициентам деления 2^12 = 4096. У нее два входа - R (для установки нулевого состояния) и С (для подачи тактовых импульсов). При лог. 1 на входе R счетчик устанавливается в нулевое состояние, а при лог. 0 - считает по спадам поступающих на вход С импульсов положительной полярности. Микросхему можно использовать для деления частоты на коэффициенты, являющиеся степенью числа 2. Для построения делителей с другим коэффициентом деления можно воспользоваться схемой для включения микросхемы К561ИЕ16 (рис. 218).

МикросхемаКР1561ИЕ21 (рис. 227) - синхронный двоичный счетчик с возможностью параллельной записи информации по спаду тактового

импульса. Микросхема функционирует аналогично К555ИЕ10 (рис. 38).

 

 

Рис. 170 Декада на JK-триггерах и временная диаграмма ее работы

Изображение: 

Рис. 172 Микросхема К176ИЕ1 и К176ИЕ2

Изображение: 

Рис. 174 Временная диаграмма работы микросхемы К176ИЕ2

Изображение: 

Рис. 175 Согласование микросхем К176ИЕ2 и К555ИД1 с помощью К176ПУ3 и транзисторов

Изображение: 

Рис. 176 Микросхема К176ИЕ3 и К176ИЕ4

Изображение: 

Рис. 178 Согласование микросхем К176ИЕ3 и К176ИЕ4 с вакуумными люминесцентными индикаторами

Изображение: 

Рис. 179 Согласование с помощью микросхем К168КТ2В

Изображение: 

Рис. 180 Согласование с помощью микросхемы К161КН1 или К161КН2

Изображение: 

Рис. 181 Схема согласования микросхемы К176ИЕ4

Изображение: 

Рис. 182 Подключение полупроводниковых индикаторов с общим анодом с помощью микросхемы преобразователя уровней

Изображение: 

Рис. 183 Подключение жидкокристаллического индикатора

Изображение: 

Рис. 184 Структура и типовая схема включения микросхемы К176ИЕ5

Изображение: 

Рис. 185 Микросхемы К176ИЕ8 и К561ИЕ8

Изображение: 

Рис. 186 Временная диаграмма работы микросхем К176ИЕ8 и К561ИЕ8

Изображение: 

Рис. 187 Микросхема К561ИЕ9

Изображение: 

Рис. 188 Временная диаграмма работы микросхемы К561ИЕ9

Изображение: 

Рис. 189 Параллельный счетчик

Изображение: 

Рис. 190 Схема таймера

Изображение: 

Рис. 191 Делитель с переключаемым коэффициентом деления

Изображение: 

Рис. 192 Временная даграмма работы делителя

Изображение: 

Рис. 193 Делитель частоты на 6 и временная даграмма его работы

Изображение: 

Рис. 194 Подключение газоразрядного индикатора

Изображение: 

Рис. 195 Микросхемы К561ИЕ10 и КР561ИЕ10

Изображение: 

Рис. 196 Временная даграмма работы счетчика микросхемы К561ИЕ10

Изображение: 

Рис. 197 Последовательный счетчик на микросхеме К561ИЕ10

Изображение: 

Рис. 199 Декада на микросхеме К561ИЕ10

Изображение: 

Рис. 200 Микросхема К561ИЕ11

Изображение: 

Рис. 202 Счетчик на микросхемах К561ИЕ11 с паралельным переносом

Изображение: 

Рис. 203 Структура и типовая схема включения микросхему К176ИЕ12

Изображение: 

Рис. 204 Временная диаграмма работы микросхемы К176ИЕ12

Изображение: 

Рис. 204 Счетчик на микросхемах К561ИЕ11 с последовательным переносом

Изображение: 

Рис. 205 Типовая схема соединения микросхем К176ИЕ12 и К176ИЕ13

Изображение: 

Рис. 206 Модифицированная схема соединения

Изображение: 

Рис. 207 Подключение к микросхемам К176ИЕ12 и К176ИЕ13 индикаторов с общим анодом

Изображение: 

Рис. 208 Подключение к микросхемам К176ИЕ12 и К176ИЕ13 сеток люминесцентных индикаторов

Изображение: 

Рис. 209 Подключение к микросхемам К176ИЕ12 и К176ИЕ13

Изображение: 

Рис. 210 Часы с двумя вариантами показаний

Изображение: 

Рис. 211 Микросхема К561ИЕ14

Изображение: 

Рис. 212 Микросхема К561ИЕ15

Изображение: 

Рис. 213 Временная диаграмма работы микросхемы К561ИЕ15

Изображение: 

Рис. 214 Микросхема К561ИЕ16

Изображение: 

Рис. 215 Соединение микросхем К561ИЕ10 и К561ИЕ16 для получения младших разрядов счетчика

Изображение: 

Рис. 216 Соединение двух микросхем К561ИЕ16

Изображение: 

Рис. 217 Соединение микросхем К561ИЕ10 и К561ИЕ16 для получения младших разрядов и увеличения разрядности

Изображение: 

Рис. 219 Типовая схема соединения микросхем К176ИЕ13 и К176ИЕ17

Изображение: 

Рис. 220 Часы с календарем

Изображение: 

Рис. 221 Типовая схема включения микросхемы К176ИЕ18

Изображение: 

Рис. 222 Микросхема К561ИЕ19

Изображение: 

Рис. 223 Временная диаграмма работы микросхемы К561ИЕ19

Изображение: 

Рис. 224 Делитель частоты на 5

Изображение: 

Рис. 225 Временная диаграмма работы делителя

Изображение: 

Рис. 226 Микросхемы КР1561ИЕ20 и КР1561ИЕ21

Изображение: 

2.3.3 Регистры.

2.3.3. Регистры

Микросхемы564ИР1 и К176ИР10 - восемнадцатиразрядные сдвигающие регистры (рис. 228), разделенные на четыре секции с общим входом С для подачи тактовых импульсов.

Секция со входом D1 - четырехразрядная, имеет выход только в последнем, четвертом разряде. Секция со входом D5 - пятиразрядная, имеет выходы в четвертом (8) и пятом (9) разрядах. Секции со входами D10 и D14 аналогичны рассмотренным выше. Запись информации со входов D1, D5, D10, D14 и ее сдвиг происходят по спадам импульсов положительной полярности, подаваемых на вход С. Особенности построения триггеров микросхемы К176ИР10 требуют, чтобы длительность тактовых импульсов не превышала 30 мкс.

Микросхема К176ИР2 (рис. 228) - сдвигающий регистр. Она имеет две одинаковые независимые секции по четыре разряда. Каждая секция имеет три входа - вход R для установки триггеров в нулевое

2-3-31.jpg

состояние, установка происходит при подаче лог. 1 на этот вход, вход С, по спадам импульсов отрицательной полярности на этом входе происходит запись информации со входа D в первый разряд регистра и сдвиг информации в сторону возрастания номеров. Для получения сдвигающего регистра с большим числом разрядов можно соединять входы D секций регистров с выходами 4 предыдущих разрядов и объединять одноименные входы С и R между собой.

МикросхемаК176ИРЗ (рис. 228) - четырехразрядный сдвигаю-щий регистр. Запись информации со входа D0 и ее сдвиг происходят по спадам импульсов отрицательной полярности, подаваемых на вход С1 при лог. 0 на входе S. Параллельная запись информации со входов D1 - D4 происходит по спадам импульсов отрицательной полярности на входе С2 при лог. 1 на входе S. При объединении входов С1 и С2 выбор режима сдвига или записи производится по входу S. Если объединить входы С1 и S, специального сигнала управления не требуется.

Соединение входов D1 - D3 с выходами 2-4 превращает микросхему в реверсивный сдвигающий регистр.

МикросхемаК561ИР6 - многофункциональный восьмиразрядный сдвигающий регистр (рис. 228). Микросхема имеет две группы информационных выводов - А1 - А8 и В1 - В8, каждая из которых может быть входами или выходами при параллельной записи и считывании, вход для последовательной записи информации D, входы управления P/S, A/S, А/В, ЕА, вход для подачи тактовых импульсов С. Сигналами на входах P/S, A/S, А/В, ЕА производится выбор режима работы микросхемы. Вход P/S (параллельный/последовательный) является преобладающим. При лог. 0 на этом входе независимо, от состояния других входов регистр переходит в режим последовательной записи информации со входа D по спадам импульсов отрицательной полярности на входе С и сдвига ее вправо (вниз по рис. 228). При лог. 1 на входе P/S регистр переходит в режим параллельной записи. Запись производится или по спадам импульсов отрицательной полярности на входе С (синхронная запись), при этом на входе A/S (асинхронно/синхронно) должен быть лог. 0, или по импульсам положительной полярности на входе A/S (асинхронная запись), при этом на входе С должны быть лог. 0 или лог. 1, но сигнал должен быть фиксированным. Какая из групп входов А или В при этом является входом, а какая - выходом, определяется сигналом на входе А/В -

если на этом входе лог. 1, входами являются выводы А1 - А8, выходами В1 - В8, при лог. 0 на входе А/В входы - В1 - В8, выходы А1 -А8. Независимо от сигнала на входе А/В лог. 0 на входе ЕА отключает группу выводов А от триггеров регистра. Если при этом на входе А/В лог. 0, возможна параллельная запись по группе В, но невозможно считывание по группе А, если на входе А/В лог. 1 - производится считывание по В, но невозможна запись по группе А, и при изменении сигналов на входах A/S и С состояние триггеров регистра не изменяется.

Выбор выходов при последовательной записи информации со входа D производится также сигналами на входах А/В и ЕА - при лог. 1 на входе А/В и произвольном сигнале на входе ЕА выходами является группа В, при лог. 0 на входе А/В и лог. 1 на входе ЕА выходы - группа А, при лог. 0 на входах А/В и ЕА обе группы А и В находятся в высокоимпедансном состоянии, считывание из регистра невозможно.

При включении нескольких микросхем К561ИР6 для увеличения числа разрядов одноименные управляющие входы и входы С микросхем следует объединить. При необходимости работы нескольких микросхем в режиме сдвига входы D последующих микросхем нужно подключить к выходам А8 или В8 предыдущих, при этом во время сдвига необходимо соответствующие группы выводов обязательно переводить в режим выхода, при использовании одиночной микросхемы этого не требуется.

Микросхема К561ИР6 может широко использоваться в аппаратуре в самых различных вариантах - от простейшего однонаправленного буфера до узла запоминания и коммутации данных, приходящих в последовательном или параллельном коде с двух направлений. Некоторые примеры использования этой микросхемы приведены в табл. 8, в ней указаны режим применения, входы и сигналы, которые надо зафиксировать для обеспечения этого режима, направление передачи сигнала и сигналы, подаваемые на используемые входы управления микросхемы. Знак <<Х>>указывает на то, что на данный вход может быть подан произвольный сигнал, знак «П» - на подачу импульса положительной полярности, знак «1» - срабатывание по спаду импуль-са отрицательной полярности. Знак <Z> означает высокоимпедансное состояние выхода.

Микросхема К561ИР9 - четырехразрядный сдвигающий регистр (рис. 228). Она имеет четыре выхода и следующие входы: вход сброса R,

вход для подачи тактовых импульсов С, вход выбора режима S, вход выбора полярности сигнала Р, входы для подачи информации при последовательной записи J и К и входы подачи информации при параллельной записи Dl, D2, D3, D4.

Вход R является преобладающим - при подаче на него лог. 1 независимо от состояния других входов все триггеры микросхемы устанавливаются в 0. Если на входе R лог. О, возможна запись информации в триггеры микросхемы. При лог. 1 на входе выбора режима S по спаду импульса отрицательной полярности на входе С произойдет параллельная запись информации в триггеры регистра со входов Dl - D4. Если на входе S лог. О, по спаду импульса отрицательной полярности на входе С произойдет запись информации со входов J и К в триггер с выходом 1 и сдвиг информации в остальных триггерах в сторону возрастания номеров выходов. Информация, которая будет записана в первый триггер, определяется состоянием входов J и К перед подачей спада импульса отрицательной полярности на вход С. Если объединить между собой входы J и К, будет производиться запись информации, имеющейся на этих объединенных входах. Если на вxoд J подать лог. 0, на вход К - лог. 1, изменения информации в первом триггере по спаду импульса отрицательной полярности на входе С не произойдет. При лог. 1 на входе J и лог. 0 на входе К первый триггер микросхемы переходит в счетный режим и меняет свое состояние на противоположное на каждый спад импульса отрицательной полярности на входе С.

Полярностью сигналов на выходах 1-4 регистра можно управлять подачей управляющего сигнала на вход Р - при лог. 1 на этом входе выходные сигналы выдаются в прямом коде, при лог. 0 - инвертируются.

Для построения сдвигающего регистра с числом разрядов более четырех достаточно соединить выходы 4 микросхем младших разрядов с объединенными входами J и К микросхем следующих разрядов (рис. 229). Входы С, R, S различных микросхем следует соединить между собой, а на входы Р подать лог. 1.

Для построения реверсивного сдвигающего регистра информационные входы микросхем J, К, Dl - D4 следует соединить с выходами в соответствии с рис. 230, входы С, R, S, Р - в соответствии с рис. 229. При лог. 0 на объединенных входах S будет происходить сдвиг информации в сторону возрастания номеров выходов (сверху вниз по схеме рис. 230), при лог. 1 - в сторону уменьшения (снизу вверх). Параллельная запись информации в такой регистр невозможна.

Режим работы микросхемы

К561ИР6

Фиксированные сигналы

Управляющие сигналы

Направление передачи сигналов, состояние выходов

Однонаправленный буфер

ЕА=1, А/В=1. A/S=1, P/S=1, С=Х

-----

А--B

ЕА=1, А/В=0, A/S=1, P/S=1, С=Х

-------

В--A

Однонаправленный буфер с переводом выходов в высокоимпедансное состояние

A/S=1,P/S=1,C=X

ЕА=А/В=1

А--В

ЕА=А/В=0

A=B=Z

А/В=0, A/S=1, P/S=1, С=Х

ЕА=1

В--А

ЕА=0

A=B=Z

Двухнаправленный буфер

A/S=1,P/S=1,C=X

ЕА=А/В=1

А---В

ЕА=1.А/В=0

В-А

ЕА=А/В=0

A=B=Z -

Регистр хранения с асинхронной записью и с переводом выходов в высокоимпедансное состояние

P/S=1,C=X

ЕА=А/В=1.А/S=П

А--В

EA=A/B=A/S=0

A=B=Z

A/B=0,P/S=1,C=X

ЕА=1,А/S=П

В->А

EA=A/S=0

A=B=Z

Регистр хранения с синхронной записью и с переводом выходов в высокоимпедансное состояние

A/S=0.P/S=1

ЕА=А/В=1.С=I

А--В

ЕА=А/В=0. С=I

A=B=Z

A/B=0, A/S=0,P/S=1

EA=1,C=I

В--А

ЕА=0. С=Х

A=B=Z

Сдвигающий регистр с последовательной записью, параллельным считыванием

EA=1, A/B=0, A/S=X, P/S=0

C=I

Выходы А

EA=X, A/B=1, A/S=X, P/S=0

Выходы В

Регистр с асинхронной параллельной записью и последовательным считыванием

A/S=P/S= П, С=Х

Входы А

EA=1,A/B=1

A/S=P/S=0. C=I

Выход В8

EA=1,A/B=0

A/S=P/S=П.C=X

Входы В

A/S=P/S=0, C=T

Выход А8

Регистр с синхронной параллельной записью и последовательным считыванием

EA=1,A/B=1,A/S=0

P/S=1¦ P/S=0¦ C=I P/S=1¦ P/S=0¦

Входы А

Выход В8

EA=1,A/B=0,A/S=0

Входы В

Выход А8


2-3-32.jpg

2-3-33.jpg

Микросхема564ИР13 (рис. 231) - специальный регистр, предназначенный для построения аналого-цифровых преобразователей, работающих по принципу последовательного приближения, с числом разрядов до 12. Логика работы микросхемы полностью соответствует работе микросхемы К155ИР17 (см. рис. 60-63).

Микросхема КР1561ИР14 (рис. 228) - четырехразрядный регистр хранения информации с возможностью перевода выходов в высокоимпедансное состояние. Логика ее работы совпадает с работой микросхемы К155ИР15 (см. рис. 57,58).

МикросхемаКР1561ИР15 (рис. 228) - универсальный четырехразрядный сдвигающий ре-

гистр, позволяющий производить как параллельную запись информации, так и ее сдвиг вправо и влево, она работает так же, как и К555ИР11 (см. рис. 50, 51).

 

Рис. 228 Микросхемы сдвигающих регистров

Изображение: 

Рис. 229 Регистр с паралельной записью

Изображение: 

Рис. 231 Микросхема К561ИР13

Изображение: 

2.4 Микросхемы комбинационного типа.

2.4 Микросхемы комбинационного типа.

 

2.4.1 Дешифраторы и преобразователи кодов.

2.4.1. Дешифраторы и преобразователи кодов

2-4-11.jpg

МикросхемыК176ИД1 и К561ИД1 (рис. 232) -дешифраторы на 10 выходов. Микросхемы имеют 4 входа для подачи кода 1-2-4-8. Выходной сигнал лог. 1 появляется на том выходе дешифратора, номер которого соответствует десятичному эквиваленту входного кода, на остальных выходах дешифратора при этом лог. 0. При подаче на входы кодов, соответствующих десятичным числам, превышающим 9, активизируются выходы 8 или 9 в зависимости от сигнала, поданного на вход 1 -

при лог. 0 на этом входе лог. 1 появляется на выходе 8, при лог. 1 - на выходе 9. Микросхемы не имеют специального входа стробирования, однако для построения дешифраторов с числом выходов более 10 можно использовать для стробирования вход 8 микросхем, так как выходной сигнал может появиться на выходах 0-7 лишь при лог. 0 на входе 8(рис. 233,234).

2-4-12.jpg

МикросхемаК176ИД2 (рис. 235) - преобразователь двоично-десятичного кода в код семисегментного индикатора, включает в себя также триггеры, позволяющие запомнить входной код. Микросхема имеет четыре информационных входа для подачи кода 1-2-4-8 и три управляющих входа. Вход S, так же как и в микросхемах К176ИЕЗ и К176ИЕ4, определяет полярность выходных сигналов: при лог. 1 на входе S на выходах лог. 0 для зажигания сегментов, при лог. 0 на вхо-де S - лог. 1 для зажигания. При подаче лог. 1 на вход К происходит гашение индицируемого знака, лог. 0 на входе К разрешает индикацию. Вход С управляет работой триггеров памяти - при подаче на вход С лог. 1 триггеры превращаются в повторители и изменение входных сигналов на входах 1-2-4-8 вызывает соответствующее изме-нение выходных сигналов. Если же на вход С подать лог.0,запоминаются сигналы, имевшиеся на входах перед подачей лог. 0, микросхема на изменение сигналов на входах 1-2-4-8 не реагирует.

2-4-13.jpg

Согласование выходов микросхем К176ИД2 с семисегментными индикаторами может производиться так же, как и выходов счетчиков К176ИЕЗ и К176ИЕ4. Ток короткого замыкания микросхем К176ИД2 выше, чем у счетчиков, и численно в миллиамперах примерно равен напряжению питания в вольтах. Поэтому можно непосредственно подключать выходы микросхем К176ИД2 к электродам полупроводниковых семисегментных индикаторов серий АЛ305, АЛС321, АЛС324, помня, конечно, о том, что разброс яркости свечения при этом может быть заметен, а сама яркость может быть меньше номинальной. МикросхемаК176ИДЗ имеет ту же разводку выводов и ту же логику работы, что и К176ИД2. Отличие заключается в том, что выходные каскады микросхемы выполнены с «открытым» стоком, поэтому их можно подключать непосредственно к анодам вакуумных люминесцентных индикаторов (рис. 179 с исключенными сборками DA1, DA2). Управляющий вход S микросхемы К176ИДЗ должен быть при этом соединен с общим проводом.

Микросхема564ИД4 - преобразователь двоично-десятичного кода в код семисегментного индикатора (рис. 235), предназначена прежде всего для управления жидкокристаллическими индикаторами. Так же, как и микросхема К176ИД2, преобразователь позволяет изменять полярность выходных сигналов подачей сигнала управления на вход S - при лог. 0 включению сегментов соответствуют лог. 1 на выходах а - g, при лог. 1 на входе S включению сегментов соответствуют лог. 0. Так же, как и микросхема 564УМ1, микросхема имеет три вывода питания и увеличенную амплитуду выходных сигналов. Это позволяет при напряжении питания большей части микросхем 3...5 В управлять и такими индикаторами, которые требуют напряжение 10-15 В

2-4-14.jpg

Подключение жидкокристаллического индикатора к микросхеме 564ИД4 проиллюстрировано на рис. 236. На вход S микросхемы подается меандр с частотой 30...200 Гц, этот сигнал проходит без инверсии на выход Р, увеличиваясь по амплитуде, как это описано выше для микросхемы 564УМ1. При подаче на входы 1-8 двоичного кода знака на выходах, соответствующих

сегментам, которые надо индицировать, напряжение начинает меняться в противофазе с напряжением на выходе Р, и эти сегменты становятся темными. На тех же выходах, которые соответствуют неиндицируемым сегментам, напряжение меняется синфазно с напря-жением на выходе Р, и сегменты неотличимы от фона. При подаче на входы кодов чисел 0...9 на индикаторе формируется изображение соответствующих цифр, для кодов 10...13 индицируются буквы «L», «Н», «Р», «А», для кода 14 - знак «минус», при подаче кода 15 происходит гашение индикатора.

Нагрузочная способность микросхемы такая же, как у 564УМ1, что позволяет использовать микросхему для управления светодиодными индикаторами как с общим анодом, так и с общим катодом без токоограничительных резисторов при напряжении питания 5...10 В и с ограничительными резисторами при 10...15 В.

Микросхема564ИД5 отличается от 564ИД4 наличием на ее входах 1-2-4-8 статического регистра хранения информации со входом записи С и отсутствием выхода Р (рис. 235). Запись в регистр происходит так же, как и в регистр микросхем К176ИД2 и К176ИДЗ, при

2-4-15.jpg

подаче на вход С импульса положительной полярности, регистр при этом «прозрачен» и пропускает на свои выходы (на входы преобразователя кода) информацию со входов. В режим хранения регистр переходит в момент спада входного импульса.

Интересно отметить, что одноименные входы и выходы микросхем К176ИД2, К176ИДЗ, 564ИД4,564ИД5 разведены на выводы с одинаковыми номерами.

На рис. 237 приведен пример использования микросхем 564ИД5 и 564УМ1 для управления индикатором ИЖКЦ2-5/12. Этот пятиразрядный индикатор предназначен для использования в цифровом частотомере и, кроме возможности индикации пяти цифр, имеет четыре десятичные запятые (сегменты h) и символ «Гц», перед которым могут индицироваться символы «к» или «М».

На микросхемы DD1 - DD5 подводятся коды цифр от микросхем счетчиков, на DD6 - на вход D, соответствующий необходимой запятой - лог. 1, на остальные входы - лог. 0. При подаче импульса положительной полярности на входы С происходит запоминание информации в регистрах микросхем. На входы D двух нижних триггеров микросхемы DD6 поданы разнополярные сигналы, а на входы

S всех микросхем - меандр с частотой 30...200 Гц. В результате на выводы «Гц» и «Общ.» индикатора HL1 приходят противофазные сигналы и символы «Гц» постоянно индицируются. При необходимости индикации символов «к» или «М» на соответствующие входы микросхемы DD7 следует подать лог. 1, при отсутствии такой необходимости - лог. 0.

МикросхемаКР1561ИД6 - два стробируемых дешифратора на два входа и четыре прямых выхода (рис. 238). При лог. 0 на входе S лог. 1 появляется на том выходе дешифратора, номер которого соответствует

2-4-16.jpg

десятичному эквиваленту входного кода, поданному на входы 1 и 2. При лог. 1 на входе S на всех выходах дешифратора лог. 0.

МикросхемаКР1561ИД7 - два аналогичных дешифратора с инверсными выходами (рис. 238). Наличие инверсных выходов позволяет удобно использовать такую микросхему для стробирования дешифраторов при их соединении для увеличения числа входов (рис. 239), а также описываемых далее мультиплексоров.

2-4-17.jpg

При необходимости построения дешифратора на 8 выходов из микросхем КР1561ИД6 или КР1561ИД7 их следует дополнить одним инвертором (рис. 240).

Микросхема564ИК2 (рис. 241) не является комбинационной, так же как при строгом отношении не являются комбинационными микросхемы К176ИД2, К176ИДЗ и 564ИД5, содержащие регистры хранения информации, но их удобно рассматривать в этом разделе как наиболее близкие к дешифраторам и преобразователям кода. Микросхема 564ИК2 предназначена для управления пятиразрядным полупроводниковым семисегментным индикатором или пятью отдельными индикаторами в динамическом режиме. Она содержит преобразователь двоичного кода 1-2-4-8 в код семисегментного индикатора (входы 1, 2, 4, 8 и Е, выходы а, Ь, с, d, e, f, g), генератор на инвертирующем триггере Шмитта (вход Т, выход G), счетчик-делитель на 5, вход которого подключен к выходу генератора. В свою очередь

2-4-18.jpg

2-4-19.jpg

выходы счетчика 1, 2, 4 подключены ко входам дешифратора, имеющего пять инверсных выходов HL1 - HL5.

Преобразователь двоичного кода в код семисегментного индикатора имеет выходы с открытым стоком транзисторов с каналом р-типа. Он обеспечивает на семисегментном индикаторе с общим катодом индикацию цифр 0-9 при подаче на его входы соответствующего двоичного кода и букв «A», «b»,

«С», «d», «Е>>, «F» при подаче кода, соответствующего десятичным числам от 10 до 15. Форма индицируемых букв показана на рис. 242.

Преобразователь по техническим условиям обеспечивает при вытекающем выходном токе 10 мА и напряжении питания 10 В выходное напряжение не менее 9 В. В те моменты, когда на выходах преобразователя нет лог. 1, выходы находятся в высокоимпедансном состоянии.

Разрешение на включение индикатора обеспечивается подачей на вход Е лог. 1, при лог. 0 на этом входе происходит гашение индикатора.

Для нормальной работы генератора к его выводам следует подключить RC-цепь (резистор между выводами Т и G, конденсатор между выводом

Т и общим проводом). Сопротивление резистора может составлять 10 кОм.,.5 МОм, емкость конденсатора 100 пф и более. Частота генерации может быть приближенно определена по формуле:

f = k/RC,

где к = 700, 400, 350 и 300 для напряжения питания 3, 5, 10 и 15 В соответственно, частота выражена в герцах, сопротивление - в килоомах, емкость - в микрофарадах. Для сопротивления резистора 100 кОм и емкости конденсатора 0,01 мкФ частота составит от 100 до 300 Гц, при такой частоте мелькания индикатора незаметны. Счетчик при подаче на него импульсов от генератора обеспечивает на своих

2-4-110.jpg

выходах 1, 2, 4 поочередное появление двоичных кодов чисел 0...4, а на выходах дешифратора HL5 - HL1 лог. 0 (рис. 243). Следует иметь в виду, что в те моменты, когда на выходах HL5 - HL1 нет лог. 0, они находятся в высокоимпедансном со-стоянии, так как выполнены с открытым стоком транзисторов с каналом n-типа. По техническим условиям в состоянии лог. 0 при напряжении питания 10 В и выходном втекающем токе 80 мА выходное напряжение не превышает 1 В.

Нагрузочная способность выходов счетчика 1, 2, 4 составляет 1,3 мА при напряжении питания 10 В и выходном напряже-

2-4-111.jpg

нии 1 В в состоянии лог. 0, такая же нагрузочная способность и при выходном напряжении 9 В в состоянии лог. 1.

Входные импульсы тактовой частоты для работы счетчика могут быть поданы от внешнего генератора на вход Т, в этом случае резистор и конденсатор не нужны, выход G не используется.

Схема включения микросхемы для работы на пять семисегментных индикаторов с общим катодом приведена на рис. 244. Мультиплексоры DD2 - DD5 служат для подачи на входы преобразователя микро-схемы DD6 кодов индицируемых цифр с пятиразрядного источника (счетчика, регистра), мультиплексор DD1 с переключателем SA1 определяют положение запятой. Если запятая фиксирована, ее включение можно обеспечить в соответствии со схемой рис. 245. Диод VD1 включен в разрыв проводника, идущего от выхода микросхемы DD6 рис. 244 к катоду индикатора, в котором необходимо включить запятую, резистор R2 подключается к сегменту h этого индикатора. Диод необходим для исключения обратного смещения светодиодов индикатора.

Инвертор DD1.1 в схеме рис. 245 - любой КМОП инвертирующий элемент. Если в качестве DD1.1 использовать элемент микросхем К561ЛН2 или К176ПУ1, К176ПУ2, транзистор VT1 не нужен. Вход Е DD6 может использоваться не только для гашения индикаторов, но и для регулировки их яркости за счет изменения скважности подава-емых на этот вход импульсов, как это проиллюстрировано на рис. 246. Дифференцирующая цепочка R1R2C1 позволяет менять длительность импульсов, подаваемых на входы Е микросхем DD6 и DD1

2-4-112.jpg

рис.244, и элемента DD1.1 рис. 245. В последнем случае элемент DD1.1 должен иметь не менее двух входов и выполнять функцию ИЛИ-НЕ.

Аналогично может быть подключен и пятиразрядный полупроводниковый индикатор АЛС311А.

Полупроводниковые индикаторы можно заменить на вакуумные люминесцентные индикаторы (или один многоразрядный), включив

2-4-113.jpg

их в соответствии с рис. 247. Используемые в этом случае транзисторы р-n-р должны быть кремниевыми с допустимым напряжением коллектор - эмиттер не менее 30 В. Так же, как и при использовании полупроводниковых индикаторов, возможна регулировка яркости.

Реальная нагрузочная способность микросхемы значительно больше паспортной. При напряжении на выходах HL1 - HL5 1 В выходной втекающий ток составляет около 70, 150, 270 и 350 мА при напряжении питания 3, 5, 10, 15 В соответственно. Выходной вытекающий ток по выходам а - g при выходном напряжении на 1 В меньше напряжения питания имеет величину, примерно в 10 раз меньшую. Это позволяет подключать к выходам микросхемы при напряжении питания 10...15 В практически любые светодиодные индикаторы с общим катодом, подобрав соответствующим образом токоограничительные резисторы.

При использовании полупроводниковых индикаторов с большим размером знаков (например, АЛС335А) и напряжении питания 5 В выходных токов микросхемы может не хватить для обеспечения нормальной яркости свечения. В этом случае выходы а - g следует умонить семью эмиттерными повторителями на транзисторах n-р-n, например КТ315, выходы HL1 - HL5 - повторителями на транзисторах р-n-р средней мощности (например, КТ502).

Большие выходные токи по выходам HL1 - HL5 позволяют использовать микросхему 564ИК2 в качестве распределителя с релейными

2-4-114.jpg

2-4-115.jpg

выходами (рис. 248). Обмотки реле в этом устройстве должны быть рассчитаны на напряжение питания микросхемы и на рабочий ток, не превышающий указанный выше для выходов HL1 - HL5.

Полярность тока выходов HL1 - HL5 удобна для непосредственного управления симисторами серии КУ208. На рис. 249 приведена схема простейшего варианта «бегущих огней» с использованием микросхемы 564ИК2.

Неиспользуемые входы микросхемы в схемах рис. 248 и 249 следует соединить с общим проводом или плюсом питания.

2-4-116.jpg

 

Рис. 232 Микросхемы К176ИД1 и К561ИД1

Изображение: 

Рис. 233 Дешифраторв на 16 и 64 выхода

Изображение: 

Рис. 235 Микросхемы преобразователей кодов для семисегментных индикаторов

Изображение: 

Рис. 236 Подключение жидкокристаллического индикатора

Изображение: 

Рис. 237 Схема управления индикатором ИЖКЦ2-5/12

Изображение: 

Рис. 238 Микросхемы КР1561ИД1 и КР1561ИД7

Изображение: 

Рис. 239 Дешифратор на 32 выхода

Изображение: 

Рис. 240 Дешифратор на 8 выходов

Изображение: 

Рис. 241 Микросхема 564ИК2

Изображение: 

Рис. 242 Форма индицируемых букв

Изображение: 

Рис. 243 Временная диаграмма работы микросхемы 564ИК2

Изображение: 

Рис. 244 Схема включения микросхемы 564ИК2

Изображение: 

Рис. 245 Индикация фиксированной запятой

Изображение: 

Рис. 247 Подключение вакуумных люминесцентных индикаторов

Изображение: 

Рис. 248 Распределитель с релейными выходами

Изображение: 

Рис. 249 Простейший вариант "бегущих огней"

Изображение: 

2.4.2 Ключи и мультиплексоры.

2.4.2. Ключи и мультиплексоры

МикросхемыК176КТ1, К561КТЗ, КР1561КТЗ

(рис. 250) содержат по четыре аналоговых ключа. Каждый ключ имеет три вывода - два информационных А и В и один управляющий С. При подаче лог. 0 на вход С информационные выводы разомкнуты между собой и паспортный ток утечки между ними не превышает 2 мкА (реально значительно меньше). При подаче лог. 1 на вход С сопротивление ключа уменьшается до нескольких сотен Ом. Это сопротивление нелинейно и зави-

2-4-21.jpg

сит от напряжения между информационным выводом, на который подается входной сигнал, и общим проводом. Максимальное сопротивление ключ имеет при указанном напряжении, близком к половине напряжения питания, минимальное - при .напряжении, близком к нулю или напряжению питания.

В табл. 9 приведены минимальное и максимальное сопротивление открытого ключа при изменении напряжения на его информационном входе при различных напряжениях питания. Как видно из таблицы, при напряжении питания 3...5 В ключ К176КТ1 может пропускать сигнал, лишь близкий к напряжению питания или нулю, то есть только цифровой сигнал. Аналоговый сигнал, меняющийся в диапазоне от нуля до напряжения питания, ключ К176КТ1 может пропускать лишь при напряжении питания 9...15 В. Для ключей микросхемы К561КТЗ диапазон напряжений питания, при котором возможно пропускание аналогового сигнала - от 5 до 15 В. Для получения малых нелинейных искажений при коммутации аналоговых сигналов

Напряжение источника питания,В ;

Сопротивление открытого

ключа, Ом

К176КТ1

К561КТЗ

3

400...бесконеч.

500...бесконеч.

5

200...бесконеч.

250...1000

9

100...1200

110,..220

10

100...600

100...200

15

100...200

60...120


сопротивление нагрузки должно иметь величину порядка 100 кОм и более. В любом случае амплитудные значения коммутируемого сигнала не должны быть выше напряжения источника питания и ниже нуля.

МикросхемыК561КП1 и КР1561КП1 содержат по два четырехвходовых мультиплексора. Микросхемы имеют два адресных входа 1 и 2, общие для обоих мультиплексоров, общий вход стробирования S, информационные входы ХО - ХЗ первого мультиплексора и его выход, входы Y0 - Y3 второго мультиплексора и его выход. Два варианта изображения микросхемы КП1 приведены на рис. 251.

При подаче на адресные входы 1 и 2 двоичного кода адреса и на вход S лог. 0 выходы мультиплексоров соединяются со входами, номера которых соответствуют десятичному эквиваленту кода адреса. Если на входе S лог. 1, выходы мультиплексоров отключаются от входов и переходят в высокоимпедансное состояние. Соединение входов с выходом мультиплексора происходит аналогично соединению в микросхемах К176КТ1, К561КТЗ и КР1561КТЗ при помощи двунаправленных ключей на комплементарных МОП-транзисторах. Передаваемый через мультиплексор сигнал может быть как аналоговым,

2-4-22.jpg

так и цифровым, он может передаваться как со входов на выход (микросхема работает в режиме мультиплексора), так и с выхода распределяться на входы (режим демультиплексора).

Особенность микросхемы КП1 по сравнению с ранее рассмотренными ключами КТ1 и КТЗ - возможность коммутации аналоговых и цифровых сигналов с амплитудой от пика до пика, превышающей амплитуду входных управляющих сигналов, подаваемых на входы 1,2, S.

Микросхема имеет три вывода для подачи напряжения питания -вывод 16 Uпит1, вывод 7 - Uпит2, вывод 8 - общий провод. Напряжение Uпит1 должно быть положительным и находиться в пределах от 3 до 15В, напряжение Uпит2 - равно нулю или отрицательное, сумма абсолютных величин Uпит1 и Uпит2 не должна превышать 15В. Входные управляющие сигналы должны иметь уровни Uпит1, (лог. 1) и 0 В (лог. 0), коммутируемые сигналы могут находиться в диапазоне от Uпит1 до Uпит2. В табл. 10 приведены некоторые возможные сочетания напряжений источников питания, управляющих сигналов, а также диапазон возможного изменения сопротивления открытого ключа мультиплексора. Максимальное сопротивление открытый ключ имеет при коммутируемом напряжении в середине допустимого диапазона напряжений, минимальное - на краях диапазона.

Для увеличения числа каналов мультиплексоров-демультиплексоров можно применить объединение выходов различных микросхем между собой. На рис. 252 приведена схема соединения двух микросхем для получения двух восьмиканальных мультиплексоров -

2-4-23.jpg

демультиплексоров. Код, подаваемый на входы 1, 2, 4, определяет, какой из входов ХО - Х7, YO - Y7 будет соединен с выходами Х и Y.

Для получения большего числа каналов входами стробирования микросхем КП1 следует управлять от дешифратора КР1561ИД7, через инверторы от дешифраторов КР1561ИД6, К561ИД1 (рис. 253) или от счетчиков К561ИЕ8 или К561 ИЕ9.

Если необходим один мультиплексор-демультиплексор на большее число входов, возможно последовательное соединение микро-схем. На рис. 254 приведена схема последовательного включения микросхем для организации устройства на 8 каналов, на рис. 255 -на 16 каналов.

Вторую ступень мультиплексирования можно выполнить на микросхемах К176КТ1, К561КТЗ или КР1561КТЗ. Для примера на рис. 256 приведена схема мультиплексора-демультиплексора на 8 каналов. Если необходимо мультиплексирование лишь цифровых сигналов, вторая ступень мультиплексора может быть выполнена на микросхеме К561ЛС2, при этом вход стробирования S должен быть соединен с общим проводом (рис. 257).

Одну микросхему К561 КП1 или КР1561 КП1 можно использовать как четыре ключа, управляемых двухразрядным кодом (рис. 258). В зависимости от кода, поданного на входы 1 и 2, могут быть соединены выводы Х0 и Y0, XI и Y1 и т. д.

МикросхемыК561КП2 и КР1561КП2 - восьмиканальные мультиплексоры-демультиплексоры (рис. 259), их характеристики, назначение выводов, способы включения такие же, как микросхем К561 КП1 и КР1561КП1.

Напряжения

питания, В.

Управляющие сигналы,

Коммутируемый сигнал

Сопротивление открытого ключа,Ом

Uпит1

Uпит2

лог.1

лог.0

Umax

Umin

3

0

3

0

3

0

300...3000

5

0

5

0

5

0

200...400

10

0

10

0

10

0

160...200

15

0

15

0

15

0

120...140

3

-6

3

0

3

-6

180... 220

5

-5

5

0

5

-5

160...200

5

-10

5

0

5

-10

120...140

7,5

-7,5

7,5

0

7,5

-7,5

120...140



Микросхемы КП1 и КП2 могут быть использованы в устройствах динамической индикации, для опроса различных датчиков цифровых и аналоговых сигналов, в качестве дешифраторов, для распределения сигналов, принятых по одному проводу, по различным потребителям.

2-4-24.jpg

Интересным применением мультиплексоров является генерация произвольной функции входного кода. Для примера на рис. 260 приведена схема генерации сигнала, равного лог. 1 для входных кодов, соответствующих десятичным числам 1,3,5,7,8,10 и 12, и лог. 0 для входных кодов 2, 4, 6, 9 и 11. Такой генератор может использоваться в электронном календаре для определения числа дней в текущем месяце - лог. 1 соответствует 31 дню, лог. 0-30 дням (кроме февраля). Нетрудно видеть, что один мультиплексор на К входов позволяет построить генератор произвольной функции от одного входного кода, принимающего К значений, а мультиплексор и инвертор - функцию на 2К значений входного кода. В данном примере (рис. 260) используется мультиплексор на 8 входов, входной код принимает 12 значений, остальные четыре значения не используются.

2-4-25.jpg

2-4-26.jpg

Отметим, что генерацию указанной функции для календаря можно осуществить значительно проще - при помощи одного элемента «Исключающее ИЛИ» из микросхем К176ЛП2, К561ЛП2 или КР1561ЛП2 (рис. 261).

2-4-27.jpg

 

два мультиплексора на 8 входов

Изображение: 

два мультиплексора на 8 входов-схема

Изображение: 

два мультиплексора на 8 входов-схема

Изображение: 

микросхемы к176кт1 и К176КТ3

Изображение: 

мультиплексор на 16 входов

Изображение: 

простейший вариант генератора

Изображение: 

структура микросхем КТ561КП1

Изображение: 

2.4.3 Сумматоры и другие элементы.

2.4.3. Сумматоры и другие элементы

МикросхемыК176ИМ1 и К561ИМ1 (рис. 262) -полные четырехразрядные сумматоры. На входы А1 - А4 подается код одного из суммируемых чисел (А1 - младший разряд), на входы В1 - В4 -код второго числа, на вход С - перенос от предыдущей микросхемы. На выходах SI - S4 формируется код суммы чисел, на выходе Р - сигнал переноса в следующую микросхему. В микросхеме, суммирующей младшие разряды многоразрядного двоичного числа, вход С соединяют с общим проводом.

2-4-31.jpg

МикросхемыК176ЛП2, К561ЛП2 и КР1561ЛП14 содержат по четыре двухвходовых элемента «Исключающее ИЛИ» (рис. 263), которые также являются сумматорами по модулю два.

2-4-32.jpg

Часто микросхемы, выполняющие функции «Исключающее ИЛИ», используют для сравнения на равенство двоичных кодов, поступающих от различных источников. Для примера на рис. 264 приведена схема устройства сравнения двух четырехразрядных кодов А1 - А4 и В1 - В4. При равенстве кодов на всех выходах микросхемы DD1 появляются лог. 0 и на выходе DD2 -лог. 1. При различии кодов хотя бы в одном разряде на соответствующем выходе микросхемы DD1 появляется лог. 1, а на выходе DD2 - лог. 0.

Если в качестве DD2 использовать элемент И-НЕ, один из входных кодов нужно подать в инверсном виде.

Интересно применение микросхем «Исключающее ИЛИ» для изменения коэффициента деления счетчиков. Если перед подачей тактовых импульсов на счетный вход счетчика их пропустить через элемент «Исключающее ИЛИ», на второй вход которого подать сигнал с выхода этого счетчика, коэффициент деления уменьшается на единицу. Для примера на рис. 265 (а) приведена схема делителя частоты

2-4-33.jpg

на семь, полученного указанным способом, а на рис. 265 (6) - временная диаграмма его работы. На выходе 4 микросхемы DD2 частота импульсов меньше входной в 7 раз, а на выходе 2 - в 3,5 раза при сохранении периодичности. Интересно отметить, что если исходный счетчик имел скважность выходных импульсов, равную двум, и на вход делителя также подается меандр, на выходе получается меандр, как это имеет место для приведенной схемы.

2-4-34.jpg

2-4-35.jpg

МикросхемаК561СА1 - сумматор по модулю два на тринадцать входов (рис. 266). Выходной сигнал микросхемы принимает значение лог. 1 при нечетном числе входов, на которые поданы лог. 1, и лог. 0 в противном случае. Задержка распространения сигнала по входу 10 меньше, чем по другим входам, поэтому его используют для расширения, подключая к нему выход другой такой же микросхемы.

МикросхемаК561ЛП13 содержит три трехвходовых мажоритарных клапана (рис. 267). Выходной сигнал мажоритарного клапана соответствует входным сигналам на большинстве входов, то есть

если лог. 1 присутствует на двух или трех входах, на выходе - лог. 1, если лог. 1 только на одном входе или на всех входах лог. 0, на выходе - лог. 0. Подав на один из входов мажоритарного клапана лог. 0, получаем двухвходовый неинвертирующий элемент И, подав лог. 1, получаем элемент ИЛИ. Повторитель можно получить, объединив все три входа или подав на один вход лог. 1, на другой - лог. 0.

МикросхемаК561ИК1 - три элемента, которые могут работать в двух режимах - как мажоритарные клапаны и как мультиплексоры

на три входа (рис. 268). Все три элемента имеют два общих управляющих входа, обозначенных на рис. 268 цифрами 1 и 2. При подаче на оба управляющих входа лог. 0 элементы работают как мажоритарные клапаны микросхемы К561ЛПЗ.

Если же хотя бы на одном из управляющих входов лог. 1, элементы выполняют функции мультиплексоров. Выходной сигнал мультиплексора соответствует сигналу входа, номер которого в двоичном коде подан на входы 1 и 2. При лог. 1 на входе 1 и лог. 0 на входе 2 это сигнал со входа D1, при лог. 1 на входе 2 и лог. 0 на входе 1 - это D2, при лог. 1 на обоих входах - D3.

Основное применение мажоритарных клапанов - использование в системах с мажоритарным резервированием (см. рис. 144). Возможность мультиплексирования в микросхемах К561ИК1 позволяет еще более повысить отказоустойчивость устройств. Если в устройство рис. 144 ввести блок, определяющий, какие из блоков вышли из строя, можно сохранить работоспособность устройства в целом даже при выходе из строя большинства блоков. Например, если выйдут из строя блоки DD1, DD2, DD6, DD7, а блок управления, определив это, выдаст на микросхему DD4 типа К561ИК1 код 11, на DD8 - 10, на блоки DD5 - DD7 поступят сигналы с исправного блока DD3, на DD9 - DD11 - с DD5 и устройство сохранит работоспособность в целом.

МикросхемаК176ЛС1 - три двухвходовых независимых мультиплексора (рис. 269). Если на управляющий вход А мультиплексора

подать лог. 0, на выход проходит сигнал со входа DO, если лог. 1 - на выходе инверсия сигнала со входа D1. Если объединить между собой входы D0 и D1, получится элемент «Исключающее ИЛИ». При подаче лог. 0 на вход D1 два оставшихся входа образуют входы элемента ИЛИ. Подав на входы А и D1 лог. 0, получим неинвертирующий логический элемент с одним входом DO. Аналогично, подав лог. 1 на входы А и D0, получим инвертор со входом D1. Такая гибкость микросхемы К176ЛС1 позволяет широко использовать ее в различных схемах.

2-4-36.jpg

2-4-37.jpg

МикросхемаК561ЛС2 - четыре элемента ИЛИ-НЕ с общими входами стробирования (рис. 270). Наиболее распространенное ее применение - мультиплексирование двух четырехразрядных источников цифрового сигнала. Если на управляющий вход 9 подать лог. 1, на вход 14 -лог. 0, на выходы 13, 12, 11, 10 пройдут сигналы со входов 15, 2, 4 и 6. Если лог. 1 подать на вход 14, лог. 0 - на вход 9, на выходы поступят сигналы со входов 1, 3, 5, 7. Если же лог. 1 подать на оба управляющих входа 9 и 14, микросхема превратится в четыре независимых неинвертирующих элемента ИЛИ.

МикросхемаК561ИП2 (рис. 271) служит для сравнения двух четырехразрядных двоичных или двоично-десятичных чисел. Она имеет четыре входа А1 - А8 для подачи кода первого числа, четыре входа В1 - В8 для подачи кода второго числа, входы переноса >, =, < и выходы переноса, обозначаемые аналогично.

Вход переноса > (вывод 4) избыточен, и для нормальной работы микросхемы на него должна постоянно подаваться лог. 1. Если используется одна микросхема К561ИП2, на ее входы = и < сле-дует подать соответственно лог. 1 и лог. 0. На вы-

2-4-38.jpg

ходе > появится лог. 1, если число А, код которого подан на входы А1 - А8, больше числа В, код которого подан на входы В1 - В8. На выходе = лог. 1 появится при равенстве чисел А и В, на выходе < -если число А меньше В. При этом на других выходах будет лог. 0.

Для обеспечения сравнения чисел с большим числом разрядов микросхемы следует соединять между собой так, как это показано на рис. 272. Старшие разряды сравниваемых кодов следует подавать на микросхему DD3, младшие - на DD1.

Микросхемы К561ИП2 могут использоваться в устройствах поиска записей в магнитофонах, для цифровой автоподстройки частоты, в делителях с переключаемым коэффициентом деления, в будильниках и во многих других случаях.

Микросхема К176ЛП1 (рис. 273) занимает особое место среди других микросхем КМОП-серий. В нее входят три МОП-транзистора с каналом р-типа и три транзистора с каналом n-типа, частично

2-4-39.jpg

соединенные между собой. Путем внешних соединений из этой мик-росхемы можно получить три отдельных инвертора (рис. 274, а), ин-вертор с мощным выходом (рис. 274, б), трехвходовый элемент ИЛИ-НЕ (рис. 274, в), трехвходовый элемент И-НЕ (рис. 274, г), элемент ИЛИ-И-НЕ, отсутствующий в КМОП-сериях микросхем (рис. 274, д), мультиплексор на два входа (рис. 274, е).

Мультиплексор по схеме рис. 274 (е) пропускает сигнал со входа А на выход D при лог. 1 на входе С, и со входа В на выход D при лог. 0 на входе С. Мультиплексор обратим - при подаче входного сигнала на выход D он будет проходить на вход А при лог. 1 на входе С и на вход В при лог. 0 на входе С.

Так же, как и для ключей К176КТ1, К561КТЗ и КР1561КТЗ, про-пускаемый сигнал может быть цифровым или аналоговым и не дол-жен выходить за пределы напряжения питания.

На рис. 275 приведена схема триггера Шмитта, который можно со-брать, используя микросхему К176ЛП1. Триггер состоит из двух сим-метричных половин, каждая из трех МОП-транзисторов с каналом р-типа или п-типа. Каждая из половин напоминает по построению

2-4-310.jpg

2-4-311.jpg

обычный триггер Шмитта на двух биполярных транзисторах, в котором эмиттерный резистор заменен на еще один МОП-транзистор, а в качестве нагрузочных резисторов использован триггер Шмитта на

2-4-312.jpg

транзисторах дополнительной структуры. На рис. 276 приведена переключательная характеристика триггера Шмитта.

Выходы большинства микросхем серий К176 и К561 (а у КР1561 -всех) дополнены буферными каскадами, поэтому перегрузка выходов сложных микросхем и даже замыкание выходов на общий провод или цепь питания не влияют на работу микросхем по другим выходам.

2-4-313.jpg

Кроме того, переключательные характеристики простых логических элементов имеют значительно более крутой средний участок, чем это показано на рис. 161. Поэтому, если по какой-либо причине необходима плавная переключательная характеристика, следует использовать микросхему К176ЛП1, включенную по одной из схем рис. 274 (а - д).

 

ИМС СА1 561 серии

Изображение: 

К561СА1 и выводы микросхемы

Изображение: 

делитель частоты на 7

Изображение: 

имс 561ип1

Изображение: 

исключающие"ИЛИ"

Изображение: 

испльзование К176ЛП1

Изображение: 

микросхема ЛС1

Изображение: 

сравнение кодов

Изображение: 

статическая характеристика триггера

Изображение: 

структура К176ИП1

Изображение: 

схема включения ИП2

Изображение: 

схема на ИМС К561ИП2

Изображение: 

триггер Шмидта

Изображение: 

2.5 Ждущие мультивибраторы.

2.5. Ждущие мультивибраторы

Ждущие мультивибраторы нельзя однозначно отнести ни к комбинационным, ни к последовательностным микросхемам, так как внутренняя память этих микросхем помнит изменение входных сигналов ограниченное время, после чего состояние выходов микросхемы ни от чего не зависит.

2-51.jpg

МикросхемаКР1561АГ1 - два ждущих мультивибратора (рис. 277). Каждый из мультивибраторов микросхемы имеет два входа для запуска А и В, вход сброса R, выводы С и RC для подключения времязадающих цепей, прямой и инверсный выходы.

Обязательным условием запуска является наличие лог. 1 на входе R. Для запуска необходимо подать фронт положительного импульса на вход А при лог. 0 на входе В или фронт отрицательного импульса на вход В при лог. 0 на входе А. Другими словами, входы А и В являются прямым и инверсным входами запуска, собранными по ИЛИ.

Подача лог. 0 на вход R запрещает запуск мультивибраторов микро:хемы и прерывает генерацию импульса, если запуск уже произошел.

Два описанных выше варианта запуска показаны на рис. 278. Подключение времязадающих цепей проиллюстрировано на тех же рисунках. Рекомендуемое сопротивление времязадающих резисторов -не менее 1 кОм, сверху ограничение определяется лишь утечками времязадаюшего конденсатора и монтажа и составляет единицы - десятки мегаом. Емкость времязадаюшего конденсатора не ограничена ни сверху, ни снизу. Длительность генерируемого импульса можно рассчитать по следующей формуле:

Т = (0,3...0,5)RC.

При расчетах удобно пользоваться размерностями - МОм, мкФ, с;

кОм, мкФ, мс; кОм, нФ, мкс. При емкости конденсатора менее 10 нф реальная длительность импульса получается большей, чем при расчете по этой формуле. Ждущие мультивибраторы микросхемы КР1561АГ1 обладают способностью повторного запуска. Если во время генерации выходного импульса повторно выполнится условие запуска, произойдет перезапуск и длительность выходного импульса увеличится на интервал времени между запускающими импульсами (рис.151).

Исключить повторный запуск при необходимости можно, соединив вход В с инверсным выходом микросхемы, в этом случае мультивибратор будет запускаться фронтом положительного импульса, подаваемого на вход А, или соединив вход А с прямым выходом, в этом случае запуск будет производиться фронтом отрицательного импульса на входе В.

При использовании микросхем КР1561АГ1 следует помнить, что они весьма легко запускаются как от помех по цепи питания, так и по входным цепям. Для исключения ложных запусков необходимо в непосредственной близости от микросхем установить по цепи питания блокировочные конденсаторы емкостью не менее 15 нФ, а проводники входных и времязадающих цепей выполнять минимальной длины.

Выводы 1 и 15 внутри корпуса микросхемы подключены к общему проводу (выводу 8), вне корпуса их и времязадающий конденсатор подключать к общему проводу не рекомендуется.

2-52.jpg

 

включение АГ1

Изображение: 

структура включения К1561АГ1

Изображение: 

2.6 Микросхемы серии КР1554.

2.6. Микросхемы серии КР1554

В настоящее время промышленность выпускает микросхемы серии КР1554, относящиеся по структуре к группе КМОП. Они практически по всем параметрам превосходят микросхемы ТТЛ и КМОП всех серий, лишь незначительно уступая по задержке переключения наиболее быстродействующим микросхемам ТТЛ.

Микросхемы выполнены в пластмассовом корпусе с числом выводов 14, 16 и 20. Шаг выводов - 2,5мм. С плюсовым проводом питания всегда соединяют вывод с наибольшим номером, а с общим проводом - вывод с вдвое меньшим номером.

Напряжение питания микросхем серии КР1554 - от 2 до 6 В, параметры нормируют при значениях напряжения питания 3,3 ±0,3 В и 5 В ±10%. Рабочий температурный интервал -45...+85 С. Ток, потребляемый в статическом режиме, по нормам технических условий не превышает 4 мкА для простых микросхем и 8 мкА для микросхем средней степени интеграции; реально он значительно меньше.

Все микросхемы этой серии отличаются очень высокой нагрузочной способностью - при высоком логическом уровне на выходе, напряжении питания 4,5 В и выходном напряжении 3,86 В выходной вытекающий ток не менее 24 мА; при напряжении питания 3 В и выходном напряжении 2,56 В выходной ток не менее 12 мА. Таковы же нормы и на втекающий выходной ток при низком логическом выходном уровне при выходном напряжении 0,32 В для тех же значений напряжения питания.

При напряжении питания 5 В возможна работа микросхем в импульсном режиме на согласованный на конце кабель с волновым сопротивлением 50 или 75 Ом. Длительность импульсов при этом не должна быть больше 20 мс, а скважность следует выбирать так, чтобы рассеиваемая мощность не превышала 500 мВт для микросхем в корпусе с 14 или 16 выводами и 600 мВт - с 20 выводами. На нагрузке 50 Ом гарантировано напряжение 3,85 В при высоком уровне и подключении нагрузки к общему проводу, выходное напряжение не превышает 1,1 В при низком выходном уровне и подключении нагрузки к источнику питания микросхемы.

На рис. 279 показаны типовые зависимости выходного напряжения от выходного тока (U1вых для выхода в единичном состоянии, U0вых - в нулевом). Выходное сопротивление элементов при небольших значениях выходного тока равно 8...10 Ом.

Типовая средняя задержка распространения сигнала для простых микросхем - около 4 нс, тактовая частота последовательностных

микросхем достигает 150 МГц. Для сложных микросхем задержка распространения сигнала может доходить до 10...15 нс. Динамические параметры гарантированы при емкости нагрузки 50 пФ, максимально допустимая емкость - 500 пФ.

2-61.jpg

По функционированию, обозначению и разводке выводов почти все микросхемы серии КР1554 подобны соответствующим серий ТТЛ, есть несколько микросхем - аналогов из традиционных серии КМОП, имеющих отличные от других обозначения, есть оригинальные микросхемы, отсутствующие в других сериях.

В табл. 11 представлены наименование микросхем серии КР1554, их функциональное назначение, число выво-

дов, предельная частота работы последовательностных микросхем этой серии, внутренняя емкость и ссылка на рисунки, на которых приведены их аналоги в ранее рассмотренных сериях.

К оригинальным можно отнестиКР1554ИР40 и КР1554ИР41 (рис. 280). По логике работы, разводке выводов, электрическим параметрам они соответствуют микросхемам КР1554ИР22 и КР1554ИР23, но отличаются инвертированием выходных сигналов. МикросхемаКР1554ЛИ9 - шесть повторителей входного сигнала - по разводке выводов соответствует К561ПУ8 (рис. 164).

Новый параметр в таблице - внутренняя емкость С , необходимая для расчета потребляемой микросхемами мощности в динамическом режиме. В данном случае потребляемый ток I прямо пропорционален частоте входного сигнала Fвых и внутренней емкости элемента

2-62.jpg

микросхемы. Кроме того, потребляе мый ток зависит от емкости нагрузки Сн, его можно рассчитать по следующей формуле:Iпот=Uпит(СвнFвх+CнFвых ),

где Uпит - напряжение питания, Fвых -частота выходных импульсов.

В формуле под Сн подразумевается суммарная емкость нагрузки для всех выходов. Если на разных выходах чаcтота импульсов разная, в этой формуле

Обозначение микросхемы

Функциональное назначение

Число выводов корпуса

Предельная частота, МГц, при Uпиm, В

Внутр. емкость, пФ

Номер рис.

3

4,5

КР1554АПЗ

8 инвертирующих буферных элементов (z)

20

-

45

10

КР1554АП4

8 буферных элементов (Z)

20

-

-

45

10

КР1554АП5

8 буферных элементов (Z)

20

-

-

45

10

КР1554АП6

8 двунаправленных буферных элементов

20

-

-

45

10

КР1554ИД14

2 дешифратора 2-4

16

-

-

40

97

КР1554ИЕ6

Десятичный реверсивный счетчик

16

90

130

65

28

КР1554ИЕ7

Двоичный реверсивный счетчик

16

90

130

65

28

КР1554ИЕ10

Двоичный синхронный счетчик

16

70

110

45

38

КР1554ИЕ18

Двоичный счетчик с синхронными предустановкой и обнулением

16

70

110

45

46

КР1554ИЕ23

2 четырехразрядных двоичных счетчика

16

75.

85

50

195 К561 ИЕ10

КР1554ИП&

Девятивходовый сумматор по модулю 2

14

-

-

50

135

КР1554ИР22

Восьмиразрядный регистр хранения информации (Z)

. 20

-

-

80

69

КР1554ИР23

Восьмиразрядный регистр хранения информации (Z)

20

60

100

80

69

КР1554ИР24

Восьмиразрядный реверсивный сдвиговый регистр

20

55

130

50

70

КР1554ИР29

Восьмиразрядный реверсивный сдвиговый регистр

20

55

130

50

74

КР1554ИР35

Восьмиразрядный регистр хранения информации

20

90

140

50

78

КР1554ИР40

Восьмиразрядный регистр хранения информации (Z) с инверсными выходами

20

60

100

80

280


Обозначение микросхемы

Функциональное назначение

Число выводов корпуса

Предельная частота, МГц, при Uпит, В

Внутр. емкость, лф

Номер рис.

З

4,5

КР1554ИР41

Восьмиразрядный регистр хранения информации (Z) с инверсными выходами

20

60

100

80

280

КР1554ИР46

2 четырехразрядных сдвиговых регистра

16

75

85

50

228 К176ИР2

КР1564ИР47

18-разрядный сдвиговый регистр

14

75

85

50

228 564ИР1

КР1554ИР51

Четырехразрядный сдвиговый регистр

16

75

85

50

228 К561ИР9

КР1554КП2

2 мультиплексора 4-1

16

-

-

65

105

КР1554КП11

4 мультиплексора 2-1; Z

16

-

-

50

105

КР1554КП12

2 мультиплексора 4-1; Z

16

-

-

50

105

КР1554КП14

4 мультиплексора с инверсией 2-1 ;Z

16

-

-

55

105

КР1554КП16

4 мультиплексора 2-1

16

-

-

50

105

КР1554КП18

4 мультиплексора с инверсией 2-1

16

-

-

45

105

КР1554ЛА1

2 элемента 4И-НЕ

14

-

-

30

2

КР1554ЛАЗ

4 элемента 2И-КЕ

14

-

-

30

2

КР1554ЛА4

3 элемента ЗИ-НЕ

14

-

-

30

2

КР1554ЛЕ1

4 элемента 2ИЛИ-НЕ

14

-

-

30

3

КР1554ЛЕ4

3 элемента ЗИЛИ-НЕ

14

-

-

30

3

КР1554ЛИ1

4 элемента 2И

14

-

-

30

4

КР1554ЛИ6

2 элемента 4И

14

-

-

30

4

КР1554ЛИ9

6 повторителей

14

-

-

30

164 К561ПУ8

КР1554ЛЛ1

4 элемента 2ИЛИ

14

-

-

30

5

КР1554ЛН1

6 элементов НЕ

14

-

-

30

6

КР1554ЛП5

4 сумматора по модулю 2

14

-

-

30

135

КР1554ТВ9

2 JK-триггера

16

100

140

35

16

КР1554ТВ15

2 JK-триггера

16

100

140

35

16

КР1554ТМ2

2 D-триггера

14

100

140

35

16

КР1554ТМ8

Четырехразрядный регистр

16

90

100

45

49

КР1554ТМ9

Четырехразрядный регистр

16

90

100

85

49


в скобках для каждого выхода должно быть свое произведение емкости нагрузки на частоту выходных импульсов. Входная емкость, значение которой необходимо учитывать при расчете емкости нагрузки, для всех микросхем равна 4,5 пФ.

На рис. 281 изображена зависимость потребляемого тока от частоты входных импульсов для четырех элементов микросхемы КР1554ЛАЗ, соединенных в последовательную цепь. Выход каждого из первых трех элементов нагружен двумя входами следующего, выход последнего - конденсатором емкостью 9,1 пФ. Напряжение питания - 5 В. Показанная зависимость потребляемого тока от частоты для микросхем серии КР1554 соответствует сумме внутренней емкости и емкости нагрузки 35 пФ (паспортное значение этой суммы - 39 пФ).

2-63.jpg

На этом же рисунке представлены аналогичные зависимости для микросхем группы ЛАЗ серий ТТЛ и микросхемы К561ЛА7. Из сравнения графиков можно сделать вывод, что устройства на микросхемах серии КР1554 практически всегда будут потреблять меньшую мощность по сравнению с устройствами на микросхемах других рассматриваемых серий.

Повышенную по сравнению с микросхемами серий К555 и КР1533 потребляемую микросхемами серии КР1554

мощность на высокой частоте объясняют меньшим логическим перепадом в микросхемах ТТЛ и, как следствие, необходимостью заряжать внутреннюю емкость и емкость нагрузки до меньшего напряжения, а также меньшими значениями сквозного тока у микросхем ТТЛ.

Микросхемы серии КР1554 можно широко применять вместо соответствующих микросхем серий ТТЛ и совместно с ними и микросхемами структуры КМОП. При управлении микросхемами ТТЛ сигналами микросхем серии КР1554, питающихся от того же источника питания, никаких мер по согласованию применять не требуется. Если же к выходу микросхемы ТТЛ подключен вход микросхемы серии КР1554 (как, впрочем, и любой другой серии КМОП), этот выход следует соединить с плюсовым проводом питания через резистор сопротивлением 2,2...5,1 кОм.

Поскольку микросхемы серии КР1554 обеспечивают малую длительность фронта и спада импульсов независимо от частоты, на

которой работают, необходимо внимательно подходить к разводке печатных плат. Как минусовый, так и плюсовый проводники питания должны иметь максимальную ширину; для общего провода желательно использовать фольгу одной из сторон печатной платы целиком. Не следует скупиться на блокировочные конденсаторы цепи питания - надо устанавливать по одному конденсатору емкостью 0,033...0,047 мкФ на каждые 2-3 микросхемы.

Если нет необходимости в высоком быстродействии, микросхемы серии КР1554 применять нецелесообразно, лучше использовать серию К561 или КР1561. :

Микросхемы серии КР1554 значительно более устойчивы к воздействию статического электричества, чем микросхемы других серий структуры КМОП, однако при их монтаже и эксплуатации следует придерживаться обычных правил работы с такими микросхемами.

 

К1554ИР40

Изображение: 

ЛА3 и ток потребления

Изображение: 

зависимость от выходного тока

Изображение: 

3. Формирователи и генераторы импульсов.

3. Формирователи и генераторы импульсов

В цифровых устройствах на микросхемах большую роль играют различные формирователи импульсов - от кнопок и переключателей, из сигналов с пологими фронтами, дифференцирующие цепи, а также мультивибраторы. В данном разделе книги рассмотрены некоторые вопросы построения таких формирователей и генераторов на микросхемах серий КМОП.

Как известно, непосредственная подача сигналов от механических контактов на входы интегральных микросхем допустима не всегда изза так называемого «дребезга» - многократного неконтролируемого замыкания и размыкания контактов в момент их переключения. Если входы, на которые подается сигнал, нечувствительны к дребезгу, например входы установки триггеров и счетчиков, непосредственная подача сигналов допустима (рис. 282). Подача сигналов на счетные входы требует специальных мер по подавлению дребезга, без них возможно многократное срабатывание триггеров и счетчиков.

31.jpg

В устройствах на микросхемах КМОП вполне применимы меры по борьбе с дребезгом, известные из опыта работы с микросхемами ТТЛ, например, включение статического триггера на двух элементах И-НЕ (рис. 283, а, б) или ИЛИ-НЕ. Однако чрезвычайно высокое входное сопротивление микросхем КМОП (по-

рядка сотен и тысяч мегаом) и относительно высокое выходное сопротивление (сотни ом - один килоом) позволяет упростить цепи подавления дребезга, исключив резисторы (рис. 283, в, г). Вариантом схемы рис. 283 (г) является устройство по схеме рис. 283 (д), собранное всего лишь на одном неинвертирующем логическом элементе.

Здесь следует сказать несколько слов о неинвертирующих логических элементах серий КМОП. Большинство логических элементов этих серий являются инвертирующими. Неинвертирующими являются микросхемы К176ПУЗ, К561ПУ4, КР1561ПУ4, К176ПУ5,564ПУ6, К561ПУ8, К561ЛНЗ, К176ЛП2, К561ЛП2, К561ЛП13, К561ЛП14, К176ЛС1, К176ЛС2, К176ЛИ1, КР1561ЛИ2, К561ИК1. Как указывалось выше, микросхемы, содержащие в своем обозначении буквы «ПУ», служат для согласования микросхем КМОП с микросхемами ТТЛ. По этой причине их выходные токи при подаче на их выходы напряжения питания или соединении выходов с общим проводом в устройстве по схемам рис. 283 (в, г, д) могут достигать многих десятков миллиампер,

32.jpg

что отрицательно сказывается на надежности устройств и может служить мощным источником помех. В мультивибраторах и триггерах Шмитта, описываемых ниже, также невыгодно применять такие микросхемы из-за больших токов, потребляемых ими в процессе плавного изменения входного сигнала. По тем же причинам не рекомендуется в описываемых здесь устройствах использовать инвертирующие микросхемы К176ПУ1, К176ПУ2, К561ЛН1, К561ЛН2.

Поэтому в дальнейшем под неинвертирующим логическим элементом подразумевается или два последовательно включенных любых инвертирующих элемента (кроме отмеченных выше), или микросхема КР1561ЛИ1, или микросхемы К176ЛП2, К561ЛП2, К561ЛП13, К561ЛП14, К176ЛС1, К561ЛС2, К561ИК1. включенные как неин-

вертирующие элементы. О возможности их использования в качестве неинвертирующих указано в предыдущей главе книги. Иногда удобно в качестве .неинвертирующего элемента использовать свободный триггер микросхемы К176ТМ2 или К561ТМ2 (рис. 284).

Микросхему К176ЛИ1 также можно использовать как неинвертирующий элемент рассматриваемых далее устройств, однако

33.jpg

это не очень удобно, так как в одной микросхеме содержится всего один девятивходовый неинвертирующий элемент И и один инвертор.

Большое входное сопротивление микросхем КМОП позволяет в некоторых случаях обойтись вообще без активных элементов для подавления дребезга. На рис. 285 (а) приведена схема подачи импульсов от кнопки на счетный вход триггера или счетчика. Конденсатор С1 в исходном состоянии заряжен до напряжения питания. При нажатии на кнопку размыкание нормально замкнутого контакта не приведет к изменению напряжения на конденсаторе С1. Первое касание подвижного и нормально разомкнутого контакта приведет к быстрому разря-ду конденсатора С1 и напряжение на нем станет равным нулю. Дальнейший дребезг контактов не приведет к изменению напряжения на конденсаторе. Недостатком схемы является опасность наводок помех на проводник, соединяющий кнопку и вход микросхемы. Если наводки действительно возникают, этот проводник следует заэкранировать.

34.jpg

Все рассмотренные выше схемы подавления дребезга требовали применения переключающих контактов кнопок. Если выполнение этого требования затруднено, возможно использование устройств по схемам рис. 285 (б, в). Цепь на схеме рис. 285 (б) формирует короткий импульс отрицательной полярности (порядка 0,7 мкс на уровне 0,5) в момент первого касания контактов кнопки, в результате чего конденсатор С1 быстро заряжается через резистор R2. Дальнейший дребезг контактов кнопки не влияет на выходное напряжение, так как разряд конденсатора С1 происходит через резистор R1 значительно большей величины.

Если необходимо получить длительность выходного импульса, равную длительности нажатия на кнопку с одной парой контактов, можно использовать подавление дребезга с помощью интегрирующей цепи и триггера Шмитта (рис. 285, в). Дребезг импульса на резисторе

R1 сглаживается цепью R2C1. Триггер Шмитта DD1 формирует крутые фронты выходного сигнала.

Для подавления дребезга контактов кнопки с одной парой контактов можно использовать цепь, три варианта схемы которой приведены на рис. 286. Цепь по схеме рис. 286 (а) По функционированию близка интегрирующей цепи и триггеру Шмитта рис. 285 (в). В исходном состоянии на входе и выходе цепи лог. 1. При замыкании кнопки S1 на левой обкладке конденсатора С1 напряжение начинает снижаться и, если постоянная времени R2C1 выбрана достаточно большой, достигает порога переключения элемента DD1.1 после прекращения дребезга Элементы DD1.1 и DD1.2 переключаются, на выходе появляется лог. 0 Положительная обратная связь обеспечивает крутые фронты сигнала на выходе элемента DD1.2. При размыкании контактов переключение происходит аналогично. В результате на выходе цепи формируется импульс, длительность которого соответствует времени замыкания контактов, а фронт и спад импульса несколько задержаны относительно моментов замыкания и размыкания контактов (рис. 286, б).

35.jpg

Если необходимо получить фронты выходного сигнала точно в моменты размыкания или замыкания кнопки, можно использовать варианты цепи по схемам рис. 286 (в, д). Первая из них (рис. 286, в) при замыкании кнопки формирует на выходе лог. О аналогично цепи рис. 286 (а). При размыкании кнопки лог. 1 поступает на нижний по схеме вход элемента DD1.1, оба элемента DD1.1 и DD1.2 переключаются, лог. 1 с выхода элемента DD1.2 через конденсатор С1 поступает на вход элемента DD1.1 и удерживает его во включенном состоянии на время дребезга контактов кнопки S1 (рис. 286, г).

Аналогично работает цепь по схеме рис. 286 (д), однако ее включе-

36.jpg

ние происходит при первом замыкании контактов кнопки S1, выключение - после окончания дребезга разомкнувшейся кнопки (рис. 286, е).

Переключатели с взаимовыключением можно построить на основе многостабильного триггера. Вариант схемы переключателя на три положения приведен на рис. 287. При включении питания лог. 0 с разряженного конденсатора С1 через диод VD1 поступает на входы элементов DD1.1 и DD1.2 и выключает их. Наих выходах появляются лог. 1, которые, поступая через резисторы R1 и R2 на входы элемента DD1.3, включают его, и лог. 0 с его выхода удерживает элементы DD1.1 и DD1.2 в выключенном состоянии и после заряда конденсатора С1 через резистор R4. Таким образом, в исходном состоянии на выходах 1 и 2 лог. 1, на выходе 3 - лог. 0.

При нажатии на кнопку SB1 на выходах 2 и 3 появляется лог. 1, на выходе 1 - лог. 0. Аналогично при нажатии на кнопку SB2 лог. 0 появляется на выходе 2, на кнопку SB3 - на выходе 3. Переключение выходных сигналов происходит без дребезга.

При одновременном нажатии двух или трех кнопок на всех трех входах появляется лог. 1, что соответствует отсутствию активных выходных сигналов. При отпускании кнопок лог. 0 появится на выходе, соответствующем последней нажатой кнопке. Однако снятие и появление выходных сигналов при нажатии нескольких кнопок происходит без подавления дребезга.

Недостаток такого переключателя - необходимость применения логических элементов с большим числом входов для построения переключателей на большое число положений. Для переключателя на

четыре положения необходимо четыре трехвходовых элемента И-НЕ (ИЛИ-НЕ), для переключателя на пять положений - пять

37.jpg

четырехвходовых элементов. При большем числе положений переключатели целесообразно строить на других принципах.

На рис. 288 приведена схема переключателя на четыре положения. При включении питания цепь C1R6 устанавливает все триггеры микросхемы DD1 в нулевое состояние. При нажатии любой из кнопок, например SB1, в момент размыкания верхнего по схеме контакта кнопки на вход D1 микросхемы приходит лог. 1, в момент замыкания нижнего

контакта на вход С - лог. 0. При размыкании кнопки изменение сигнала на входе С с лог. 0 на лог. 1 установит триггер со входом D1 в единичное состояние, на выходе 1 появится лог. 1. Так работал бы переключатель, если бы не было дребезга контактов. Из-за дребезга единица записывается в триггер при нажатии кнопки.

При нажатии любой другой кнопки после отпускания первой в единичное состояние установится соответствующий ей триггер, а первый триггер сбросится. Если нажать вторую кнопку, не отпуская первой, лог. 1 останется на выходе, соответствующем первой кнопке. Однако если вначале будет отпущена первая кнопка, затем вторая, в момент отпускания второй кнопки лог. 1 появится на выходе, соответствующем второй кнопке.

Переключатель по схеме рис. 288 может быть изготовлен и на большее число положений, его недостатком является необходимость использования переключающих контактов кнопок. Если необходимо изготовить переключатель на большое количество положений при использовании кнопок с одной парой замыкающих контактов, можно воспользоваться схемой рис. 289.

Цепь C1R5 служит для начальной установки в нулевое состояние триггеров микросхем DD3 и DD4. При нажатии любой из кнопок, например SB1, лог. 1 поступает на соответствующий вход одной из микросхем DD3 или DD4, в данном случае на вход D1 микросхемы DD3. Кроме того, лог. 1 через элемент ИЛИ (DD1, DD2.1) поступает на цепь подавления дребезга R6, С2, DD2.2, DD2.3 и с небольшой задержкой

38.jpg

появляется на входах С микросхем DD3 и DD4. В результате соответствующий триггер устанавливается в единичное состояние и на выходе переключателя появляется лог. 1. В данном случае лог. 1 появится на выходе 1 переключателя.

Если при нажатой кнопке нажать еще одну или несколько кнопок переключателя, изменений в состоянии переключателя не произойдет как при нажатии, так и при отпускании кнопок. Запись в триггеры переключателя возможна только при нажатии кнопки из состояния, в котором все кнопки отпущены.

Принципиально в переключателях по схемам рис. 288 и 289 возможно появление двух выходных сигналов при одновременном нажатии двух кнопок. Для переключателя по схеме рис. 288 это возможно в том случае, когда при нажатии двух кнопок их подвижные контакты будут одновременно находиться в незамкнутом ни с одним неподвижным контактом состоянии. Для переключателя по схеме рис. 289 одновременное появление двух выходных сигналов произойдет в случае, когда интервал времени между нажатием кнопок будет меньше задержки цепи подавления дребезга.

Для преобразования напряжения из синусоидального или другой формы с плавными фронтами в прямоугольные импульсы с хорошей формой используются триггеры Шмитта (рис. 290). Для этой схемы

эффективное значение входного напряжения синусоидальной формы должно составлять от 0,25 до 0,5 напряжения питания.

Описанные в первом разделе триггеры микросхем К561ТЛ1 и КР1561ТЛ1, а также триггер на основе микросхемы К176ЛП1 имеют неизменяемые пороги переключения. При необходимости использования триггеров Шмитта с другими порогами можно строить их, охватывая обратной связью неинвертирующий

логический элемент и подавая входной сигнал через резистор (рис. 291). Пороги включения Uвкл и выключения Uвыкл такого триггера можно найти по формулам:

Uвкл= (1 + R1/R2)Uпор

Uвыкл=Uпор-(Uпит-Uпор)R1/R2 где Uпор - пороговое напряжение логическо

39.jpg

310.jpg

го элемента. Обычно пороговое напряжение логических элементов близко к половине напряжения питания, поэтому пороги включения и выключения можно вычислить по формулам:

Uвкл = (1 + R1/R2)Uпит/2;

Uвыкл=(1-R1/R2)Uпит/2.

Ширина петли гистерезиса Uг (разность порогов включения и выключения) не зависит от Uпор и равна:

Uг=UпитR1/R2.

Для формирования коротких импульсов из перепадов на выходах микросхем применяют дифференцирующие цепи. На рис. 292 (а) показана дифференцирующая цепь для получения импульса по фронту входного импульса положительной полярности, на рис. 292 (б) - по спаду. Диоды VD1 и VD2 являются защитными и входят в состав микросхем серий К561, КР1561,564 и серии К176 выпуска последних лет. Как указывалось в первом разделе, в микросхемах серии К176 старых выпусков установлен только один диод - стабилитрон VD2 с напряжением включения порядка 30 В.

Резистор R2 служит для ограничения входного тока через конденсатор СГи входные диоды VD1 и VD2. Нагружая микросхему - источник сигнала, этот ток увеличивает длительность фронта на выходе микросхемы - источника, а ток более 20 мА, текущий через защитные

311.jpg

диоды, может привести к порче микросхем, подключенных ко входу и выходу дифференцирующей цепочки, особенно при питании устройства от источника питания с напряжением более 9 В. Сопротивление резистора R2 выбирают порядка 3...10 кОм, если напряжение питания менее 9 В и увеличение нагрузки на микросхему - источник сигнала не является принципиальным, этот резистор не ставят.

312.jpg

Эффективная длительность импульсов на выходе дифференцирующей цепочки 0,7R1C1, длительность спада - 2R1C1.

В радиолюбительских конструкциях для формирования коротких импульсов из перепадов можно встретить так называемую RCD-цепь, схема одного из вариантов которой приведена на рис. 293, иногда она используется без диода. Такая цепь по результату своей работы эквивалентна простейшей дифференцирующей цепочке, но сложнее ее, не имеет никаких преимуществ и поэтому не может быть рекомендована к применению.

В этом отношении интересна цепь по схеме рис. 294, формирующая короткие выходные импульсы по фронту и спаду входного. Длительность импульсов на выходе формировате-

лей по схемам рис. 293 и 294 такая же, как и для дифференцирующей цепочки, - 0.7R1C1.

Импульсы с фронтами или спадами длительностью более 10 мкс, поступая на входы микросхем КМОП, могут вызывать их генерацию, неустойчивую работу триггеров и счетчиков, поэтому при необходи-мости получения импульсов с длительностью более 10 мкс после диф(ференицуюшей цепочки целесообразно установить триггер Шмитта.

Другим решением для формирования длительных импульсов является применение ждущих мультивибраторов.

Описанные выше ждущие мультивибраторы КР1561АГ1 не всегда доступны, а если в устройстве нужен всего один ждущий мультивибратор, его тем более удобно собрать на логических элементах. На рис. 295 при-

313.jpg

ведена основная схема ждущего мультивибратора на элементах И-НЕ, запускаемого спадом положительного импульса. В исходном состоянии конденсатор С2 разряжен, на обоих входах элемента DD1.1 и на выходе элемента DD1.2 лог. 1. При поступлении с выхода дифференцирующей цепочки короткого импульса отрицательной полярности элемент DD1.1 выключается (рис. 296), DD1.2 включается и на его выходе появляется лог. 0. Спад напряжения с выхода элемента DD1.2 через конденсатор С2 передается на вход элемента DD1.1 и поддерживает его в выключенном состоянии. Конденсатор С2 начинает заряжаться током через резистор R2 от нуля до напряжения питания. Когда напряжение на левой по схеме обкладке конденсатора С2 достигнет порога включения элемента DD1.1, он включится, на выходе элемента DD1.2 напряжение начнет повышаться, это повышение, передаваясь через С2 на вход DD1.1, вызовет лавинообразный

314.jpg

процесс переключения обоих элементов. Диод VD1 необходим, если требуется быстрое восстановление исходного состояния ждущего мультивибратора. Он не нужен, если используются элементы микросхем серий К561, КР1561, 564 или К176 с двумя защитными диодами, так как диоды входят в их состав.

В радиолюбительских конструкциях распространен ждущий мультивибратор по схеме рис. 297. При запуске мультивибратора коротким импульсом отрицательной полярности оба инвертора переключаются и напряжение на входе инвертора DD2 начинает снижаться

по экспоненте, стремясь в пределе к нулю (рис. 298). Когда оно приближается к порогу переключения инвертора DD2, напряжение на его выходе начинает плавно повышаться, и когда оно достигнет порога переключения элемента DD1, напряжение на его выходе начинает снижаться, замыкается положительная обратная связь, возникает лавинообразный процесс переключения элементов мультивибратора.

Нетрудно видеть, что спад импульса, сформированного таким ждущим мультивибратором на выходе DD2, имеет затянутый участок, сигнал с этого выхода использовать нежелательно, следует использовать импульсы с выхода элемента DD1.

315.jpg

Иногда в радиолюбительских конструкциях можно встретить случаи запуска ждущего мультивибратора, собранного посхеме рис. 297, импульсом, длительность которого превышает длительность выходного импульса, без дифференцирующей цепи на входе. В этом случае устройство формирует выходной импульс соответствующей длительности с пологим спадом (рис. 299, г). Однако положительная обратная связь не замыкается, соединение выхода инвертора DD2 со входом DD1 никакой роли не играет. При таком запуске устройство эквивалентно двум инверторам, между которыми включена дифференцирующая цепь. Более целесообразно применить описанный выше ждущий мультивибратор, собранный по схеме рис. 295. В нем импульс на выходе DD1.2 не имеет затянутых фронтов (рис. 296), входной импульс для DD1.1, как для ждущего мультивибратора по схеме рис. 297, должен быть короче выходного.

Использование микросхем, которые могут работать в качестве логических неинвертирующих элементов И или ИЛИ, позволяет упростить схемы ждущих мультивибраторов. На рис. 300 (а) приведена схема ждущего мультивибратора на одном логическом элементе ИЛИ из микросхемы К561ЛС2, на оба управляющих входа которой подано напряжение питания. На рис. 300 (б) проиллюстрирована

316.jpg

возможность стробирования запуска четырех ждущих мультивибраторов на микросхеме К561ЛС2. Мультивибратор может запуститься лишь при подаче на вход Строб лог. 1 и фронта положительного импульса на вход запуска. Генерируемый импульс может быть оборван подачей лог. 0

на вход Срыв.

Большой гибкостью в отношении своего запуска обладают ждущие мультивибраторы нa JK- и D-триггерах. Устройства по схеме рис. 301 могут быть запущены или коротким импульсом, подаваемым на вход S триггера, или фронтом положительного импульса, подаваемого на вход С. Лог. 1, появляющаяся на прямом выходе триггера при запуске, через резистор R1 начинает заряжать конденсатор С1. Когда напряжение на конденсаторе достигнет порога переключения триггера по входу R, триггер переключится в исходное состояние. Диод VD1 служит для ускорения разряда конденсатора и восстановления исходного состояния, во многих случаях он может быть исключен. Длительность импульсов для ждущего мультивибратора определяется по той же формуле» что и для дифференцирующей цепочки.

317.jpg

Длительность импульсов, подаваемых на вход S триггеров для запуска мультивибраторов, должна быть меньше длительности формируемых импульсов. По входам С мультивибраторы запускаются по фронтам импульсов независимо от их длительности. Недостаток ждущих мультивибраторов, собранных по схемам рис. 301, - большая длительность спадов формируемых на обоих выходах импульсов, приводящая к неодновременному переключению элементов, подключенных кним. Во всех описанных выше мультивибраторах возможно применение полярных конденсаторов.

Если в ждущих мультивибраторах на JK- и D-триггерах левый по схеме вывод конденсатора отключить от общего провода и подключить к инверсному выходу триггера (рис. 302), можно существенно уменьшить длительность спада формируемого импульса на инверсном выходе триггера. В этих ждущих мультивибраторах нельзя, однако. применять полярные кондесаторы.

318.jpg

Малая длительность спада на инверсном выходе триггера объясняется тем, что положительная обратная связь замыкается через времязадающий конденсатор при незначительном возрастании напряжения на этом выходе, а не когда оно достигнет порога переключения элемента.

Все же, если не требуется возможность запуска ждущего мультивибратора по двум входам, из которых один чувствителен именно к фронту импульса, применять ждущие мультивибраторы на JK-и D-триггерах нецелесообразно. Более того, если можно обойтись дифференцирующей цепочкой, никакой ждущий мультивибратор лучше не использовать вообще.

Широко используемая схема простого генератора импульсов (мультивибратора) приведена на рис. 303. Работа такого мультивибратора несколько различается для случаев применения в них микросхем

серии К176 с одним защитным диодом или серии К176 и остальных серий с двумя диодами.

Форма колебаний в генераторе на микросхемах с одним диодом приведена на рис. 304. Верхняя диаграмма показывает зависимость от времени напряжения на левой обкладке конденсатора, нижняя -на выходе генератора. Спад напряжения

319.jpg

с выхода элемента DD2, поступая на вход элемента DD1 через конденсатор С1 и резистор R2, ограничивается входным диодом на уровне, близком к лог. О, после чего начинается заряд конденсатора через резистор R1, повышающий напряжение на левой обкладке конденсатора. Время его заряда до порогового напряжения примерно равно 0.7R1C1. Лавинообразный процесс переключения элементов приведет к передаче с выхода элемента DD2 на вход элемента DD1 положительного перепада напряжения с амплитудой, равной напряжению питания. Перезаряд конденсатора С1 в сторону уменьшения напряжения на левой обкладке начнется от напряжения Uпит + Uпор , в результате чего на этот процесс уйдет большее время - около 1,1R1C1. Полный период колебаний составит 1.8R1C1, частота - 0,55/R1CI.

Если в генератор установлены микросхемы с двумя защитными диодами, длительность обоих процессов перезаряда конденсатора будет одинаковой - 0.7R1C1, полный период - 1.4R1C1, частота - 0,7/R1C1.

Резистор R2 нужен, как и в дифференцирующих цепочках, для ограничения тока через входные диоды и уменьшения нагрузки на элемент DD2. Если его величина значительно меньше, чем у резистора R 1, он на частоту генерации не влияет. При соизмеримых величинах R1 и R2 частота генерации несколько снижается по сравнению с рассчитанной по приведенным выше формулам. Часто резистор R2 не ставят или устанавливают последовательно с конденсатором С1.

320.jpg

321.jpg

Хорошо известна также схема мультивибратора на двух инверторах (рис. 305), но частота генерации в нем менее стабильна.

Приведенное выше описание работы мультивибратора опиралось на идеализированную модель инвертора, в котором выходной сигнал равен напряжению питания, пока входное напряжение меньше порога переключения, и равно нулю, если входное напряжение выше порога. Однако в реальных микросхемах есть более или менее протяженный участок зависимости выходного напряжения от входного, на котором плавное изменение входного сигнала приводит к плавному изменению выходного (рис. 161). Он хорошо заметен в инверторах микросхемы К561ЛН2, элементах ИЛИ-НЕ серии К561, инверторах генераторов микросхем К176ИЕ5, К176ИЕ12, К176ИЕ18. В большинстве микросхем серии К176 и всех микросхемах серии КР1561 имеется два дополнительных инвертора, которые делают передаточную характеристику очень резкой, иногда даже гистерезисной. Наличие плавного участка и приводит к различию в работе генераторов по схемам рис. 303 и 305.

Рассмотрим подробно работу генератора по схеме рис. 303 на элементах с двумя защитны-

ми диодами с момента, когда на входе инвертора DD1 напряжение равно нулю. В этом случае на выходе инвертора DD2 напряжение также равно нулю, а на выходе DD3 - напряжению питания. Конденсатор С1 заряжается через резистор R1 по экспоненте, напряжение на его левой обкладке при этом стремится в пределе к напряжению питания (рис. 306, а). Когда напряжение на входе DD1 подойдет к порогу переключения, напряжение на выходе DD1 начнет плавно снижаться (рис. 306, б) и когда оно приблизится к порогу переключения инвертора DD2, напряжение на выходе DD2 начнет повышаться (рис. 306, в). Небольшое повышение напряжения на выходе инвертора DD2 передастся через конденсатор С1 на вход DD1, что вызовет лавинообразный процесс переключения всех инверторов генератора. Напряжение на выходе инвертора DD3 станет равным

нулю, на входе DD1 несколько превысит напряжение питания (оно будет ограничено входным защитным диодом инвертора), начнется аналогичный рассмотренному выше процесс перезаряда конденсатора с плавным уменьшением напряжения на входе DD1.

Если рассмотреть процессы в генераторе по схеме рис. 305 с того же момента, можно заметить, что вначале заряд конденсатора С1 происходит аналогично (рис. 307, а). Отличие начинается тогда, когда напряжение на выходе инвертора DD1 начинает уменьшаться (рис. 307, б). Уменьшение напряжения на выходе DD1 приведет к уменьшению напряжения на резисторе R1, что уменьшает скорость перезаряда конденсатора. Отрицательная обратная

322.jpg

связь через резистор R1 стремится установить напряжения на входе и выходе инвертора DD1 равными, в результате чего скорость изменения напряжения на выходе инвертора DD1 уменьшается и на спаде импульса появляется характерная ступенька. Если порог переключения инвертора DD2 равен порогу переключения инвертора DD1, при приближении напряжения на выходе DD1 к этому порогу начнется повышение напряжения на выходе DD2 (рис. 307, в), что вызовет лавинообразный процесс переключения обоих инверторов генератора.

Нетрудно видеть, что при тех же параметрах времязадающей RC-цепи период колебаний в генераторе по схеме рис. 305 будет несколько больше, чем у генератора по схеме рис. 303, а стабильность периода - хуже, так как напряжение на входе DD1 перед началом лавинообразного процесса меняется более плавно, и небольшие изменения порогового напряжения одного инвертора относительно другого приведут к значительному изменению периода работы генератора. Более того, при значительном отличии порогов переключения инверторов (а в микросхемах КМОП диапазон положения порога переключения составляет от 1/3 до 2/3 напряжения питания) генератор может вообще не заработать - напряжение на выходе первого инвертора за счет отрицательной обратной связи через резистор R1 застабилизируется на уровне его порога переключения, при этом оно будет находиться вне зоны переключения второго инвертора, положительная обратная связь через конденсатор С1 не замкнется, и инвертор DD2 не переключится. Поэтому в генераторе

по схеме рис. 305 следует всегда использовать инверторы одной микросхемы. Для генератора по схеме рис. 303 разброс порогов переключения инверторов не играет никакой роли, и инверторы могут быть из разных микросхем.

Поскольку процесс переключения инверторов в генераторе по схеме рис. 305 длится большее время, потребляемый этим генератором от источника питания ток больше.

Из рассмотрения работы генераторов следует важный практический вывод - выходной сигнал нежелательно снимать с выхода инвертора, к входу которого подключены времязадающие конденсатор и резистор (DD1). Фронты импульсов на этом выходе затянуты, кроме того, в генераторе по схеме рис. 305 на фронтах на этом выходе имеется ступенька, и их использование может привести к неодновременному срабатыванию элементов, подключенных к этому выходу, изза разброса порогов переключения микросхем. Кроме того, для триг-геров и счетчиков техническими условиями длительность фронтов импульсов, подаваемых на счетный вход, ограничена сверху, и подача затянутых фронтов на них недопустима. Эта рекомендация относится и к другим схемам генераторов и ждущих мультивибраторов.

Следует отметить, что из-за емкостной нагрузки несколько затягиваются фронты импульсов также на тех выходах элементов генераторов и ждущих мультивибраторов, к которым подключены времязадающие конденсаторы (DD2 на рис. 303 и 305). Поэтому выходные импульсы генератора по схеме рис. 303 лучше брать с выхода DD3, в любим генераторе или ждущем мультивибраторе устранить такое затягивание фронта можно включением последовательно с конденсатором или с входом DD1 резистора с сопротивлением 5...10 кОм.

323.jpg

В генераторе на трех инверторах (рис. 303) два из них (DD1.1 и DD1.2) можно заменить на повторитель сигнала. Удобно использовать микросхему К561ЛП2, поскольку каждый ее элемент может работать или как повторитель сигнала при соединении второго входа с общим проводом, или как инвертор при подаче на второй вход напряжения источника питания (рис. 308).

Отметим также, что если в качестве первого инвертора в генераторах по схемам рис. 303 и 305 ис-

пользовать триггер Шмитта, их работа и параметры различаться не будут - при достижении напряжения на входе инвертора DD1 соответствующего порога переключения он скачкообразно переключается, что

приводит к четкому переключению последующих инверторов (рис. 309).

Для построения генераторов очень удобны элементы микросхем, имеющие прямые и инверсные выходы и непосредственное прохождение сигнала со входа на эти выходы. На рис. 310 (а) приведена схема генератора на элементе микросхемы К176ПУ5, на рис. 310 (б) - на частимикросхемы К561ТМЗ. По этим схемам можно строить до четырех генераторов на одной микросхеме. В схеме рис. 310 (а) оба вывода питания микросхемы К176ПУ5 (15 и 16) должны быть объединены, на них подано напряжение 5...10 В. В уст-

324.jpg

ройстве по рис. 310 (б) входы С1 и С2 могут использоваться для блокировки работы генераторов при подаче на один из них низкого уровня, на другой - высокого.

На рис. 311 приведена схема генератора, удобного в тех случаях, когда необходимо получить сетку частот, переключаемых при помощи набора резисторов, и подстройку частот этой сетки пои сохране-

325.jpg

нии отношений частот (частотного строя). Переключателем SA1 можно выбрать любой из резисторов R4 - Rп, задающих частоту, а подстроить частоту можно переменным резистором R2, при этом любая подстройка резистором R2 будет приводить к одинаковому относительному изменению любой из частот, выбранной переключателем. При смещении

движка резистора R2 вверх по схеме уменьшаются перепады напряжения, передаваемые через конденсатор С1 на вход элемента DD 1, скорость перезарядки конденсатора при этом не меняется, поэтому частота импульсов увеличивается. Резистор R1 необходим для установки диапазона регулирования частоты резистором R2, этот диапазон может быть установлен от единиц процентов до нескольких десятков и даже ста раз.

326.jpg

Для того чтобы регулировка частоты при помощи резистора R2 была эффективной, необходимо исключить ограничение перепадов напряжения, передаваемых через конденсатор С1, которое существует в традиционных схемах генераторов, на входных диодах элемента DD1. Для этого установлен резистор R3, его сопротивление должно быть равно сумме сопротивлений резисторов R1 и R2 или несколько больше, чтобы по крайней мере в 2 раза уменьшить величину перепада. При меньшей величине или отсутствии R3 частота практически не изменяется, если сопротивление нижней по схеме части резистора R2 в сумме с R3 меньше сопротивления верхней части R2 в сумме с R1.

Чтобы сохранить строй при регулировке частоты, сопротивление резистора R3 должно быть в несколько десятков раз меньше, чем резисторов R4 - Rп. Для облегчения выполнения этого условия между выходом элемента DD2 и резистором R3 можно установить эмиттерный повторитель на транзисторе р-n-р. Верхний вывод резистора R1 можно подключить И к общему проводу, но нагрузочная способность микросхем КМОП, так же как ТТЛ, в единичном состоянии ниже, чем в нулевом, поэтому выполнение указанного выше условия в этом случае затруднено. Ориентировочные значения сопротивлений резисторов: R1 в сумме с R2 и R3 не менее 5 кОм, R1 - более 0,01R2, R4 -Rп - в 30 и более раз больше суммы R1 и R2. При наличии эмиттерного повторителя номиналы всех резисторов можно уменьшить в 10 раз.

Данный генератор удобно использовать для модуляции частоты импульсов, если на верхний по схеме вывод резистора R1 подать управляющее переменное напряжение.

На рис. 312 (а) приведена схема генератора, в котором можно отдельно регулировать длительность импульса и паузу между импульсами. В генераторе по схеме рис. 312 (б) можно в широких пределах регулировать скважность импульсов, практически не изменяя их частоту.

327.jpg

Запуск любого генератора и его останов можно производить установкой в качестве любого из DD1 - DD3 какого-либо двухвходового логического элемента (И-НЕ, ИЛИ-НЕ, Исключающее ИЛИ) и подачей на его второй вход управляющего сигнала.

На рис. 313 приведена схема генератора, формирующего пачки импульсов с частотой заполнения 1000 Гц, частота повторения пачек - около 1 Гц, длительность - 0,5 с. Генерация пачек происходит лишь при подаче лог. 1 на вход Запуск генератора. Первый импульс первой пачки появляется сразу после подачи разрешающего сигнала.

328.jpg

На рис. 314 приведена схема генератора, генерирующего на своем выходе импульсы, задержанные относительно момента подачи разрешающего сигнала. Все генерируемые на Вых. 1 генератора импульсы имеют одинаковую длительность. Если сигнал разрешения снимается до окончания очередного импульса, импульс генерируется полностью. На Вых. 2 импульсы появляются сразу после подачи разрешающего сигнала, но последний импульс может быть неполной длительности.

329.jpg

Если необходимо совместить выдачу импульсов сразу после сигнала разрешения с обеспечением полной длительности последнего импульса независимо от момента снятия импульса разрешения, можно использовать генератор по схеме рис. 315 (а).

Особенность этого генератора - его универсальность. Если входной запускающий импульс отрицательной полярности имеет длительность, меньшую периода колебаний генератора, на его выходах

330.jpg

сформируется один импульс, то есть генератор действует как ждущий мультивибратор. При подаче входного импульса с длительностью, превышающей период, будет сформировано несколько импульсов полной длительности (рис. 315, б).

Простой управляемый генератор можно собрать на основе триггера Шмитта микросхемы К561ТЛ1 или КР1561ТЛ1 по схеме рис. 316 (неуправляемый - на триггере рис. 275). При лог. 0 на входе Запуск на выходе - лог. 1. При подаче на

331.jpg

вход Запуск лог. 1 на выходе появляется лог. 0, начинается разряд конденсатора С1. Когда напряжение на нем доходит до нижнего порога переключения, на выходе появляется лог. 1 и начинается за-

ряд конденсатора до верхнего порога переключения. Особенностью генератора является отсутствие резких бросков тока на начальных участках перезаряда конденсатора, характерных для описанных выше генераторов.

Триггеры Шмитта целесообразно также использовать в цепях установки начального состояния цифровых устройств в тех случаях, когда постоянная времени установления выходного напряжения источника питания велика и необходимо обеспечить большую длитель-

332.jpg

ность импульса сброса и его крутой спад (рис. 317).

При необходимости можно собрать генератор из двух ждущих мультивибраторов одной микросхемы КР1561АГ1, схема такого автогенератора приведена на рис. 318 (без времязадающих цепей). Времязадаюшая RC-цепь ждущего мультивибратора DD1.1 определяет

333.jpg

длительность положительных импульсов на выходе 1, RC-цепь, подключенная к DD1.2, - длительность паузы между ними.

При необходимости получения колебаний с частотой 100 Гц и менее для уменьшения габаритов применяемых конденсаторов удобно использовать задающий генератор на относительно высокую частоту с последующим делением частоты многоразрядным делителем К176ИЕ5, К176ИЕ12, К176ИЕ18, К561ИЕ16, КР1561ИЕ20. Особенно удобны для такого варианта первые три микросхемы, так как они содержат необходимые для построения задающего генератора элементы. На рис. 319 приведена схема генератора на микросхеме К176ИЕ5. Задающий генератор собран на логических элементах DD1.1 и DD1.2, его схема эквивалентна схеме рис. 303. Выход задающего генератора внутри микросхемы подключен к делителю частоты на 512 DD1.3. Микросхема имеет еще один делитель частоты на 32 и 64 DD1.4. Вход этого делителя может быть подключен или к выходу задающего генератора F, или к выходу первого делителя, в последнем случае частота на выходе 15 будет в 32768 раз меньше частоты задающего генератора.

Схема RC-генератора на микросхеме К176ИЕ12 приведена на рис. 320. Задающий генератор по схеме рис. 305 на инверторах DD1.1 и DD1.2 подключен ко входу делителя DD1.3, коэффициент деления которого составляет 32768. Делитель также имеет выходы, частота импульсов на которых меньше частоты задающего генератора в 32,256, 16384 раз. Импульсы с частотой F/256 выведены на четыре выхода, их

334.jpg

335.jpg

фазовые соотношения для частоты задающего генератора 32768 Гц приведены на рис. 204. При их использовании следует помнить о коротких «просечках» на выходах Т1 и ТЗ, также показанных на рис. 204.

Микросхема имеет еще один счетчик с коэффициентом деления, равным 60. Его вход может быть подключен как к задающему генератору, так и к любому выходу первого счетчика. При подключении его к выходу S1 частота импульсов на выходе второго делителя будет в 196608 раз меньше частоты задающего генератора.

Хотя стабильность частоты RC-генераторов на микросхемах КМОП довольно высока (особенно в сравнении с генераторами на микросхемах ТТЛ), в ряде случаев более удобно применить кварцевый генератор с последующим делением частоты до необходимого уровня. Такой вариант получения необходимой частоты обеспечит не только высокую стабильность, но и исключит необходимость в подстроечных элементах, а габариты и стоимость кварцевого резонатора на 32768 Гц для наручных часов меньше, чем хорошего металлопленочного конденсатора.

336.jpg

Если частоты на выходах микросхем К176ИЕ5 или К176ИЕ12 соответствуют необходимым, целесообразно использовать именно их с их встроенными инверторами для кварцевого генератора. Если же в качестве делителя нельзя использовать указанные микросхемы, в кварцевом генераторе необходимо применить инвертор из микросхемы малой степени интеграции. Опыт показывает, что далеко не каждый инвертор работает в кварцевом генераторе по стандартной схеме рис. 321. Хорошо зарекомендовали себя элементы микросхем

К561ЛА7 и К561ЛЕ5, совсем не работают микросхемы К176ЛА7 и К176ЛЕ5. Микросхема К561ЛП2 очень удобна для построения различных генераторов и формирователей, однако внутренняя структура элементов микросхемы несимметрична относительно двух ее входов и в кварцевом генераторе ее элементы могут работать лишь при соединении с источником питания выводов 2,5,9 или 12. Кроме того, для улучшения формы выходного сигнала в генераторе по схеме рис. 321 с использованием микросхемы К561ЛП2 сопротивление резистора R2 целесообразно уменьшить до 180 кОм.

Микросхемы, содержащие счетчики с большим коэффициентом деления, могут с успехом использоваться и для построения ждущих мультивибраторов с большой длительностью импульсов при малой емкости используемых конденсаторов. Схема ждущего мультивибратора, использующего микросхему К561ИЕ16, приведена на рис. 322. В исходном состоянии на выходе счетчика DD2 - лог. 1, запрещающая работу генератора на элементах ИЛИ-НЕ DD1.1 и DD1.2. При подаче импульса положительной полярности на вход устройства счетчик DD2 обнуляется, на его выходе появляется лог. 0, разрешающий работу генератора. После того как счетчик отсчитает 2^13 импульса, на его выходе появится лог. 1, запрещающая работу генератора. Таким образом, по фронту импульса на входе запуска на выходе устройства формируется импульс отрицательной полярности длительностью 213 периода импульсов задающего генератора. Интересно отметить,

337.jpg

что при этом на выходе 2^12 формируется им-пульс положительной полярности вдвое меньшей длительности, оканчивающийся одновременно с основным, на выходе 2^11 - два импульса и так далее (рис. 323).

Поскольку формирование выходного импульса всегда начинается из одного и того же состояния задающего генератора, исключается

338.jpg

339.jpg

случайная погрешность длительности импульса, связанная с неопределенностью фазы генератора.

Ждущий мультивибратор можно собрать всего на одной микросхеме К176ИЕ5 (рис. 324). Работает этот ждущий мультивибратор так же, как и описанный выше, но генератор собран на инверторах, предназначенных для кварцевого генератора микросхемы. Для запрета его работы лог. 1 с выхода 15

микросхемы подается на вход цепочки инверторов генератора через диод VD1. При подаче импульса на вход запуска лог. 0 с выхода 15 микросхемы закрывает диод VD1, и он не мешает нормальной работе генератора.

Длительность формируемого импульса ждущего мультивибратора по схеме рис. 324 составляет 2^14 периода задающего генератора.

Так же, как и в описанном выше ждущем мультивибраторе, на предпоследнем выходе счетчика 14 формируется импульс положительной полярности вдвое меньшей длительности, на выходе 9 - пачка из 32 импульсов.

При необходимости кварцевой стабилизации длительности формируемых импульсов следует воспользоваться схемой рис. 325, поскольку включать и выключать кварцевый генератор так, как RC-генератор, нельзя. К сожалению, ждущему мультивибратору по схеме рис. 325 присуща случайная погрешность длительности импульса порядка

340.jpg

периода кварцевого генератора. При использовании в этой схеме в качестве DD1 микросхемы К176ИЕ5, К176ИЕ12, К176ИЕ18 сигнал с выхода элемента DD1.2 следует подавать на входы Z этих микросхем. Описанным выше ждущим мультивибраторам с делением частоты свойственен недостаток, связанный с тем, что при подаче питания они вырабатывают на своем выходе импульс неопределенной длительности, не превышающий, однако, длительности импульса, на который он рассчитан.

Если длительность запускающего импульса не превышает половины периода задающего генератора, дифференцирующая цепочка в пусковой цепи описанных выше ждущих мультивибраторов не нужна.

Ждущим мультивибраторам с делением частоты также присуще свойство перезапуска, аналогично микросхеме КР1561АГ1, - если во время формирования выходного импульса придет очередной запускающий, отсчет длительности импульса начнется заново от последнего запускающего импульса.

Сопротивление резисторов, входящих в дифференцирующие цепи, во времязадающие цепи всех описанных в разделе мультивибраторов и генераторов следует выбирать так, чтобы токи через них не слишком нагружали микросхемы-источники сигнала, - не менее нескольких десятков килоом. Сверху сопротивления этих резисторов ограничены величиной порядка десятков мегаом из-за возможных утечек монтажных плат. Емкость конденсаторов указанных цепей должна существенно превышать емкость монтажа и входную емкость микросхем, то есть, как правило, быть не менее 100 пФ.

При подаче на вход микросхемы сигнала через конденсатор последовательно со входом микросхемы ограничительный резистор можно не ставить, если ток через ограничительные диоды при переходных процессах не превысит 20 мА, например при подаче сигналов от стандартных микросхем КМОП при напряжении питания менее 9 В. Если напряжение питания больше 9 В или сигналы на дифференцирующие цепи подаются с выходов микросхем КМОП с повышенной нагрузочной способностью или от других низкоомных источников сигнала, последовательно со входом следует установить ограничительный резистор сопротивлением 3...10 кОм.

При разработке генераторов и ждущих мультивибраторов следует в непосредственной близости от используемых микросхем установить керамический блокировочный конденсатор емкостью не менее 0,022 мкФ, это исключит возможность появления паразитной высокочастотной генерации, иногда возникающей при плавном переключении микросхем и отсутствии блокировочных конденсаторов.

 

Рис. 282 Импульсы с "дребезгом" на контактах кнопки

Изображение: 

Рис. 283 Подавление дребезга при помощи триггера

Изображение: 

Рис. 284 Использование D-триггера в качестве неинвертирующего элемента

Изображение: 

Рис. 285 Формирование импульсов без активных элементов

Изображение: 

Рис. 286 Подавление дребезга кнопки с одной парой контактов

Изображение: 

Рис. 287 Переключатель с взаимовыключением на основе трехстабильного триггера

Изображение: 

Рис. 288 Переключатель на микросхеме К561ИР9

Изображение: 

Рис. 289 Переключатель на 8 положений

Изображение: 

Рис. 290 Преобразователь синусоидального напряжения в прямоугольные импульсы

Изображение: 

Рис. 291. Триггер Шмидта на неинвертирующем элементе

Изображение: 

Рис. 292 Дифференцирующие цепочки, работающие по фронту и спаду

Изображение: 

Рис. 293 RCD-цепь для формирования коротких импульсов

Изображение: 

Рис. 295 основная схема ждущего мультивибратора

Изображение: 

Рис. 296 Временная диаграмма работы ждущего мультивибратора

Изображение: 

Рис. 298 Временная диаграммы работы ждущего мультивибратора при запуске кортоким импульсом

Изображение: 

Рис. 300 Ждущий мультивибратор на элементе микросхемы К561ЛС2

Изображение: 

Рис. 301 Ждущие мультивибраторы на D-триггере и JK-триггере

Изображение: 

Рис. 302 Ждущие мультивибраторы с увеличенной крутизной фронтов выходных импульсов на D-триггере и JK-триггере

Изображение: 

Рис. 303 Генератор импульсов на трех инверторах

Изображение: 

Рис. 304 Временная диаграмма работы генератора

Изображение: 

Рис. 305 Генератор импульсов на двух инверторах

Изображение: 

Рис. 307 Временная диаграмма работы генератора

Изображение: 

Рис. 308 Генератор на двух элементах "Исключающее ИЛИ"

Изображение: 

Рис. 309 Временная диаграмма работы генератора на триггерах Шмидта

Изображение: 

Рис. 310 Генераторы на микросхемах с прямыми и инверсными выходами

Изображение: 

Рис. 311 Генератор сетки частот

Изображение: 

Рис. 312 Генератор импульсов с раздельной регулировкой длительности и паузы и регулировкой скважности

Изображение: 

Рис. 313 Генератор пачек импульсов

Изображение: 

Рис. 314 Управляемый генератор импульсов и временная диаграмма его работы

Изображение: 

Рис. 315 Универсальный управляемый генератор импульсов и временная диаграмма его работы

Изображение: 

Рис. 316 Генератор импульсов на основе триггера Шмидта

Изображение: 

Рис. 317 Формирователь импульса начальной установки

Изображение: 

Рис. 318 Генератор импульсов на микросхеме КР1561АГ1

Изображение: 

Рис. 319 RC-генератор на микросхеме К176ИЕ5

Изображение: 

Рис. 320 RC-генератор на микросхеме К176ИЕ12

Изображение: 

Рис. 321 Кварцевый генератор

Изображение: 

Рис. 322 Ждущий мультивибратор на микросхеме К561ИЕ16

Изображение: 

Рис. 323 Временная диаграмма работы ждущего мультивибратора

Изображение: 

Рис. 324 Ждущий мультивибратор на микросхеме К561ИЕ5

Изображение: 

Рис. 325 Ждущий мультивибратор с кварцевой стабилизацией

Изображение: 

4. Схемотехника узлов на МОП микросхемах

Схемотехника узлов на МОП микросхемах.

 

1. Общие особенности микросхем, работающих в режиме микротоков.

Общие особенности микросхем, работающих в режиме микротоков.

Промышленность выпускает широкий ассортимент логических микросхем, использующих структуры металл-окисел-полупроводник (МОП или КМОП).На их основе выполнены такие распространенные серии, как К176 (CD4000), К561 (CD4000A), КР1561 (CD4000B), 564 и 1564 — в скобках указаны импортные аналогичные серии. Эти микросхемы отличаются очень малым потреблени ем тока в статическом режиме — 0,1... 100 мкА, высокой надежностью и помехоустойчивостью.

Отличительная особенность серии КР1561 от К561 — наличие буферных элементов на входах и выходах, в результате чего все микросхемы серии имеют примерно одинаковые выходные характеристики. Кроме того, микросхемы КР1561 защищены от перегрузок как по входу, так и по выходу (в выходные цепи добавлены токоограничительные резисторы), но некоторые из элементовданной серии имеют меньший допустимый диапазон питающего напряжения.

Логика работы микросхем с идентичными буквенно-цифровыми обозначениями после номера серии у К176, К561, КР1561, 564 и 1564 одинакова (нумерация выводов та же).

Микросхемы серии К561 (564,1561,1564) являются более современными по сравнению с серией 176 и превосходят их по всем параметрам. Кроме того, у них более широкий номенклатурный перечень. Сравнить основные параметры
серий микросхем можно по приведенной таблице 1.1.

Таблица 1.1

Параметр
микросхемы

К176
CD4000

К561
CD4000A

CD4000B
МС14000В

564

74НС
ММ54НС

SN74HC

КР1554
74АС

Р, (мкВт/вент)

10

0,4

0,4

0,4

0,4

0,2

25

Тзад,(нс)

200

50

50

50

10

10

10

Uпит,(В)

5...12

3...15

3...15

3...15

2...6

5

2...6

 


Серии 564 и 1564 выпускаются с планарным расположением выводов и отличаются от остальных серий МОП микросхем меньшими размерами корпуса и повышенной радиационной стойкостью (используются военными).

В последние годы все большее распространение получают серии (74AS.., SN74HC.., SN74HCT.., SN74HCTL.), созданные на базе КМОП-технологии и обладающие 100% совместимостью с ТТЛ микросхемами. Это позволяет во многих случаях выполнять прямую замену ТТЛ на аналоги без изменений электрической схемы. Как правило, они обладают меньшим быстродействием, чем ТТЛ серии, но и потребляют значительно меньшую мощность.

Начат выпуск МОП микросхем серии 1554 (74АС), обладающих повышенным быстродействием (до 150 МГц). Эта серия полностью совместима по параметрам и расположению выводов при замене ТТЛ.

Питание микросхем может находиться в широком диапазоне: для серии К176 от 5 до 12 В (номинальное напряжение 9 В); для серий К561, 564 +3...15 В, для 1554+2...6 В.

Диапазон допустимой окружающей температуры для микросхем серии К176 от -10 до +70 °С; К561 и КР1561 от -45 до +85 °С; 564 от -60 до +125 °С, 1564 и 1554 от -60 до +125 °С. Фактически микросхемы сохраняют работоспо собность в более широком диапазоне, но разработчики не гарантируют в этом случае их паспортные параметры.

Большинство МОП микросхем применяются на частотах до 1 МГц, а некоторые элементы серии, например К561ЛН2, К561ТМ2, могут работать на частотах до 4 МГц. При использовании микросхем на предельно допустимой частоте
питание должно быть также максимальным (обеспечивается более крутой фронт импульсов). Увеличение напряжения питания микросхем также улучшает их по мехоустойчивость.

Выходные уровни микросхем практически не отличаются от напряжения питания (лог. "1") и потенциала общего провода (лог. "О").

Благодаря высокому входному сопротивлению (RBX >100 МОм) микросхемы имеют высокую нагрузочную способность Краз >10...30 (количество входов, которые можно подключить к выходу логического элемента, ограничивается
только емкостью монтажа; при Краз=10 паразитная емкость нагрузки составляет Сн=20 пФ).

Выходное сопротивление большинства микросхем при лог. "1" и лог. "О" составляет 100...1000 Ом (зависит от напряжения питания).

Надежность работы устройств на логических микросхемах зависит и от построения схемы. Так, например, нельзя подавать входные сигналы, не подав питание, а также недопустимо превышение уровня входного сигнала
над питающим напряжением
(исключением являются специально приспособленные для этого микросхемы 561ЛН2 и преобразователь уровня 561 ПУ4). Напряжение источника питания должно подаваться раньше или одновременно с
подачей входных сигналов. Это связано с тем, что во входных цепях микросхем стоят защитные диоды, соединенные с шинами питания, и в случае появления напряжения на входе (при отсутствии питания) возможно протекание тока по це-
пи "вход" — "шина питания", что допускать нельзя.

Повредить микросхему может так называемый "тиристорный эффект", возникающий при превышении уровня входного сигнала над питающим напряжением. Поэтому необходимо обеспечить первоочередное выключение входных
сигналов до отключения напряжения питания.

Не желательна подача на входы ЛЭ медленно меняющихся сигналов, так как при этом могут возникнуть на выходе многократные переключения (дребезг), а также возрастает потребляемый ток. В этих случаях применяют элемен-
ты, обладающие гестирезисом порога переключения (561ТЛ1).

У микросхем все свободные входы логических элементов (ЛЭ) должны обязательно подключаться к общему проводу или лог. "1" (зависит от логики работы). В качестве лог. "1" может использоваться напряжение источника питания
микросхем. Разработчики серий рекомендуют подключать входы к "+" источника через ограничительный резистор номиналом не менее 1 кОм. Резистор защищает входы от импульсных помех по цепям питания, ограничивая обратный ток через защитные диоды внутри микросхемы (при автономном питании, если помехи исключены, его часто не устанавливают). В одном корпусе микросхемы, как правило, находится несколько однотипных ЛЭ — все входы неиспользуемых элементов должны быть подключены к общей шине. Если этого не сделать, то бу-
дет повышенное потребление тока, что может приводить к сбоям в работе соседних элементов (были случаи повреждения микросхемы).

При изготовлении конструкции цепи питания микросхем выполняются толстыми проводниками, чтобы снизить индуктивность между выводами корпуса микросхем и шиной общего провода. В цепи питания на печатной плате реко-
мендуется устанавливать развязывающие емкости в виде параллельного соединения двух конденсаторов: низкочастотных (до 20 кГц) из расчета 2,2 мкФ и высокочастотных (до 2 МГц) из расчета 0,068 мкФ на каждые 50 микросхем.

Для согласования МОП микросхем с другими сериями используются преобразователи уровня 176ПУ1...176ПУЗ, 561 ПУ4, 561ЛН2, что исключает сбои в работе (из-за разного быстродействия) и перегрузку выходов (у микросхем ТТЛ
серий требования к крутизне фронта логических сигналов более высокие).

При монтаже устройств с КМОП микросхемами необходимо принимать меры по защите их от пробоя статическим электричеством. Опасное значение электрического потенциала составляет 100 В. Поэтому пайку микросхем лучше
начинать с выводов питания и заземленным паяльником.

 

2. Подавление дребезга механических контактов

Подавление дребезга механических контактов

Непосредственная подача сигналов на входы микросхем от кнопок и переключателей не всегда допустима из-за так называемого "дребезга" — многократного неконтролируемого замыкания и размыкания контактов в момент переключения (происходит из-за механического резонанса в течение времени до 40...100 мс).

Нечувствительными к дребезгу являются входы начальной установки триггеров, счетчиков и регистров (обнуление по входам R). В этом случае могут использоваться схемы рис. 1.1.

Подача логических уровней сигнала на счетные входы микросхем требует подавления дребезга — без этого возможно случайное многократное срабатывание счетчиков.

На рис. 1.2 приведены схемы подавления дребезга с помощью RS-триггера, собранного на отдельных ЛЭ. Варианты приведенные на рис. 1.2в и 1.2г,

Packet11.jpg

Рис. 1.1. Импульсы с дребезгом на контактах

Packet12.jpg

Рис. 1.2. Подавление дребезга при помощи:
а), б) RS-триггера на элементах 2И-НЕ; в), г) RS-триггера на элементах 2ИЛИ-НЕ

Packet13.jpg

Рис. 1.3. Использование одной микросхемы с четырьмя триггерами для
подавления дребезга

менее помехоустойчивы. Аналогичную схему можно выполнить на RS-триггере микросхемы 561 ТМ2, соединив неиспользуемые входы D и С с 0. Если требуется подавать много сигналов, то лучше воспользоваться мик-
росхемами с четырьмя триггерами в одном корпусе (рис. 1.3). На выходах триггеров 561 ТР2 сигнал лог. "1" появляется на время переключения S1...S4. При этом переключатели независимы друг от друга. Варианты формирователей сигналов на микросхемах 561 ТМЗ, 561 ИР9 и 561ИЕ11 обеспечивают фиксацию coстояния на выходе лог. "1" после нажатия соответствующей кнопки (остальные выходы обнуляются). Схемы (рис. 1.3б...1.3г) позволяют нажимать поочередна только одну кнопку, а при нажатии двух одновременно запоминается состояние
первой по времени сработавшей кнопки. Цепь из C1-R6 служит для начальной нулевой установки выходов при включении питания. Применение регистра ИР9 позволяет при необходимости иметь на выходах инверсные сигналы, подав на его управляющий вход 2 лог. "0".

Packet14.jpg

Рис. 1.4. Подавление дребезга на триггере с управлением по выходу

Packet15.jpg

Рис. 1.5. Формирование длинного импульса с помощью:
а) триггера Шмитта; б) триггера Шмитта собраннго на ЛЭ

Чаще удобнее использовать кнопки с одной группой контактов. Высокое входное сопротивление КМОП микросхем и относительно высокое выходное (100...1000 Ом) позволяют упростить узел подавления дребезга (рис. 1.4), но такое включение недопустимо для микросхем с повышенной нагрузочное способностью, например 561ЛН1, 561ЛН2, 176ПУ1,176ПУ2 и т. д., так как их выходные токи при закорачивании выхода на общий провод кратковременно могут достигать десятков миллиампер, что снизит надежность устройства, а также создаст импульсные помехи.

Подавление дребезга на контактах возможно с помощью RC-цепи и триггера Шмитта (рис. 1.5). На выходе ЛЭ формируется импульс с крутым фронтом.

Packet16.jpg

Рис. 1.6. Подавление дребезга с задержкой включения и выключения

Для подавления дребезга от кнопки с одной группой контактов могут применяться схемы, приведенные на рис. 1.6. Они аналогичны по принципу работы.
При замыкании кнопки SB1 емкость С1 начинает заряжаться. Постоянная времени цепи заряда (tз=0,7R2С1) выбирается такой, чтобы переключение элемен та D1.1 происходило после прекращения дребезга. При размыкании SB1 процесс перезаряда конденсатора аналогичен, что видно из диаграммы. Схемы на рис. 1.7, кроме подавления дребезга, позволяют получить задержку включения или выключения, если это необходимо, см. диаграммы.

На рис. 1.8 показана схема переключателя на три положения с взаимным выключением на основе трехстабильного триггера. При включении питания лог. "0" с разряженного конденсатора С1 через диод VD1 подается на входы элемен-
тов D1.1, D1.2 и на выходах появится лог. "1". Этот сигнал через резисторы R1 и R2 поступает на входы элемента D1.3 (на выходе появится лог. "0"). Таким образом, в исходном состоянии на выходах 1 и 2 будет лог. "1", а на выходе 3 —
лог. "0". При нажатии на кнопку SB1 на выходе 1 появится лог. "0", а на 2 и 3 — лог. "1". Аналогично происходит при нажатии других кнопок, что исключает дребезг сигнала на выходе, однако при одновременном нажатии сразу двух или трех кнопок переключение выходного уровня происходит без подавления дребезга.

При проектировании цифровых устройств с подачей управляющих сигналов от многокнопочной клавиатуры для уменьшения числа деталей используют

Packet17.jpg

Рис. 1.7. Подавление дребезга с задержкой:
а) выключения; 6) включения

Packet18.jpg

Рис. 1.8. Переключатель с взаимовыключением на основе трехстабильного
триггера

матричные шифраторы, на выходе которых в зависимости от номера нажатой кнопки формируется соответствующий двоичный код (например Л5, стр. 279; ЛЗ стр. 226).

В качестве простейших схем для подавления дребезга механических контактов могут использоваться ждущие мультивибраторы.

 

Рис. 1.1. Импульсы с дребезгом на контактах

Изображение: 

Рис. 1.2. Подавление дребезга при помощи: а), б) RS-триггера на элементах 2И-НЕ; в), г) RS-триггера на элементах 2ИЛИ-НЕ

Изображение: 

Рис. 1.3. Использование одной микросхемы с четырьмя триггерами для подавления дребезга

Изображение: 

Рис. 1.4. Подавление дребезга на триггере с управлением по выходу

Изображение: 

Рис. 1.5. Формирование длинного импульса с помощью: а) триггера Шмитта; б) триггера Шмитта собраннго на ЛЭ

Изображение: 

Рис. 1.6. Подавление дребезга с задержкой включения и выключения

Изображение: 

Рис. 1.7. Подавление дребезга с задержкой: а) выключения; 6) включения

Изображение: 

Рис. 1.8. Переключатель с взаимовыключением на основе трехстабильного триггера

Изображение: 

3. Расширители импульсов

Расширители импульсов

В системах передачи информации для ослабления влияния случайных флуктуаций, а также для управления в устройствах автоматики нередко требуется из коротких импульсов получать более широкие, определенной длительности.
Эта задача легко реализуется с помощью ждущего мультивибратора (одновибратора). Одновибратор является триггерной схемой, которая генерирует одиночный импульс под действием внешнего управляющего сигнала. При этом
подразумевается, что формируемый импульс превышает длительность запускающего.

Packet19.jpg

Рис. 1.9 Формирователь широкого импульса с использованием триггера Шмитта

Как правило, применяют один из двух методов формирования импульса:

аналоговый или цифровой. Наиболее простым является аналоговый — используется процесс перезаряда конденсатора. Пример такой схемы показан на рис. 1.9. Для правильной работы данного одновибратора необходимо, чтобы дли тельность входного запускающего импульса была достаточно большой, чтобы конденсатор успел полностью разрядиться. После окончания запускающего импульса конденсатор заряжается через резистор до величины напряжения питания. При этом, как только напряжение достигнет Uпор — элемент D2.1 переключится. В этом случае длительность выходного импульса (tи) зависит от номиналов установленных емкости и резистора во времязадающей цепи. Упрощенная формула позволяет ориентировочно рассчитать длительность импульса:

Packet110.jpg

где Е — напряжение питания схемы;
Uпор — уровень используемого порога, рис. 1.10, для переключения элемента.

С учетом разброса значений напряжения порога переключения (Uпор) длительность импульса может принимать значения от tмин=0,4RC до tмax=1,11RC. Обычно в одновибраторах используются ЛЭ из одного корпуса (кристалла). В этом случае разброс Unop оказывается незначительным и можно принять tи=0,69RC. Это соотношение используется для определения длительности импульса в большинстве схем, рис. 1.11...1.18. Эпюры напряжения поясняют процессы формирования выходного импульса. Схемы, показанные на одном рисунке, являются аналогичными по логике работы и имеют ту же самую диаграм му напряжений в контрольных точках.

В отличие от простейшего варианта (рис 1.9) схемы, приведенные на рис. 1.11...1.14 не чувствительны к длительности входного импульса, из-за чего

Packet111.jpg

Рис. 1.10. Области допустимых уровней сигнала на входе МОП микросхем

Packet112.jpg

Рис. 1.11. Одновибратор с одной времязадающей цепью

Packet113.jpg

Рис. 1.12. Одновибратор на основе RS-триггера

Packet114.jpg

Рис. 1.13. Одновибратор по фронту входного сигнала

Packet115.jpg

Рис. 1.14. Одновибратор

наиболее широко применяются в аппаратуре. Схемам, рис. 1.9, 1.15...1.17, присуще свойство перезапуска, т. е. если во время формирования выходного импульса появляется очередной запускающий, то отсчет длительности формируемого импульса начнется заново от момента окончания последнего запускающего.

Применяемые в схемах диоды ускоряют процесс перезаряда емкости, что уменьшает возможности возникновения импульсных помех на выходе ЛЭ.

Чтобы выходное сопротивление ЛЭ не сказывалось на точности расчета, а также не перегружался выход, резистор R1 должен быть номиналом не менее 10... 20 кОм. Чтобы пренебречь при расчетах емкостью монтажа, минимальная
емкость С1 может быть 200... 600 пФ. Для получения высокой температурной стабильности временного интервала номинал R1 должен быть < 200 кОм, а конденсатор не более 1, 5 мкФ. Использование электролитических конденсаторов увеличивает нестабильность временного интервала.

Для уменьшения влияния разброса значений Unop на длительность формируемого импульса можно воспользоваться схемами с двумя времязадающими цепями (рис. 1. 18). Если постоянные времени обеих времязадающих цепей

Packet116.jpg
Рис. 1.15. Формирователи импульса после окончания действия
запускающего сигнала

одинаковы, то при максимальном разбросе значений Unop от 0, 33Uпит до 0,69Uпит изменение длительности формируемого импульса не превышает 9%.
Выполнение одновибраторов на RS-триггере, рис. 1. 19 и 1. 20, дает возможность иметь два раздельных входа запуска (по переднему фронту импульса), а также сразу получать на выходах прямой импульс и импульс с инверсией. Еще одним преимуществом одновибраторов на RS-триггерах является возможность осуществлять запуск от медленно меняющегося входного напряжения.

Packet117.jpg

Рис 1.16 Формирователи импульсов

Packet118.jpg

Рис 1.17 Формирователи импульсов

Длительность подаваемых на вход S запускающих импульсов должна быть меньше формируемого (режим, когда на входах S и R одновременно присутствует лог. "1", является запрещенным). На входе С длительность запускающего импульса может быть любой. Диод VD1 ускоряет разряд конденсатора через выход триггера и позволяет увеличить частоту запускающих импульсов (его применение уменьшает время восстановления схемы). Длительность формируемых им пульсов составляет приблизительно tи=0,69R1C1. Минимальное значение

Packet119.jpg

Рис. 1.18 Одновибраторы с двумя времязадающими цепями

Packet120.jpg

Рис. 1.19. Ждущие мультивибраторы:

а) на D-триггере; б) на JK-триггере,
в) с повышенной стабильностью при изменении питания

сопротивления R1 ограничено максимально допустимым выходным током триггера Его можно менять в пределах 20 кОм...10 МОм, при этом длительность импульса будет меняться в 500 раз. Одновременное изменение значений R1 и С1 позволяет регулировать длительности импульсов в пределах четырех порядков.

Packet121.jpg

Рис 1 20. Ждущие мультивибраторы с увеличенной крутизной выходных
импульсов- а) на D-триггере; б) на JK-триггере

Packet122.jpg

Рис 121. Ждущий мультивибратор с повышенной стабильностью

Схема на рис. 1.19в обеспечивает более стабильные импульсы при изменении питающего напряжения (аналогичную схему можно собрать и на JK-триггерах).

Для увеличения крутизны спадов выходных импульсов применяют схемы показанные на рис. 1.20, но в них конденсаторы С1 должны быть неполярными.
При этом длительность генерируемого импульса при тех же значениях RC-цепи, что и в схемах на рис. 1.18, получается примерно в 2 раза больше.

Лучшую стабильность при изменении напряжения питания по сравнению с представленными на рис. 1.19 вариантами обеспечивает схема одновибратора на двух триггерах, рис 1. 21. Кроме того, в этом случае подключение нагрузки не влияет на длительность генерируемых импульсов. Схема состоит из двух одновибраторов, имеющих общий вход запуска, но вырабатывающих на независимых выходах импульсы разной длительности. Импульсы на выходе 5 почти не будут зависеть от напряжения питания

Packet123.jpg

Рис. 1. 22 Схемы формирователей задержанного импульса.

Ждущий универсальный одновибратор можно выполнить на специально предназначенной для этих целей микросхеме (рис 1. 22а). В одном корпусе 564АГ1 (1561АГ1) имеется два одновибратора, обладающих, в зависимости от комбинации управляющих сигналов на входе, свойством обычного запуска по переднему (вход S1) или заднему фронту (S2), а также при необходимости может перезапускаться. Вход R является приоритетным по отношению к осталь ным входам и устанавливает значение сигнала Q=0 (если вход R не используется, то подключается к +Uпит).

Длительность формируемого сигнала (tи, Q=1) задается соответствующей внешней RC-цепью: tи=0,5RC для С>0,01 мкФ. Более точно определить позволяет приводимая в справочнике [Л8] диаграмма.

Packet124.jpg

Рис. 1. 23 Ждущий мультивибратор на триггере с возможностью перезапуска.

Packet125.jpg

Рис. 1. 24 Ждущий мультивибратор с возможностью перезапуска.

Если требуется иметь перезапуск одновибратора на триггере, в случае прихода очередного входного импульса во время формирования интервала, то схема на рис. 1.23 позволяет увеличить длительность выходного импульса за
счет начала отсчета с момента окончания запускающего сигнала. Аналогичная схема приведена на рис. 1. 24. Когда на входе действует лог. "0", конденсатор заряжен до величины напряжения питания (лог. "1"). При поступлении запускающего импульса с длительностью, достаточной для разряда конденсатора, триггер перебросится и генерирует импульс. Длительность этого импульса, после окончания действия входного сигнала, определяется необходимым временем для заряда конденсатора до уровня лог. "1".

Схема (рис. 1.25), в отличии от вышеприведенной, позволяет получить более крутые фронты у сигнала на выходах триггера Второе преимущество этой схемы заключается в том, что по окончании вырабатываемого импульса конденсатор быстро разряжается через диод от уровня Uпор вместо дозаряда до уровня питания (Е) Из-за этого следующий запускающий импульс может быть значительно короче, при сохранении нулевого времени восстановления

Packet126.jpg

Рис. 1.25 Ждущий мультивибратор с повышенной крутизной фронта
выходных импульсов.

Второй метод получения импульса нужной длительности связан с использованием счетчиков — цифровых одновибраторов Их применяют, когда временной интервал должен быть очень большим или предъявляют высокие требования к стабильности формируемого интервала В этом случае минимальная получаемая длительность ограничена только быстродействием используемых элементов, а максимальная длительность может быть любой (в отличие от схем, использующих RC-цепи).

Принцип работы цифрового одновибратора основан на включении триггера входным сигналом и отключении через временной интервал, определяемый коэффициентом пересчета счетчика. Использование в одновибраторе счетчи-
ков с переключаемым коэффициентом деления, рис. 1.26, позволяет получить импульс любой длительности. Микросхема 564ИЕ 15 состоит из пяти вычитающих счетчиков, модули пересчета которых программируются параллельной загрузкой данных в двоичном коде. На загрузку чисел в счетчики требуется три такта, поэтому можно устанавливать коэффициент деления N>3 [Л2].

В таблице 1.2 приведены максимально возможные коэффициенты деления в зависимости от значения М. При значениях М=0 счет запрещен. Сигнал на входе S управляет режимом периодического (0) и однократного (1) счета. Двоичный код для разных значений модуля М берется из таблицы 1.3 (# — запрет счета, х — любое состояние, лог. "О" или "1"). Общий коэффициент деления микросхемы определяется по формуле

N=M(1000P1+100P2+10P3+P4)+P5 .

При работе цифрового одновибратора с кварцевым автогенератором тактовой частоты обеспечивается более высокая стабильность длительности выходного импульса, что позволяет их применять в измерительных приборах.

Packet127.jpg

Рис. 1. 26 Цифровой одновибратор на программируемом счетчике.



Таблица 1.2.

М

Nmax

2

17331

4

18663

5

13329

8

21327

10

16659

 

 


Таблица 1.3.

Номер
вывода

мк/сх

Логический уровень для модуля М

2

4

5

8

10

#

14

1

0

1

0

X

X

13

1

1

0

0

1

0

11

1

1

1

1

0

0

 

 

 


На рис. 1.27 показан пример простейшей схемы для получения импульса с помощью счетчика. Работу одновибраторов поясняют диаграммы, показанные на рисунках. Общим недостатком приведенных на рис 1.27 и 1.28 схем является случайная погрешность, связанная с произвольностью фазы задающего генераторав момент запуска. Погрешность может составлять до периода тактовой частоты и уменьшается с увеличением частоты генератора и коэффициента пересчета счетчика. Устранить этот недостаток позволяет схема на рис. 1.28
(генератор включается при появлении запускающего импульса).

Packet128.jpg

Рис. 1.27. Цифровой одновибратор с повышенной стабильностью
временного интервала

Packet129.jpg

Рис. 1.28. Цифровой одновибратор

В исходном состоянии на выходе счетчика D2/3 (4) присутствует напряжение лог. "1", что запрещает работу автогенератора на D1.1, D1.2. Запускающий импульс обнуляет счетчик D2, и на его выходе D2/3 будет лог. "0" до момента, пока он не досчитает до появления на D2/3 лог. "1". Поскольку формирование выходного импульса всегда начинается из одного и того же состояния задающего генератора, то исключена случайная погрешность длительности импульса, но эта схема имеет другой недостаток: при включении питания она формирует на
выходе импульс неопределенной длительности (в пределах заданного интервала). Схеме присуще свойство перезапуска в случае, если во время формирования выходного импульса появляется очередной запускающий (отсчет длительности формируемого импульса начинается заново).

Packet130.jpg

Рис 1.29. Одновибратор с синхронизацией длительности выходного импульса
с частотой тактового генератора

Схема, показанная на рис 1.29 в момент поступления на вход запускающего импульса, обеспечивает на выходе сигнал, длительность которого равна периоду тактовой частоты (T=1/fт). При кварцевой стабилизации частоты генератора (fт) схема может использоваться в качестве высокостабильного одновибратора.

 

Рис 1.16 Формирователи импульсов

Изображение: 

Рис 1.17 Формирователи импульсов

Изображение: 

Рис. 1.10. Области допустимых уровней сигнала на входе МОП микросхем

Изображение: 

Рис. 1.11. Одновибратор с одной времязадающей цепью

Изображение: 

Рис. 1.12. Одновибратор на основе RS-триггера

Изображение: 

Рис. 1.13. Одновибратор по фронту входного сигнала

Изображение: 

Рис. 1.14. Одновибратор

Изображение: 

Рис. 1.15. Формирователи импульса после окончания действия запускающего сигнала

Изображение: 

Рис. 1.18 Одновибраторы с двумя времязадающими цепями

Изображение: 

Рис. 1.19. Ждущие мультивибраторы:

Изображение: 

Рис. 1.20. Ждущие мультивибраторы с увеличенной крутизной выходных импульсов- а) на D-триггере; б) на JK-триггере

Изображение: 

Рис. 1.21. Ждущий мультивибратор с повышенной стабильностью

Изображение: 

Рис. 1.22 Схемы формирователей задержанного импульса.

Изображение: 

Рис. 1.23 Ждущий мультивибратор на триггере с возможностью перезапуска.

Изображение: 

Рис. 1.24 Ждущий мультивибратор с возможностью перезапуска.

Изображение: 

Рис. 1.25 Ждущий мультивибратор с повышенной крутизной фронта выходных импульсов.

Изображение: 

Рис. 1.26 Цифровой одновибратор на программируемом счетчике.

Изображение: 

Рис. 1.27. Цифровой одновибратор с повышенной стабильностью временного интервала

Изображение: 

Рис. 1.28. Цифровой одновибратор

Изображение: 

Рис. 1.29. Одновибратор с синхронизацией длительности выходного импульса с частотой тактового генератора

Изображение: 

Рис. 1.9 Формирователь широкого импульса с использованием триггера Шмитта

Изображение: 

Ф.1 Формуля для расчета дительности импульса триггера Шмитта

Изображение: 

4. Генераторы импульсов

Генераторы импульсов

Вариант простейшего генератора (мультивибратора) показан на рис. 1.30а. Схема имеет два динамических состояния. В первом из них, когда на выходе D1.1 состояние лог. "1" (выход D1.2 лог. "0"), конденсатор С1 заряжается. В процессе заряда напряжение на входе инвертора D1.1 возрастает, и при достижении значения Uпор=0,5Uпит происходит скачкообразный переход во второе динамическое состояние, в котором на выходах D1.1 лог. "О", D1.2 — "1". В этом состоянии происходит перезаряд емкости (разряд) током обратного направления. При достижении напряжения на С1 Unop происходит возврат схемы в первое динамическое состояние. Диаграмма напряжений поясняет работу. Резистор R2 является ограничительным, и его сопротивление не должно быть меньше 1 кОм, а чтобы он не влиял на расчетную частоту, номинал резистора R1 выбираем значительно больше R2 (R2<0,01R1). Ограничительный резистор (R2) иногда устанавливают последовательно с конденсатором. При использовании неполярного конденсатора С1 длительность импульсов (tи) и пауза (tо) будут почти одинаковыми: tи=to=0,7R1C1. Полный период T=1,4R1C1. Резистор R1 и конденсатор С1 могут находиться в диапазоне 20 к0м...10 МОм; 300 пф...100 мкФ.

При использовании в схеме (рис. 1.30б) двух инверторов микросхемы К561ЛН2 (они имеют на входе только один защитный диод) перезаряд конденсатора будет происходить от уровня Uпит+Unop. В результате чего симметрич-
ность импульсов нарушается tи=1,1R1C1, to=0,5R1C1, период T=1,6R1C1.

Packet131.jpg

Рис. 1.30. Генератор импульсов на двух инверторах

Packet132.jpg

Рис 1.31. Генератор импульсов с раздельной установкой длительности
импульса и паузы между ними

Packet133.jpg

Рис. 1.32. Генератор импульсов на трех инверторах

Так как порог переключения логических элементов не соответствует точно половине напряжения питания, чтобы получить симметричность импульсов, в традиционную схему генератора можно добавить цепь из R2 и VD1, рис. 1.ЗОв.Резистор R2 позволяет подстройкой получить меандр (tи=to) на выходе генератора.

Схема на рис. 1.31 дает возможность раздельно регулировать длительность и паузу между импульсами: tи=0,8C1R1, to=0,8C1R2. При номиналах элементов, указанных на схеме, длительность импульсов около 0,1 с, период повторения 1 с.

Более стабильна частота у генераторов, выполненных на трех инверторах (Рис. 1.32). Процесс перезаряда С1 в сторону уменьшения напряжения на левой обкладке начинается от напряжения Uпит+Unop, в результате чего на это уходит больше времени tи=1,1C1R2. Полный период колебаний составит

T=1,8C1R2.

На рис. 1.33 приведены схемы аналогичных генераторов, которые позволяют раздельно регулировать длительность и паузу между импульсами или при неизменной частоте регулировать скважность импульсов. Мультивибратор на основе триггера Шмитта показан на рис. 1.34.

Если требуется получить на выходе приведенных выше схем генераторов симметричные импульсы без подстройки, то после схемы необходимо ставить триггер или же воспользоваться схемой на трех инверторах, рис. 1.35. Элемент
D1.1 используется для создания второй цепи отрицательной обратной связи, охватывающей инвертор D1.2 (главную цепь обратной связи для сигнала образует резистор R5) Элемент микросхемы D1 1 работает в режиме с низким
коэффициентом усиления при замкнутой обратной связи подобно операционному усилителю работающему в линейной части характеристики В результате этого инвертированное пороговое напряжение инвертора D1 1 может быть просуммировано с напряжением отрицательной обратной связи и подано на вход

Packet134.jpg

Рис 133 Генератор пмпульсов с раздельнои регулировкой
а) длительности импульсов и паузы между ними б) скважности импульсов

Packet135.jpg

Рис 1 34 Генератор перекрывающихся импульсов

Packet136.jpg

Рис 1 35 Генератор с симметричными импульсами на выходе

элемента D1.2. Если соотношение R2/R1 равно отношению R3/R5 может быть получена полная компенсация ошибок обусловленных изменением пороговых напряжении элементов D1.1 и D1.2 При этом предполагается, что все элементы схемы расположены в одном корпусе и их пороговые напряжения фактически равны Частота импульсов такой схемы определяется из соотношения F=1/R5C1 (она будет примерно в два раза выше по сравнению со схемой, показанной на рис. 1.30)

Симметричный мультивибратор можно выполнить на основе RS-триггере, рис 1.36. Вариант схемы на рис 1.31в позволяет резисторы R1 и R2 выби

Packet137.jpg

Рис1.36 Симметричные мультивибраторы
а) на RS триггере с двумя конденсаторами, б) с одним конденсатором,
в) с резисторами соединенными с источником питания, г) на двух RS триггерах

рать более низкоомными, потому что диоды разделяют цепь заряда от выходов триггера. Вторым преимуществом этой схемы является то, что она позволяет легко и независимо регулировать в определенных границах период и скважность генерируемых импульсов. Скважность можно регулировать линейно, если R1 и R2 объединить в один потенциометр, а период — если общий конец R1 и R2 соединить с источником питания через потенциометр.

С целью уменьшения количества дискретных элементов предложена схема мультивибратора на двух RS-триггерах, рис. 1.36г.

Packet138.jpg

Рис. 1.37 Автогенератор на основе двух логических элементов

Packet139.jpg

Рис. 1 38. Автогенератор на двух одновибраторах

Симметричный мультивибратор можно выполнить на двух ЛЭ, рис. 1 37 или одновибраторах, рис. 1.38. Это также позволяет иметь раздельную регулировку длительности импульсов и интервала между ними.

Простейшие схемы симметричных мультивибраторов приведены на рис. 1.39. При этом, если R1=R2, R3=R4, С1=С2, полный период определяется из соотношения Т=1,4RC.

Генератор с малым потреблением энергии можно выполнить на двух ключах микросхемы К561КТЗ, рис. 1.40. После включения напряжения питания оба ключа разомкнуты. Конденсатор С1 разряжен, поэтому напряжения на нем нет

Packet140.jpg

Рис 1 39 Симметричные мультивибраторы

Зарядный ток от источника питания протекает через последовательно включенные резисторы R1 и R2. Так как R1>R2, напряжение на резисторе R2 не достигнет порога срабатывания ключа D1.2, а в дальнейшем, по мере уменьшения зарядного тока, это напряжение стремится к 0. В то же время по мере накопления заряда на конденсаторе напряжение на выводе D1/12 экспоненциально возрастает. Когда оно достигнет порога срабатывания ключа D1.1, соединится цепь между выводами 11 и 10, что приведет к срабатыванию ключа D1.2. Сразу пос-
ле замыкания обоих ключей нижняя обкладка конденсатора С1 подключается к шине "+" питания. Заряд, накопленный ранее на конденсаторе, не может измениться мгновенно, поэтому напряжение на D1/12 скачком возрастает до уровня, превышающего Uпит на величину, равную порогу срабатывания ключа D1.1. После этого напряжение на С1 начинает уменьшаться с постоянной времени, равной C1R1R3/(R1+R3), и стремится достичь уровня, задаваемого делителем напряжения на резисторах R1, R3. В процессе перезаряда конденсатора напря-
жение на С1 уменьшится до порога размыкания ключа D1.1. В результате развивается лавинообразный процесс размыкания обоих ключей. Для защиты

Packet141.jpg

Рис. 1.40. Генератор импульсов с повышенной нагрузочной способностью

Packet142.jpg

Рис. 1.41. Простейшие схемы мультивибраторов с кварцевой
стабилизацией частоты

ключа D1.2 от отрицательного выброса напряжения в схему вводится диод. После размыкания ключей конденсатор начинает заряжаться через последовательно включенные резисторы R1 и R2 — описанные выше процессы повторяются.

При заданной емкости конденсатора длительность паузы t2 между импульсами регулируется резистором R1, однако изменение длительности паузы подбором резистора R1 приводит и к изменению длительности импульса t1. По-
этому, чтобы установить нужную длительность импульса, не меняя паузу, необходимо воспользоваться резистором R3. Регулирование параметров импульсов осуществляется в широких пределах, при этом отношение t1/t2 может быть как меньше, так и больше 1.

Относительно всех автогенераторов на МОП микросхемах можно отметить, что если схема мультивибратора не симметрична, то возрастает ее чувствительность к изменению питающего напряжения (для микросхем 561-ой
серии период может меняться на 35% при изменении Uпит от 3 до 15 В), поэтому расчетные соотношения справедливы для максимального напряжения питания.

Packet143.jpg

Рис. 1.42. Схемы обеспечивающие повышенную стабильность частоты при
изменении окружающей температуры в широком диапазоне

При стабилизированном питании, изменение длительности импульсов мультивибраторов и частоты в генераторах на RC-цепях обычно не лучше 1% на 15°С (в случае применения термостабильных конденсаторов). Большую стабиль-
ность частоты можно получить, используя кварцевую стабилизацию. На рис. 1.41 и 1.42 приведены типовые схемы построения таких генераторов. Для небольшой подстройки частоты иногда последовательно с кварцевым резонато-
ром устанавливают конденсатор 10...100 пФ. Частота импульсов и их стабильность в этом случае у генератора задается параметрами кварцевого резонатора.

 

Рис .1.33. Генератор пмпульсов с раздельнои регулировкой а) длительности импульсов и паузы между ними б) скважности импульсов

Изображение: 

Рис. 1 38. Автогенератор на двух одновибраторах

Изображение: 

Рис. 1.30. Генератор импульсов на двух инверторах

Изображение: 

Рис. 1.31. Генератор импульсов с раздельной установкой длительности импульса и паузы между ними

Изображение: 

Рис. 1.32. Генератор импульсов на трех инверторах

Изображение: 

Рис. 1.34. Генератор перекрывающихся импульсов

Изображение: 

Рис. 1.35. Генератор с симметричными импульсами на выходе

Изображение: 

Рис. 1.36. Симметричные мультивибраторы а) на RS триггере с двумя конденсаторами, б) с одним конденсатором, в) с резисторами сое

Изображение: 

Рис. 1.37. Автогенератор на основе двух логических элементов

Изображение: 

Рис. 1.39. Симметричные мультивибраторы

Изображение: 

Рис. 1.40. Генератор импульсов с повышенной нагрузочной способностью

Изображение: 

Рис. 1.41. Простейшие схемы мультивибраторов с кварцевой стабилизацией частоты

Изображение: 

Рис. 1.42. Схемы обеспечивающие повышенную стабильность частоты при изменении окружающей температуры в широком диапазоне

Изображение: 

5. Формирователи пачки заданного числа импульсов

Формирователи пачки заданного числа импульсов

Для устройств автоматики, дистанционного управления или проверки работы отдельных узлов схемы иногда требуется передавать пачку из определенного числа импульсов Простейшие схемы таких формирователей показаны на рис. 1.43. В них последний импульс пачки может получиться укороченным, если сигнал управления имеет произвольную длительность.

Часто в схемах управления необходимо использовать генераторы, в которых независимо от положения фронтов управляющих сигналов обеспечивается неискаженное (по длительности) формирование первого и последнего
импульсов на выходе. Причем начало первого импульса должно совпадать с началом управляющего сигнала.

Packet144.jpg

а) б)

Рис. 1.43. Простейшие схемы формирования пачки импульсов

Два варианта таких генераторов показаны на рис. 1.44 и рис. 1.45. Если входной запускающий импульс меньше по длительности периода колебаний, на выходах формируется один импульс. При большей длительности правляющего
сигнала на выходе будет пачка, показанная на диаграмме. Таким же свойством обладает схема формирователя импульсов, рис. 1.45.

Электрическая схема, рис. 1.46, формирует от 1 до 7 импульсов в пачке с последующим повторением цикла через время 16Т, пока нажата кнопка. В процессе работы счетчика-дешифратора DD2 на его выходах появляются импульсы, которые управляют переключением триггера DD3.2. Таким образом задается интервал, в течение которого на выходе DD3/12 будет лог. "1", что разрешает прохождение импульсов от автогенератора (DD1.1, DD1.2) через элемент DD1.3 на выход. Второй триггер DD3.1 включен по схеме делителя и обеспечивает появление интервала между пачками.

Количество импульсов в пачке соответствует номеру нажатой кнопки. Поформуле T=1,32R1C1 определяется период формируемых импульсов. При этом R1 может иметь номинал от 20 кОм до 10 МОм. Заменой микросхемы DD2 на
561 ИЕ8 количество импульсов в пачке может быть увеличено до 9.

Packet145.jpg

Рис. 1.44. Управляемый генератор с неискаженной длительностью последнего
формируемого импульса

Packet146.jpg

Рис. 1.45. Вариант управляемого генератора с неискаженной длительностью
последнего формируемого импульса

Packet147.jpg

Рис. 1.46. Формирователь пачки до 7-ми импульсов

Схема, приведенная на рис 1.47, обеспечивает при нажатии кнопки однократное формирование пачки до 15 импульсов (на схеме показаны только 10 кнопок). Для повторной выдачи пачки необходимо повторно нажать на соответствующую кнопку. При этом происходит запись соответствующего числа в двоичном коде в регистр предварительной установки счетчика DD2, и он начинает считать на вычитание до момента времени, пока на всех его выходах не установится лог. "0". Логический "0" установится и на выходе DD1.4.

Packet148.jpg

Рис. 1.47 Формирователь пачки импульсов

Номиналы элементов (R2, С1) на схеме указаны для частоты генератора 10 Гц (частота набора номера в телефонной линии). На схеме показан также пример дешифратора десятичных чисел в двоичный код на диодах типа Д9 (Д2)
однако для уменьшения габаритов вместо них удобнее использовать две диодные матрицы типа КДС627А.

Воспользовавшись принципом работы данной схемы, можно выполнить формирователь пачки с любым количеством импульсов Для этого последовательно со счетчиком DD2 можно включить еще такие же счетчики, а вместо ди-
одов VD1...VD13 применить тумблеры для начальной установки необходимого числа импульсов (в двоичном коде) Для запуска работы формирователя необходимо подать кратковременный положительный импульс на входы
DD2/1....DDn/1 — при этом происходит запись установленного кода.

Packet149.jpg

Рис. 1.48. а) Формирователь кодовой последовательности, б) форма импульсов

Иногда требуется иметь пачки импульсов, состоящие из произвольной комбинации положения импульсов относительно начального, — кодовую после довательность. Такой режим обеспечивает схема, рис. 1.48а. Если ни одна из кнопок не нажата, то на выходе (DD1/11) будут появляться одинарные импульсы, с периодом, определяемым частотой задающего генератора на элементах DD1.1, DD1.2.

В зависимости от того, какая кнопка нажата, на выходе появится пачка из комбинации импульсов. Причем каждой нажатой кнопке будет соответство

Packet150.jpg

Рис. 1.48. в) Дешифратор кодовой последовательности

вать определенное положение импульса относительно начального. Эпюры выходного напряжения, рис. 1.48в, поясняют работу схемы.

Кнопки могут быть нажаты в любой комбинации или все одновременно. Что позволяет использовать схему в устройствах, где требуется для дистанционного управления одновременная передача нескольких команд.

Вариант схемы дешифратора кодовой последовательности показан на рис. 1.48в. При обработке входных пачек импульсов на соответствующих выходах мультиплексора DD4 будут кратковременно появляться импульсы, а для
фиксации принятой команды можно воспользоваться любыми триггерами.

 

Рис. 1.43. Простейшие схемы формирования пачки импульсов

Изображение: 

Рис. 1.44. Управляемый генератор с неискаженной длительностью последнего формируемого импульса

Изображение: 

Рис. 1.45. Вариант управляемого генератора с неискаженной длительностью последнего формируемого импульса

Изображение: 

Рис. 1.46. Формирователь пачки до 7-ми импульсов

Изображение: 

Рис. 1.47 Формирователь пачки импульсов

Изображение: 

Рис. 1.48. а) Формирователь кодовой последовательности, б) форма импульсов

Изображение: 

Рис. 1.48. в) Дешифратор кодовой последовательности

Изображение: 

6. Формирователи импульсов по фронту сигнала

Формирователи импульсов по фронту сигнала

При разработке цифровых устройств нередко требуется формировать импульсы, привязанные к входному сигналу. Если не предъявляются высокие требования к стабильности и длительности формируемого импульса, могут применяться схемы на основе дифференцирующих (рис. 1.49) или интегрирующих (рис. 1.50 и 1.51) RC-цепей. В этом случае для расчета длительности импульса используются те же соотношения, что и для одновибраторов.

1-51.jpg

Рис. 1.49. Формирователь импульсов на дифференцирующих цепях

На рис. 1.52 показана схема формирователя, в которой в зависимости от длительности запускающего импульса формируемый выходной импульс будет иметь фиксированную или укороченную длительность. Схема, приведенная на рис. 1.53, генерирует импульсы по переднему и заднему фронту входного сигнала. Причем выходные импульсы имеют всегда полную длительность, независимо от момента снятия сигнала запуска. Здесь допускается раздельная регулировка. Длительности и периода следования импульсов.

Схема, рис. 1.54, может использоваться для повторения входного сигнала с помехами по фронтам (от удаленного источника). Она позволяет улучшить форму импульсных сигналов со "звоном" (колебаниями по фронтам импульсов),

1-52.jpg

Рис. 1.50. Формирователи импульсов на основе интегрирующих цепей

1-53.jpg

Рис. 1.51. Формирователь импульса по фронту сигнала

1-54.jpg

Рис. 1 52. Формироватеть пмпульса

1-55.jpg

Рис. 1.53. Формирователь импульсов по переднему и заднему
фронту входного сигнала

1-56.jpg

Pис 1.54. Повторитель входных импульсов с защитой от помех

что бывает при передаче сигнала по длинной, плохо согласованной линии или радиоканалу. Постоянная времени цепи R1-C1 зависит от периода следования входных импульсов и выбирается такой, чтобы к приходу спада входного импульса напряжение на конденсаторе С1 было близко к напряжению питания
Тогда первый же перепад входного импульса установит триггер D2.1 снова в единичное состояние.

1-57.jpg

Рис. 1.55. Формирователь импульсов с синхронизацией тактовой частотой

Большую помехоустойчивость и стабильность в работе обеспечивают схемы формирователей импульсов без использования RC-цепей, рис. 1.55...1.57. В этом случае выходные сигналы получаются синхронными с внутренней тактовой частотой. Процесс синхронизации сводится к сдвигу фронта импульса входной
информации до совпадения его с фронтом ближайшего тактового импульса. При этом длительность преобразованных таким образом информационных импульсов будет также определяться длительностью импульса синхрочастоты.

1-58.jpg

Рис. 1.56. Формирование двух импульсов

1-59.jpg

Рис. 1.57. Формирователь импульсов

Длительность формируемых схемой, рис. 1.55а, импульсов будет равна периоду тактовой частоты (T=1/fт), и ее легко можно изменить, меняя частоту на входе 2. Используя счетчики и комбинационную логику, можно получить выходной сигнал практически любой длительности.

Схема на рис. 1.56 обеспечивает на выходе формирование двух импульсов, привязанных к фронтам входного сигнала.

Схема, показанная на рис. 1.57, в зависимости от длительности информационного импульса на выходе дает синхронизированные с тактовой частотой одиночный импульс или же серию импульсов.

Цифровые схемы применяют также при передаче (обмене) не синхронизированных сигналов между устройствами. Каждый источник, как правило, имеет свой тактовый генератор и непосредственное использование этих сигналов может привести к сбоям из-за случайного разброса фаз тактовых импульсов. В этом случае становится обязательным привязка в приемном устройстве всех внешних управляющих сигналов к собственной тактовой частоте.

 

Рис. 1.49. Формирователь импульсов на дифференцирующих цепях

Изображение: 

Рис. 1.50. Формирователи импульсов на основе интегрирующих цепей

Изображение: 

Рис. 1.51. Формирователь импульса по фронту сигнала

Изображение: 

Рис. 1.52. Формироватеть пмпульса

Изображение: 

Рис. 1.53. Формирователь импульсов по переднему и заднему фронту входного сигнала

Изображение: 

Рис. 1.53. Формирователь импульсов по переднему и заднему фронту входного сигнала

Изображение: 

Рис. 1.55. Формирователь импульсов с синхронизацией тактовой частотой

Изображение: 

Рис. 1.56. Формирование двух импульсов

Изображение: 

Рис. 1.57. Формирователь импульсов

Изображение: 

7. Задержка импульсов

Задержка импульсов

Иногда требуется сдвинуть фронт и спад прямоугольного импульса. Простейшая схема реализация такой задачи показана на рис. 1.58. С появлением на входе фронта импульса конденсатор С1 начинает заряжаться через
цепь VD1-R1, а с появлением спада — разряжается через VD2-R2. Это позволяет раздельно устанавливать задержку переключения ЛЭ. Максимальное время задержки фронта и спада импульса не может превышать 80% от
продолжительности входного сигнала.

Packet160.jpg

Рис. 1.58. Временная задержка импульса на RC-цепях

Packet161.jpg

Рис. 1.59. Сдвигающий регистр

Пример цифрового способа получения задержки с использованием сдвигающего регистра показан на рис. 1.59.

Задержка зависит от используемого выхода и синхронизирована с тактовой частотой генератора (последовательно можно включить любое количество регистров). При наличии уровня лог. "1" на входе D по положительному фронту
импульсов, приходящих с тактового генератора tт, происходит запись в регистр.

При очередном такте это значение сигнала последовательно появляется на выходах регистра. Такая схема может вносить погрешность в длительность выходного сигнала не больше, чем период тактовой частоты, и применима для
получения небольшой задержки. Для получения любой задержки сигнала иногда экономически более выгодным является применение микросхем оперативной памяти вместе со схемой управления (запись и чтение через необходимый интервал).

 

Рис. 1.58. Временная задержка импульса на RC-цепях

Изображение: 

Рис. 1.59. Сдвигающий регистр

Изображение: 

8. Деление частоты

Деление частоты

Наиболее часто для этого используют счетчики, хотя можно разделить частоту с помощью ждущего мультивибратора, ограничив число проходящих на выход импульсов. Пример такой схемы показан на рис. 1.60. Как только импульс входной частоты поступает на выход 5, ждущий мультивибратор D1.1, D1.3 запирает элемент D1.2 на время, определяемое резистором R1. Когда ждущий мультивибратор возвращается в исходное состояние, на выход поступает следующий импульс и цикл возобновляется. Схему можно усовершенствовать, заменив потенциометр полевым транзистором, что позволит управлять коэффициентом деления с помощью напряжения.

Packet162.jpg

Рис. 1.60 Делитель частоты с использованием ждущего мультивибратора

Делитель на 2 можно собрать из простейших ЛЭ, рис. 1.61. Схемы делителей без использования RC-цепей имеют лучшую помехоустойчивость и болееширокий диапазон входной частоты сигнала. Основным элементом всех счетчиков является триггер с так называемым счетным входом, рис. 1.62. Таблица 1.4

Таблица 1.4

Сигналы на входах

Состояние выхода

С

D

S

R

Q

NOT Q

х

х

0

1

0

1

х

х

1

0

1

0

_/

0

0

0

0

1

_/

1

0

0

1

0

\_

х

0

0

Q

NOT Q



 

Packet164.jpg

Рис. 1.62. Делитель частоты на 2

Packet165.jpg

Рис. 1.63. Делитель на 3

Packet166.jpg

Рис. 1.64. а) Делитель на 10 на RS-триггерах; б) делитель на 10 на JK-триггерах

поясняет логику работы триггера 561ТМ2 в зависимости от управляющих сигналов (х — безразлично состояние на данном входе; состояние, когда на входах S и R микросхемы одновременно действует лог. "1", является запрещенным).

Комбинационное включение триггеров позволяет получать счетчик с нужным коэффициентом деления входной частоты. На рис. 1.63...1.65 приведены примеры включения элементов микросхем для получения деления на 2, 3, 6, 10 и 60.

Промышленность выпускает универсальные счетчики, которые в зависимости от управляющих сигналов могут переключаться по переднему или заднему фронту входного сигнала, а также менять направление счета (сложение или вычитание). В качестве примера приведена диаграмма работы двоичного четырехразрядного реверсивного счетчика на микросхеме 561ИЕ11, рис. 1.66.

Таблица истинности (табл. 1.5) поясняет назначение управляющих сигналов и логику управления микросхемой (1 — лог. "1"; 0 — лог. "0"; х — состояние безразлично, т. е. 0 или 1). Счетчик предусматривает возможность загрузить по входам D1, D2, D4, D8 параллельный код.

Packet167.jpg

Рис. 1 65. Схема делителя на 60

Таблица 1.5

Вход
переноса
РО

Сложение,
вычитание
+-1

Разрешен.
установки
V

Установка
нуля
R

Действие

1

х

0

0

нет счета

0

1

0

0

работа на сложение

0

0

0

0

работа на вычитание

х

х

1

0

установка по парал. вх.

х

х

х

1

установка нуля


 

Для получения нужного коэффициента деления можно использовать микросхемы двоичных счетчиков, соединяя соответствующие выходы с помощью ЛЭ, рис. 1.67, или же применить счетчик с программируемым
коэффициентом деления 564ИЕ15, см. рис. 1.26.

Packet168.jpg

Рис. 1. 66. а) Универсальный реверсивный счетчик,
б) диаграмма напряжении микросхемы

Packet169.jpg

Pис 1.67. Делитель на 1000

 

Рис. 1 65. Схема делителя частоты на 60

Изображение: 

Рис. 1.60. Делитель частоты с использованием ждущего мультивибратора

Изображение: 

Рис. 1.62. Делитель частоты на 2

Изображение: 

Рис. 1.63. Делитель частоты на 3

Изображение: 

Рис. 1.64. а) Делитель на 10 на RS-триггерах; б) делитель на 10 на JK-триггерах

Изображение: 

Рис. 1.66. а) Универсальный реверсивный счетчик, б) диаграмма напряжении микросхемы

Изображение: 

Рис. 1.66. а) Универсальный реверсивный счетчик, б) диаграмма напряжении микросхемы

Изображение: 

2. Источники питания

Справочная информация

 

1. Интегральные микросхемы линейных стабилизаторов напряжения (К,КР)142ЕН(5,8,9).

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ ЛИНЕЙНЫХ СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ

142ЕН5(А-Г), 142ЕН8(А-В), 142ЕН9(А-В) К142ЕН8(А-Е), К142ЕН9(А-Е) КР142ЕН5(А-Г, КР142ЕН8(А-Е)

Микросхемы 142ЕН5А—142ЕН5Г, КР142ЕН5А— КР142ЕН5Г, 142ЕН8А—142ЕН8В, К142ЕН8А—К142ЕН8Е, КР142ЕН8А—КР142ЕН8Е представляют собой интегральные стабилизаторы с фиксированным выходным напряжением, выполнен

4-11.jpg

ные по планарной диффузионной технологии с изоляцией диэлектриком, а микросхемы 142ЕН9А— 142ЕН9В, К142ЕН9А— К142ЕН9Е — с изоляцией р-n переходом. Все микросхемы предназначены для применения в стабилизированных источниках питания радиоэлектронной аппаратуры постоянного напряжения.

Конструктивно микросхемы 142ЕН5А—142ЕН5Г, 142ЕН8А—142ЕН8В, 142EН9А—142EН9В. К142ЕН8А—К142ЕН8Е, К142ЕН9А—К142ЕН9Е оформлены в прямоугольном металлокерамическом корпусе 4116.4-2 с четырьмя пластинчатыми выводами (рис. 4.1-1а). Для отвода тепла и крепления микросхемы предусмотрен фланец с двумя крепежными отверстиями.Микросхемы КР142ЕН5А—КР142ЕН5Г, КР142ЕН8А—КР142ЕН8Е выпускают в прямоугольном полимерном корпусе

КТ-28-2 с тремя пластинчатыми выводами (рис. 4.1-16). Для отвода тепла и крепления микросхем используется фланец с одним крепежным отверстием. Микросхемы крепят к печатной плате пайкой или через переходные элементы. Теплоотвод устанавливают на плату и привинчивают к нему микросхему.

Приборы расчитаны на длительную эксплуатацию в жестких условиях: при температуре окружающей среды от -60 до +125 °С, пониженном до 5 мм рт.ст. атмосферном давлении, воздействии инея и соляного тумана, механических перегрузок. Минимальная наработка на отказ — 50 000 часов, сохраняемость — 25 лет.

4-12.jpg

 

Рис. 4.1-1 Корпуса микросхем 142ЕН5(А-Г), 142ЕН8(А-В), 142ЕН9(А-В) К142ЕН8(А-Е), К142ЕН9(А-Е) КР142ЕН5(А-Г, КР142ЕН8(А-Е)

Изображение: 

Таблица 4.1-1 Основные технические характеристики микросхем 142ЕН5(А-Г), 142ЕН8(А-В), 142ЕН9(А-В) К142ЕН8(А-Е), К142ЕН9(А-Е) КР1

Изображение: 

2. Интегральные микросхемы контроллеров широтно-импульсной модуляции КА384хB(BD).

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ КОНТРОЛЛЕРОВ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ

КА3842В (KA3842BD) (Аналоги: UС3842,1033ЕУ10) КА3843В (KA3843BD) (UC3843) КА3844В (KA3844BD) (UC3844) КА3845В (KA3845BD) (UC3845)

ИМС серии KA384xB(BD) производства Samsung — это специализированные контроллеры широтно-импульсной модуляции с постоянной рабочей частотой. Они предназначены для применения в импульсных преобразователях напряжения и источниках питания с минимальным числом внешних компонентов. Микросхемы включают: генератор с внешней времязадающей RC-цепью, схему термокомпенсации, компаратор сигнала считывания тока. усилитель сигнала ошибки (цепь обратной связи по напряжению), мощный выходной каскад с возможностью непосредственного подключения к силовым МДП-ключам, систему защиты от понижения напряжения и превышения токового режима. Отличия KA3842B(BD) и KA3844B(BD) от KA3843B(BD) и KA3845B(BD) — в пороге срабатывания системы блокировки при понижении на

4-21.jpg

пряжения. Кроме этого, KA3842B(BD) и KA3843B(BD) могут функционировать с коэффициентом заполнения до 100%, а KA3844B(BD) и KA3845B(BD) — до 50%. Микросхемы с индексом В размещены в 8-ми выводном корпусе DIP, а микросхемы с индексом BD — в 14-ти выводном SOP, у них также имеются отдельные выводы для подачи питания на выходной каскад.

4-22.jpg

4-23.jpg

4-24.jpg

Цепь VT1, R4 введена для коррекции сигнала считывания тока и предотвращает "звон" в силовой схеме, вызываемый флуктуациями напряжения стока в ключевом МДП-транзисторе (причина — наличие паразитной емкости сток-исток).

 

Рис. 4.2-1 Структурная схема ИС KA384BD

Изображение: 

Рис. 4.2-2 Типовая схема включения ИС KA384BD

Изображение: 

Рис. 4.2-3 Иллюстрация работы генератора

Изображение: 

Таблица 4.2-1 Основные технические характеристики микросхем KA384BD

Изображение: 

3. Замена импортных микросхем отечественными аналогами

Справочная информация
(Замена импортных микросхем отечественными аналогами )

 

Аналоговые интегральные микросхемы

Аналоговые интегральные микросхемы

 

Компараторы

Компараторы

Тип микросхемы и фирма производитель

Аналог

Функциональное
назначение

Failchild

Motorola

National

Texas ins.

mA711H

MC1711G

LM1711H

SN72711L

K521CA1

сдвоен, диф.
компаратор

mА710Н

MC1710G

LM710H

SN52710L

K521CA2

однокан. диф.
компаратор

LM111H

K521CA3

компаратор
напряжения

mА709С

МС1711Р

LM711

SN72711N

K554CA1

сдвоен, диф.
компаратор

LM211N

К554САЗБ

——//——

LM119

KP597CA3

два компаратора

LM139

K1401CA1

четерехкан.
компар.напряж.

LM2901

K1401CA2

четырехкан.
компар.напряж.

LM393

К1401САЗ

двухкан.



Тип микросхемы

Аналог

Функциональное назначение

MAL319

К521СА6

сдвоенный компаратор

NE527N

SE527K

КР521СА4

быстродействующий стробируемый компаратор

NE527H

К521СА401

——//——

SE527

АМ653

К544СА4

быстродействующий стробируемый компаратор


АМ685М
АМ685

КМ597СА1
КР597СА1

быстродействующий комп., стробир. ЭСЛ-выход

——//——



АМ686М
AM 686

КМ597СА2
КР597СА2

быстродействующий комп., стробир. I I J 1-выход

——//——


LM119

1СВ8001С

1СВ8001

СА3130В

КМ597САЗ

KP597CA3

К597САЗ

сдвоен, мапомощ. комп. с ТТЛ или «МОП-выход

——//——

——//——


 

Операционные усилители

Операционные усилители

Тип микросхемы и фирма изготовитель

Аналог

Функциональное
назначение

Fairchild

Motorola

National

Texas ins.

mA709CH

MC1709G

LM 17091-

SN72710L

К153УД1АБ

операционный усил

mA101H

MLM101G

LM101H

SN52101L

К153УД2

операционный усил

mA709H

MC1709G

SN72709L

К153УДЗ

операционный усил.

LM735

К153УД4

микромощный оп. ус

mA725C
mA725H

К153УД5А.Б
К153УД501

прецизионный опер. усил.

LM301A
LM201Ah

К153УД6
К153УЛ601

операционный усил.

mA702
mA702C

К140УД1А,Б
КР140УД1А,В

операционный усил.

MC1456C
MC1456G

SN72770

К140УД6
КР140УД608

операционный усил.
операционный усил.

mA741H

MC1741G

LM741H

SN72741 L

К140УД7

операционный .усил.

mA740H

MC1556G

-—

К140УД8

опер. усил. с полевым
входом

mA709

КР140УД9

операционный усил.

LM118

SN52118

К140УД10

высокоточный on. ус.

LM318

К140УД11

быстродейств. оп. ус.

mA776C

MC1776G

К140УД12

микромощныи оп. ус.

mA108H

LM108H

SN52108

К140УД14

прецизионный on. ус.

LM308

К140УД1408

Лрецизионныи оп.ус.

LM741CH

К140УД16

прецизионный оп. ус.

mA747CN
mA747C

К140УД20
КР140УД20

два опер. усил.

LM301

К157УД2

два опер. усил.

MC75110

SN75110N

К170АП1

два передатчика в
линию

MC75107

SN75107N

К170УП1

два приемника с пинии

mA726

К516УП1

диф. парастемп.комп.

LM318

SN72318

К538УН1

мапошумящий УНЧ

mA740

MC1740P

LM740

SN72740N

К544УД1

оп. ус. с полев. входом

LM381

К548УН1

2 мапошум.
предусилитепя

mA725B

КР551УД1А.Б

операционный усил.

mA739C

КМ551УД2А.Е

мапошумящии оп. ус.

mA709

MC1709P

LM709

SN72709N

К553УД1

операционный усил.

-M101AIV

К553УД1А

высокоэконом. оп. ус.

LM301AP

К553УД2

высокоэконом. оп. ус.

mA709

К533УДЗ

операционный усип.

LM2900

К1401УД1

четыре опер. усил.

LM324

К 1401 У Д2

четыре опер. усил.

mA747C

LM4250

К1407УД2

прогр. мапошумящии
опер. усил.

LM343

К1408УД1

высоковольтн. опер.
усил.

Тип микросхемы и фирма производитель

Аналог

Функциональное
назначение

Разных
фирм

RCA

Analog
Devices

Hitachi

SFC2741

КФ140УД7

операционный усил.

ОР07Е

К140УД17А.Б

прецизионный
операционный усил.

LF355

К140УД18

широкополосныи
операционный усил.

LF356H

К140УД22

——//——

LF157

К140УД23

быстродействующий
операционный усил.

ICL7650

К140УД24

прецизионный
операционный усил.

СА3140

К1409УД1

прецизионный
операционный усил.

НА2700

К154УД1А.Б

быстродействующий
операционный усил.

НА2530

К154УД2

быстродействующ ий
операционный усил.

AD509

К154УДЗА.Б

быстродействующ ий
операционный усил.

НА2520

К154УД4

быстродействующ ий
операционный усил.

ТВА931

КР551УД2А,Б

операционный усил.

СА3130Е

К544УД2А.Б

операционный усил. с
полевым входом

LF357

-

-

-

КР544УД2А.Б

——//——

AD513

К574УД1А—В

операционный усил. с
полевым входом

TL083

-

К574УД2А—В

двухканап. быстр.

 

Особенности маркировки микросхем

Особенности маркировки микросхем

6-3.jpg

Префикс: SH — гибридные ИС ; mА — линейные ИС.

Электрические параметры: использование необязательно.

Корпус:

D — керамический герметизированный DIL;

Е — пластмассовый транзистороподобный;

F — плоский герметизированный;

Н — металлический транзистороподобный;

J — металлический для больших мощностей типа ТО-60;

К — металлический для больших мощностей типа ТО-3;

Р — пластмассовый формованный DIL;

R — 8-выводной керамический герметизированный мини-DIL;

Т—8-выводной литой пластмассовый DIL;

U — типа ТО-220 для больших мощностей;

W — пластмассовый типа ТО-92.

Температурный диапазон:

С — коммерческий (0...+70°С);

М — военный (-55...+125°С);

V — промышленный (-25...+85°С).

 

Особенности маркировки микросхем

Изображение: 

Логические интегральные микросхемы

Логические интегральные микросхемы

 

Диодно-транзисторная логика

Диодно-транзисторная логика

Тип

Аналог

SN15830

МСЗЗО

К194ЛА1

SN15831

МС331

К194ТВ1

SN15832

МС332

К194ЛА8

SN15846

МС346

К194ЛА5

SN15858

МС358

К194ЛА10

SN 15862

МС362

К194ЛАЗ

SN151802

К194ЛА12



 

Особенности маркировки цифровых микросхем

Особенности маркировки цифровых микросхем

6-1.jpg

Модификация:

А — модифицированная версия ИС, полностью заменяющая прототип;

В — модифицированная версия ИС, полностью заменяющая версию А;

С — модифицированная версия.

Корпус:

D — керамический D1L;

Е — пластмассовый DIL;

ЕМ — модифицированный пластмассовый DIL с теплорастекателем;

F — керамический DIL;

J — трехслойный керамический кристаллодержатель;

К — плоский керамический;

Р — пластмассовый DIL с теплорастекателем.

6-2.jpg

Температурный диапазон:

54 — военный (-55...+125 °С)

74 — коммерческий (О...+70 °С)

Серия:

LS — с диодами Шотки и пониженной потребляемой мощностью;

S — с диодами Шотки.

Корпус:

D — керамический DIL с паяной крышкой;

F — плоский;

J — широкий керамический DIL;

JS — керамический DIL;

N — широкий пластмассовый DIL;

NS — пластмассовый DIL;

Т — керамический DIL с паяной крышкой.

Цифровые микросхемы ТТЛ серии имеют отечественные аналоги соответственно по сериям:

SN54xxx

— К133...

SN74xxx(N)
SN54Hxx

— К155...
— К130...

SN74Hxx

— К131...

SN74HCxx

— К1533...

SN74Sxx

— К531...

SN54SXX

— К530...

SN54LSxx

— К533...

SN74LSXX

— К555...

SN74Lxx

— К158...

SN74Fxx

— К1531...

SN74ALSxx

— КР1533...



 

Микросхемы МОП и КМОП серий имеют замену:

SN74ACxx

— КР1554...

CD4xxx
CD4xxxA
CD4xxxB

— К176...
— К561...
— КР1561...

МС14ххх
МС14хххВ

— К561...
— КР1561...

ММ54НСхх

— К1564...

где: х — может стоять любое цифровое значение серийного номера.

 

1. Особенности маркировки цифровых микросхем

Изображение: 

2. Особенности маркировки цифровых микросхем

Изображение: 

Транзисторная логика на МОП и КМОП структурах

Транзисторная логика на МОП и КМОП структурах

Тип

Аналог

Назначение элементов

CD4000

К176ЛП4

два элемента "3или-не" и один элемент "не"

CD4001

К176ЛЕ5

четыре логических элемента "2ипи-не'

CD4001A

К561ЛЕ5

——//——

CD4001 В

КР1561Л Е5

——//——

CD4002

К176ЛЕ6

два логических элемента "4или- не"

CD4002A

К561ЛЕ6

——//——

CD4002B

КР1561 Л Е6

CD4003

К176ТМ1

два'D" триггера с установкой в"0"

CD4005

К176РМ1

матрица накопителя ОЗУ на 16 бит

CD4006

К176ИР10

18-ти разрядный регистр сдвига

CD4007

К176ЛП1

элемент логический универсальный

CD4008

К176ИМ1

4-х разрядный сумматор

CD4008A

К561ИМ1

——//——

CD4009

К176ПУ2

шесть преобразователей уровня с инверсией

CD4010

К176ПУЗ

шесть преобразователей уровня без инверсии

CD4011

К176ЛА7

четыре логических элемента "2и-не"

CD4011A

К561ЛА7

——//——

CD4012

К176ЛА8

два логических элемента "4и-не"

CD4012A

К561ЛА8

——//——

CD4013

К176ТМ2

два "D" триггера

CD4013A

К561ТМ2

——//——

CD4015

К176ИР2

два 4-х разрядных сдвигающих регистра

CD4015A

К561ИР2

——//——

CD4016

К176КТ1

четыре двунаправленных переключателя

CD4017

К176ИЕ8

счетчик-делитель на 10

CD4017A

К561ИЕ8

——//——

CD4018A

К561ИР19

программируемый счетчик

CD4019A

К561ЛС2

четыре логических элемента "и-ил и"

CD4020A

К561ИЕ16

14-ти разрядный двоичный счетчик

CD4021

нет

8-ми разрядный статический регистр

CD4022A

К561ИЕ9

счетчик-делитель на 8

CD4023

К176ЛА9

три логических элемента "Зи-не"

CD4023A

К561ЛА9

——//——

CD4023B

КР1561ЛА9

——//——

CD4024

К176ИЕ1

6-ти разрядный двоичный счетчик

CD4025

К176ЛЕ10

три логических элемента "Зили-не"

CD4025A

К561ЛЕ10

——//——

CD4025B

КР1561ЛЕ10

——//——

CD4026

К176ИЕ4

счетчик по мод. 10 с дешифр. на 7 сегм. индикатор

CD4027

К176ТВ1

двa"J-K" триггера

CD4027A

К561ТВ1

——//——

CD4027B

КР1561ТВ1

——//——

CD4028

К176ИД1

двоично-десятичный дешифратор

CD4028A

К561 ИД 1

——//——

CD4029A

К561ИЕ14

4-х раз. двоично-десятичный реверсивный счетчик

CD4030A

К561ЛП2

четыре логических элемента " исключающее или"

CD4030

К176ЛП2

——//——

CD4031

К176ИР4

64-х разрядный регистр сдвига (не полн. аналог)

CD4033

К176ИЕ5

15-ти разрядный двоичный делитель

CD4034A

К561ИР6

8-ми разрядный регистр сдвига

CD4035A

К561ИР9

4-х разрядный регистр сдвига

CD4040B

КР1561 И Е20

12-ти разрядный двоичный счетчик

CD4041B

нет

четыре буферных элемента

CD4042A

К561ТМЗ

четыре "D" триггера

CD4043A

К561ТР2

четыре "R-S' триггера

CD4046B

КР1561ГГ1

генератор с фазовой автоподстройкой частоты

CD4049A

К561ЛН2

шесть инверторов

CD4050A

К561ПУ4

ш есть преобразователей уровня «МОП-ТТЛ

CD4050B

КР1561ПУ4

——//——

CD4051A

К561КП2

аналоговый 8-ми канальный мультиплексор

CD4051B

КР1561КП2

——//——

CD4052A

К561КП1

два аналоговых 4-х канальных мультиплексора

CD4052B

КР1561КП1

——//——

CD4053

нет

три двухнаправпенных аналоговых переключателя

CD4054

нет

схема упр. жидкокристаллическим индикатором

CD4059A

К561ИЕ15

программируемый счетчик

CD4060

нет

14-ти разрядный счетчик

CD4061

К176РУ2

ОЗУ - 256 бит со схемами управления

CD4061A

К561РУ2

——//——

CD4066A

К561КТЗ

четыре 2-х направленных переключателя

CD4066B

КР1561КТЗ

——//——

CD4067

нет

16-ти канальный мультиплексор

CD4069

нет

шесть инверторов

CD4070A

К561ЛП2

четыре логических элемента "или" с исключением

CD4070B

КР1561ЛП14

четыре двухвходовых эпем. "исключающее или"

CD4071B

нет

четыре логических элемента "2или"

CD4076B

КР1561ИР14

4-х разрядный реверсивный сдвигающий регистр

CD4081B

КР1561ЛИ2

четыре логических элемента "2и"

CD4093A

К561ТЛ1

четыре триггера Шмитта с логикой "2и-не"

CD4093B

КР1561ТЛ1

——//——

CD4094B

КР1561ПР1

8-ми разрядный преобразователь уровня

CD4095B

нет

"J-K" триггер

CD4097B

нет

два 8-ми канал, мультиплексора-демультиплексора

CD4098B

КР1561АГ1

два одновибрагора

CD40107B

КР1561ЛА10

два элемента "2и-не" с открытым выходом

CD40115

К176ИРЗ

4-х разрядный универсальный регистр

CD40161B

КР1561ИЕ21

4-х разрядный двоичный счетчик

CD4503

К561ЛНЗ

шесть повторителей

CD4510

нет

4-х разрядный счетчик

CD4520

К561ИЕ10

два 4-х разряцных двоичных счетчика

CD4585

К561ИП2

4-х разрядная схема сравнения

МС14040В

КР1561ИЕ20

12-ти разрядный двоичный счетчик

МС14053В

КР1561ИЕ22

счетчик с регистром

МС14066В

КР1561КТЗ

четыре 2-х направленных переключателя

МС14076В

КР1561ИР14

4-х разрядный регистр "D" типа сЗ-мя состоян.

МС14094В

КР1561ПР1

8-ми разрядный преобр. послед, кода в параллель.

МС14161В

КР1561ИЕ21

4-х разрядный синхронный двоичный счетчик

МС14194В

КР1561ИР15

4-х разрядный реверсивный регистр сдвига

МС14502А

К561ЛН1

шесть стробируемых элементов "не"

МС14511В

нет

преобразователь двоичного кода в семисегм.

МС14512В

КР1561КПЗ

8-ми канальный мультиплексор

МС14516А

К561ИЕ11

4-х разрядный двоичный реверсивный счетчик

МС14519В

КР1561КП4

4-х разрядный селектор

МС14520А

К561ИЕ10

два 4-х разрядных двоичных счетчика

МС14520В

КР1561ИЕ10

——//——

МС14531 А

К561СА1

12-ти разрядная схема сравнения

МС14538А

К561ЛНЗ

шесть повторителей с блокировкой

МС14554А

К561ИП5

2-х разрядный универсальный умножитель

МС14555В

КР1561ИД6

двоичный декодер-демультиплексор

МС14556В

КР1561ИД7

двоичный декодер-демультиплексор

МС14580А

К561ИР11

многоцелевой регистр

МС14581А

К561ИПЗ

арифметико-логическое устройство

МС14582А

К561ИП4

схема сквозного переноса

МС14585А

К561ИП2

4-х разрядная схема сравнения


 

 

Транзисторно-транзисторная логика

Транзисторно-транзисторная логика

Тип

Аналог

Функциональное назначение

SN7400

К155ЛАЗ

.четыре логических элемента "2и-не"

SN7401

К155ПА8

четыре элемента "2и-не" соткр. коллект. (I=16 мА)

SN7402

К155ЛЕ1

четыре логических элемента "2или-не"

SN7403

К155ЛА9

четыре "2и-не" открытым коллектором (I=48 мА)

SN7404

К155ЛН1

шесть инверторов

SN7405

К155ЛН2

шесть инверторов с открытым коллектором

SN7406

К155ЛНЗ

шесть инверторов с открытым коллектором (30 В)

SN7407

К155ЛН4

шесть повторителей с откр. коллектором (30 В)

SN7408

К155ЛИ1

четыре логических элемента "2и"

SN7410

К155ЛА4

три логических элемента "3и-не"

SN7412

К155ЛА10

три элемента "3и-не" с открытым коллектором

SN7413

К155ТЛ1

два триггера Шмитта

SN7414

К155ТЛ2

шесть триггеров Шмитта

SN7416

К155ЛН5

шесть инверторов с открытым коллектором (15 В)

SN7420

К155ЛА1

двалогических элемента "4и-не"

SN7422

К155ЛА7

двалогических элемента "4и-не" с откр. коллект.

SN7423

К155ЛЕ2

два элемента "4или- не" со стробирован. и расшир.

SN7425

К155ЛЕЗ

два элемента "4или-не" со стробированием

SN7426

К155ЛА11

четыре элемента "2и-не" с откр. коллект. (15В)

SN7427

К155ЛЕ4

три логических элемента "3или-не"

SN7428

К155ЛЕ5

четыре буферных логических элемента "2или-не"

SN7430

К155ЛА2

один логический элемент "8и-не"

SN7432

К155ЛЛ1

четыре логических элемента "2или"

SN7437

К155ЛА12

четыре буферных логических элемента "2и-не"

SN7438

К155ЛА13

четыре буферных элемента "2и-не" с откр. кол.

SN7440

К155ЛА6

два буферных элемента "4и-не"

SN7450

К155ЛР1

два"2и-2или-не", один с расширением по "или"

SN7453

К155ЛРЗ

один элемент "2и-2и-2и-3и-4или-не"

SN7455

К155ЛР4

один элемент "4и-или-не" с расширением

SN7460

К155ЛД1

два 4-х входовых расширителя по "или"

SN7472

К155ТВ1

"J-K" триггер

SN7474

К155ТМ2

два "D" триггера

SN7475

К155ТМ7

четыре триггера с инверсным и прямым выходом

SN7476

К155ТКЗ

два "J-K" триггера

SN7477

К155ТМ5

четыре "D" триггера

SN7480

К155ИМ1

сумматор одноразрядный

SN7481

К155РУ1

ОЗУ 16х1 бит

SN7482

К155ИМ2

двухразрядный сумматор

SN7483

К155ИМЗ

четырехразрядный сумматор

SN7484

К155РУЗ

ОЗУ 16х1 бит с управлением

SN7485

К155СП1

4-х разрядная схема сравнения

SN7486

К155ПП5

четыре сх. слож. по модулю 2, "исключающее или"

SN7489

К155РУ2

ОЗУ 64х1 бит с произвольной выборкой

SN7490

К155ИЕ2

4-х разрядный двоично-десятичный счетчик

SN7492

К155ИЕ4

счетчик-делитель на 12

SN7493

К155ИЕ5

4-х разрядный двоичный счетчик

SN7495

К155ИР1

4-х разрядный универсальный сдвигающий регистр

SN7497

К155ИЕ8

6-и разрядный двоичный сч. с перем. коэф. делен.

SN74121

К155АГ1

одновибратор с логикой на входе "и"

SN74123

К155АГЗ

два мультивибратора с управлением

SN74124

К155ГГ1

два управляемых генератора

SN74125

К155ЛП8

четыре буфера с тремя состояниями на выходе

SN74128

К155ЛЕ6

четыре формирователя с логикой "2или-не"

SN74132

К155ТПЗ

четыре триггера Шмитта

SN74141

К155ИД1

дешифратор для управп. высоковольтным индикат.

SN74148

К155ИВ1

приоритетный шифратор 8 на З

SN74150

К155КП1

коммутатор 16 каналов на 1

SN74151

К155КП7

8-ми входовый мультиплексор со стробированием

SN74152

К155КП5

8-ми входовый мультиплексор без стробирования

SN74153

К155КП2

сдвоенный мультиплексор "4 входа-1 выход"

SN74154

К155ИДЗ

дешифрагор-демультиплексор "4 входа-16 вых."

SN74155

К155ИД4

сдвоенный дешифратор "2 входа- 4 выхода"

SN74157

К155КП1

16-и канальный мультиплексор со стробированием

SN74160

К155ИЕ9

4-х разрядный десятичный счетчик

SN74161

К155ИЕ10

4-х разрядный двоичный счетчик

SN74170

К155РП1

16-ти разрядное 03У

SN74172

К155РПЗ

16-ти разрядное ОЗУ с тремя состоян. на выходе

SN74173

К155ИР15

4-х разряди, регистр с тремя состоян. на выходе

SN74175

К155ТМ8

четыре "D" триггера

SN74180

К155ИП2

8-и разрядная схема контроля четности

SN74181

К155ИПЗ

4-х разрядное арифм. логическое устройство

SN74182

К155ИП4

схема быстрого переноса

SN74184

К155ПР6

преобразователь двоично-десятич. кода в двоичн.

SN74185

К155ПР7

преобразователь двоич. кода в двоично-десятичн.

SN74187

К155РЕ21

ПЗУ преобр. символов в код русского алфавита

SN74187

К155РЕ22

ПЗУ преобр. символов в код английского алфав.

SN74187

К155РЕ23

ПЗУ преобр. символов в код арифм. знаков и цифр

SN74187

К155РЕ24

ПЗУ преобр. символов в код дополнитепьн. знаков

SN74192

К155ИЕ6

двоично-десятичный реверсивный счетчик

SN74193

К155ИЕ7

4-х разрядный двоичный реверсивный счетчик

SN74198

К155ИР13

8-и разрядный сдвигающий регистр

SN74S301

К155РУ6

ОЗУ 1 к статическое

SN74365

К155ЛП10

шесть формирователей с тремя состоян. на выходе

SN74366

К155ЛН6

шесть инверторов с тремя состояниями на выходе

SN74367

К155ЛП11

шесть формирователей с тремя состоян. на выходе

SN75113

К155АП5

двадиф. передатчика в линию с тремя состоян.

SN75450

К155ЛП7

два элемента "2и-не" с мощ. выходом (I=300 мА)

SN75451

К155ЛИ5

два элементами" с мощ. выходом (I=300 мА)

SN75452

К155ЛА18

два логических элемента "2и-не"

SN75453

К155ЛЛ2

два логических элемента "2или-не"

 

Транзисторно-транзисторная логика с диодами Шотки

Транзисторно-транзисторная логика с диодами Шоттки

Функциональное назначение и расположение выводов у микросхем с одинаковым шифром (серийным номером) после обозначения серии такое же, как и у микросхем К155.

Тип

Аналог

SN74LSOO

К555ЛАЗ

SN74LS02

К555ЛЕ1

SN74LS03

К555ЛА9

SN74LS04

К555ЛН1

SN74LS05

К555ЛН2

SN74LS08

К555ЛИ1

SN74LS09

К555ЛИ2

SN74LS10

К555ЛА4

SN74LS11

К555ЛИЗ

SN74LS12

К555ЛА10

SN74LS14

К555ТЛ2

SN74LS15

К555ЛИ4

SN74LS20

К555ЛА1

SN74LS21

К555ЛИ6

SN74LS22

К555ЛА7

SN74LS26

К555ЛА11

SN74LS27

К555ЛЕ4

SN74LS30

К555ЛА2

SN74LS32

К555ЛЛ1

SN74LS37

К555ЛА12

SN74LS38

К555ЛА13

SN74LS40

К555ЛА6

SN74LS42

К555ИД6

SN74LS51

К555ЛР11

SN74LS54

К555ЛР13

SN74LS55

К555ЛР4

SN74LS74

К555ТМ2

SN74LS75

К555ТМ7

SN74LS85

К555СП1

SN74LS86

К555ЛП5

SN74LS93

К555ИЕ5

SN74LS107

К555ТВ6

SN74LS112

К555ТВ9

SN74LS113

К555ТВ11

SN74LS123

К555АГЗ

SN74LS125

К555ЛП8

SN74LS138

К555ИД7

SN74LS145

К555ИД10

SN74LS148

К555ИВ1

SN74LS151

К555КП7

SN74LS153

К555КП2

SN74LS155

К555ИД4

SN74LS157

К555КП16

SN74LS160

К555ИЕ9

SN74LS161

К555ИЕ10

SN74LS163

К555ИЕ18

SN74LS164

К555ИР8

SN74LS165

К555ИР9

SN74LS166

К555ИР10

SN74LS170

К555ИР32

SN74LS173

К555ИР15

SN74LS174

К555ТМ9

SN74LS175

К555ТМ8

SN74LS181

К555ИПЗ

SN74LS182

К555ИП4

SN74LS183

К555ИМ5

SN74LS191

К555ИЕ13

SN74LS192

К555ИЕ6

SN74LS193

К555ИЕ7

SN74LS194

К555ИР11

SN74LS196

К555ИЕ14

SN74LS197

К555ИЕ15

SN74LS221

К555АГ4

SN74LS242

К555ИП6

SN74LS243

К555ИП7

SN74LS247

К555ИД18

SN74LS251

К555КП15

SN74LS253

К555КП12

SN74LS257

К555КП11

SN74LS258

К555КП14

SN74LS259

К555ИР30

SN74LS261

К555ИП8

SN74LS273

К555ИР35

SN74LS279

К555ТР2

SN74LS280

К555ИП5

SN74LS283

К555ИМ6

SN74LS295

К555ИР16

SN74LS298

К555КП13

SN74LS353

К555КП17

SN74LS373

К555ИР22

SN74LS377

К555ИР27

SN74LS384

К555ИП9

SN74LS385

К555ИМ7

SN74LS390

К555ИЕ20

SN74LS393

К555ИЕ19

SN74HOON

К131ЛАЗ

SN74H04N

К131ЛН1

SN74H10N

К131ЛА4

SN74H20N

К131ЛА1

SN74H30N

К131ЛА2

SN74H40N

К131ЛА6

SN74H50N

К131ЛР1

SN74H53N

К131ЛРЗ

SN74H55N

К131ЛР4

SN74H60N

К131ЛД1

SN74H72N

К131ТВ1

SN74H74N

К131ТМ2

SN74LOON

К158ЛАЗ

SN74L10N

К158ЛА4

SN74L20N

К158ЛА1

SN74L30N

К158ЛА2

SN74L50N

К158ЛР1

SN74L53N

К158ЛРЗ

SN74L55N

К158ПР4

SN74L72N

К158ТВ1

SN74SOON

К531ЛАЗ

SN74S02N

К531ЛЕ1

SN74S03N

К531ЛА9

SN74S04N

К531ЛН1

SN74S05N

К531ЛН2

SN74S08N

К531ЛИ1

SN74S10N

К531ЛА4

SN74S11N

K531J1H3J

SN74S20N

К531ЛА1

SN74S22N

К531ЛА7

SN74S30N

К531ЛА2

SN74S37N

К531ЛА12

SN74S51N

К531ЛР11

SN74S64N

К531ЛП9

SN74S65N

К531ЛР10

SN74S74N

К531ТМ2

SN74S85N

К531СП1

SN74S86N

К531ЛП5

SN74S112N

К5317В9

SN74S113N

К531ТВ10

SN74S114N

К531ТВ11

SN74S124N

К531ГГ1

SN74S138N

К531ИД7

SN74S139N

К531ИД14

SN74S140N

К531ЛА16

SN74S151N

К531КП7

SN74S153N

К531КП2

SN74S168N

К531ИЕ16

SN74S169N

К531ИЕ17

SN74S175N

К531ТМ8

SN74S181N

К531ИП3

SN74S182N

К531ИП4

 

4. Справочная информация по электронным компонентам

Приложение 1. Микропереключатели

Приложение 1

Микропереключатели

И сегодня редко какие радиотехнические устройства обходятся без механически управляемых выключателей и переключателей. В таблице П1 приведены сведения о микропереключателях - элементарных контактных «тройках», получивших наибольшее, пожалуй, распространение среди электромеханических контактных устройств.

Таблица П1

МП1-1

МП-7

МП-5

МП-9

МП-10

МП-11

МП3-1

Коммутируемые токи, мА

0,2- 100

0.5- 500

0,2- 400

0.2- 100

-

-

-

Коммутируемые напряжения, В

0,2-30

0,5-30

0,2-30

-

0,2-30

-

0,2-30

Число коммутаций, тыс.

25-50

7,5-10

15-100

25-50

5-50

15-100

30-100

Габариты, мм

20,3х 17,4х 8,2

12,8х 10,6х 5,2

20,3х 17,4х 8,2

20,3х 14,6х 7,2

20,3х 4,6х 7,2

20,3х 14,6х 7,2

20,3х 17,4х 8,2

 

Приложение 2. Фотодиоды

Приложение 2

Фотодиоды

Среди фоточувствительных приборов полупроводниковые фотодиоды занимают особое положение. Обладая почти таким же быстродействием, что и вакуумные, они имеют малые размеры и могут питаться от тех же источников, что и микросхемы прибора. То обстоятельство, что почти все они обладают высокой чувствительностью и к инфракрасному излучению, образуют с излучающим ИК

диодом своего рода высокочастотную комплементарную пару, привлекает к ним особое внимание.

Параметры некоторых фотодиодов отечественного производства приведены в таблице П2.

Таблица П2

Тип

1

2

3

4

5

ФД-3К

1,13

0.5... 1.1

15

0,5

11х11х1,7

ФД-8К

2х2

0,5...1,12

20

1,0

3,87х12,5

ФД-101КП

0,5

0,5...1,05

10

0,005

3,87х12,5

ФД-11К

2,5

0,5... 1,15

10

0,2

8.2х5,5

ФД-20-31К

1.4

0,47...1,17

20

0,1

7,2х5

ФД-21-КП

1,55

0,4...1,1

10

0,017

3,87х12,5

ФД-24К

10

0,47... 1,12

27

2.5

19,6х6,5

ФД-25К

1,9х1,9

0,4... 1,1

20

1,0

3,87х12,5

ФД-26К

1,9х1,9

0,4...1.1

20

3.0

3,87х12,5

ФД-27К

1,9х1,9

0,4...1,1

20

1,0

3.87х12,5

ФД-28КП

1,24х1,24

0,4...1,1

4

0,02

6х9,5

ФД-К-155

5,0

0,4...1,1

10

0,1

11,5

ФД-252

0,6

0,4...1,1

24

0,01

8x10

ФД-252-01

0,3

0,4...1,1

10

0,005

8х10

ФД-265А

1,4х1,4

0,4...1,1

4

0,1

4х8

1 - размер фоточувствительного элемента, мм

2 - спектр Dl, мкм : ;

3 - рабочее напряжение, В

4 - темновой ток,мкА,неболее

5 - габариты (без выводов), мм - высота х ширина х толщина - (диаметр х длина)

 

Приложение 3. ИК диоды

Приложение 3

ИКдиоды

Разработка полупроводниковых инфракрасных излучателей - ИК диодов - одно из самых значительных достижений полупроводниковой

Таблица ПЗ

1

2

3

4

5

6

7

АЛ107Г

12(100)

0,94-0,96

2(100)

100

2

25(0.8)

АЛ115В

9(100)

1/0;6

0,9-1

1,8(50)

600*

4

30(0,8)

AЛ119A

40(300)

1/1,5

0,93-0,96

3(300)

300

-

-

АЛ119В

25(300)

0,35/1,5

0,93-0,96

3(300)

300

-

-

АЛ123А

500(10000)*

0,35/0,5

0,94

2(300')

400

0

ЗЛ130А

350(3000)*

1,5/1,5

0,95

3(3000)

300

1

АЛ144А

20(100)

-

0,93-0,98

2(100)

150*

1

50

АЛ145Д

20(100)

-

0,93-0,98

1,6(100)

1100*

-

40

АЛ147А

16/ср(100)

0,3/0,3

0,85-0,89

1,8(100)

1500*

-

40

АЛ156В

12(100)

0,1/0,1

0,82-0,9

1,8(100)

2500*

3

20(0,8)

АЛ162А

100/ср(100)

0,3/0,3

0,85-0,89

1,8(100)

1500*

-

-

АЛ163А

11(100)

0.05/0,05

0.82-0,9

2(100)

1000*

3

70(0,8)

АЛ165Б

15(100)

-

0,87

2(100)

2500*

3

20(0,8)

АЛ168В

400/ср(80)

-

0,85-0,9

1,6(80)

1500*

2

-

АЛ170А

16/ср(40)

0,5/0,5

0,85-0,89

2,3(700)*

1000*

-

20(0,5)

АЛ170Б

40/ср(40)

0,5/0,5

0,85-0,89

2,3(700)*

1000*

-

10(0,5)

АЛ170В

100/ср(40)

0,5/0,5

0,85-0,89

2,3(700)*

1000*

-

4(0,5)

техники последних лет. Появился компактный, высокоэффективный, быстродействующий источник инфракрасного излучения, способный сконцентрировать в очень короткой вспышке мощность, многократно превышающую мощность непрерывного его излучения.

Параметры некоторых ИК диодов отечественного производства приведены в таблице П3 [5].

1 - излучаемая мощность Ре, мВт или мВт/ср (при токе в диоде в мА);

2 - время нарастания/спада излучаемой мощности (0,1...0,9Рmax),мкс;

3 - длина волны, соответствующая максимальному излучению, мкм;

4 - падение напряжения на диоде, В (при токе, мА);

5 - максимальный ток в диоде, мА;

6 - максимальное обратное напряжение, В;

7 - угол излучения, в градусах (по уровню Ре max/2);

К таблице П3:

1. Спектральные характеристики ИК диодов имеют один максимум - Dl- в интервале длин волн 0,87...0,96 мкм..

2. Пространственная плотность излучения измеряется в милливаттах на стерадиан (мВт/ср).

3. Для измерения силы излучения пользуются и другой единицей - милликавделой (мКд). Их соотношение: 1 мКд - 1,683 мВт/ср.

4. При повышении температуры lmax диода смещается в сторону длинных волн.


*) импульсное значение

 

 

Приложение 4. Счетчики Гейгера

Приложение 4

Счетчики Гейгера

Счетчики Гейгера-Мюллера - самые распространенные детекторы (датчики) ионизирующего излучения. До сих пор им, изобретенным в самом начале нашего века для нужд зарождающейся ядерной физики, нет, как это ни странно, скольконибудь полноценной замены.

В своей основе счетчик Гейгера очень прост. В хорошо вакуумированный герметичный баллон с двумя электродами введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона. Баллон может быть стеклянным, металлическим и др. Обычно счетчи- ки воспринимают излучение всей своей поверхностью, но существуют

7-1.jpg

Рис. П4.1. Включение счетчика Гейгера

и такие, у которых для этого в баллоне предусмотрено специальное «окно». К электродам прикладывают высокое напряжение U^ (рис. П4.1), которое само по себе не вызывает каких-либо разрядных явлений. В этом состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации - след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей. Первичные электроны, ускоряясь в электрическом поле, ионизируют «по дороге» другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронноионного облака, резко увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Обратный процесс - возвращение газовой среды в ее исходное состояние в так называемых галогеновых счетчиках - происходит само собой. В действие вступают галогены (обычно хлор или бром), в небольшом количестве содержащиеся в газовой среде, которые способствуют интенсивной рекомбинации зарядов. Но этот процесс идет значительно медленнее. Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие - «мертвое» время - является важной его паспортной характеристикой.

Такие счетчики называют галогеновыми самогасящимися. Отличаясь самым низким напряжением питания, превосходными параметрами выходного сигнала и достаточно высоким быстродействием, они оказались особенно удобными для применения в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения - a, b, g, ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции. Так, входное окно счетчика, чувствительного к a- и мягкому b-излучению, должно быть очень тонким; для этого обычно используют слюду толщиной 3...10 мкм. Баллон счетчика, реагирующего на жесткое b- и g-излучение, имеет обычно форму цилиндра с толщиной стенки

7-2.jpg

Рис. П4.2. Зависимость скорости счета or напряжения питания в счетчике Гейгера

0,05....0,06 мм (он служит и като- дом счетчика). Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового - из кварцевого стекла.

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легко регистрируемые a- частицы. Фотонное излучение - ультрафиолетовое, рентгеновское, g-излучение - счетчики Гейгера воспринимают опосредованно - через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Каждая фиксируемая счетчиком частица вызывает появление в его выходной цепи короткого импульса. Число импульсов, возникающих в единицу времени, - скорость счета счетчика Гейгера - зависит от уровня ионизирующей радиации и напряжения на его электродах. Типичный график зависимости скорости счета от напряжения питания Uпит показан на рис. П4.2. Здесь Uнс - напряжение начала счета; Uнг и Uвг - нижняя и верхняя граница рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика. Рабочее напряжение Uр обычно выбирают в середине этого участка. Ему соответствует Nр - скорость счета в этом режиме.

Зависимость скорости счета от уровня радиационного облучения счетчика - важнейшая его характеристика. График этой зависимости имеет почти линейный характер и поэтому нередко радиационную чувствительность счетчика выражают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета - имп/с - к уровню радиации - мкР/с).

В тех случаях, когда она не указана (нередких, к сожалению), судить о радиационной чувствительности счетчика приходится по другому его тоже очень важному параметру - собственному фону. Так называют скорость счета, причиной которой являются две составляющие: внешняя - естественный радиационный фон, и внутренняя - излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода. («фон» в дозиметрии имеет почти тот же смысл, что и «шум»

7-3.jpg

Рис. П4.3. Зависимость скорости счета от энергии гамма-квантов ("ход с жесткостью") в счетчике Гейгера

в радиоэлектронике; в обоих случаях речь идет о принципиально неустранимых воздействиях на аппаратуру.)

Еще одной важной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии («жесткости») ионизирующих частиц. На профессиональном жаргоне график этой зависимости называют «ходом с жесткостью». В какой мере эта зависимость важна, показывает график на рис. П4.3. «Ход с жесткостью» будет влиять, очевидно, на точность проводимых измерений.

Не обсуждая вопрос о том, нужна ли высокая точность измерений бытовому радиометру, заметим, что подобные приборы промышленного изготовления отличаются от любительских только лишь коррекцией счетчика по жесткости. Для этого на счетчик надевают «рубашку» - пассивный фильтр, имеющий приблизительно обратную по отношению к счетчику жесткостную характеристику.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы - по реакции такого прибора нельзя судить о перво- причине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием a-частиц, электронов, g-квантов

Таблица П4

1

2

3

4

5

6

7

СБМ19

400

100

2

310*

50

19х195

1

СБМ20

400

100

1

78*

50

11х108

1

СБТ9

380

80

0,17

40*

40

12х74

2

СБТ10А

390

80

2,2

333*

5

(83х67х37)

2

СБТ11

390

80

0,7

50*

10

(55х29х23,5)

3

СИ8Б

390

80

2

350-500

20

82х31

2

СИ14Б

400

200

2

300

30

84х26

2

СИ22Г

390

100

1,3

540*

50

19х220

4

СИ23БГ

400

100

2

200-400*

-

19х195

1

1 - рабочее напряжение, В;

2 - плато - область малой зависимости скорости счета от напряжения питания, В;

3 - собственный фон счетчика, имп/с, не более;

4 - радиационная чувствительность счетчика, имп/мкР (* - по кобальту-60);

5 - амплитуда выходного импульса, В, не менее;

6 - габариты, мм - диаметр х длина (длина х ширина х высота);

7.1 - жесткое b- и g-излучение;

7.2 - то же и мягкое b-излучение;

7.3 - то же и a-излучение;

7.4 - g-излучение.

(в счетчике, на все эти виды излучения реагирующем), ничем не различаются. Сами частицы, их энергии совершенно исчезают в порождаемых ими лавинах-близнецах.

В таблице П4 приведены сведения о самогасящихся галогеновых счетчиках Гейгера отечественного производства, наиболее подходящих для бытовых приборов радиационного контроля.

Внешний вид и основные размеры некоторых счетчиков Гейгера приведены на рис. П4.4.

7-4.jpg

Рис. П4.4. Счетчики Гейгера

 

Рис. П4.1. Включение счетчика Гейгера

Изображение: 

Рис. П4.2. Зависимость скорости счета or напряжения питания в счетчике Гейгера

Изображение: 

Рис. П4.3. Зависимость скорости счета от энергии гамма-квантов ("ход с жесткостью") в счетчике Гейгера

Изображение: 

Рис. П4.4. Счетчики Гейгера

Изображение: 

Приложение 5. Радиоизотопы

Приложение 5

Радиоизотопы

 

Приложение 6. Фотоумножители

Приложение 6

Фотоумножители

Фотоумножители, обладающие высоким усилением и быстродей- ствием, получили широкое распространение в дозиметрических приборах, использующих сцинтилляторы - вещества, реагирующие на проникающую в них ионизирующую частицу вспышкой света. Параметры некоторых фотоумножителей отечественного производства приведены в таблице П6 [8].

Таблица П6

Параметр

ФЭУ-31

ФЭУ-54

ФЭУ-67Б

ФЭУ-71

ФЭУ-85

Область максимальной спектральной чувствительности, им

300-600

380-480

300-600

420-460

340-440

Чувствительность, А/лм (при напряжении питания, кВ)

1(0,9); 10(1,4)

10(>0,8); 100(1,9)

10(1,2); 100(1,0)

10(0,8); 100(1,25)

10(0,9); 1000(1,3)

Габариты (по баллону), мм

Ж21,5х73

Ж22,5х64

Ж30х90

Ж30х90

 

 

Приложение 7. Сцинтилляторы

Приложение 7

Сцинтилляторы

В таблице П7 приведены основные характеристики сцинтилляторов - веществ, реагирующих на проникающую в них ионизирующую частицу вспышкой света [9].

Таблица П7

ZnSe

CdS

CWO*

BGO*

CeJ

ZnS

Нафталин

Время высвечивания, мкс

3-5

0,3

5-9

<0,35

<1

10

0,06

Уровень послесвечения через 20 мс,%

<0,05

<0,1

<0,05

<0,05

-
-
-

Максимум излучения, нм

640

730; 1000

490

480

450

460

345

*) CWO - CdWO4; BGO - Bi4Ge3O12

 

Приложение 8. Проволочные сопротивления

Приложение 8

Проволочные сопротивления

Удельное сопротивление проводов высокого сопротивления, при- веденное в таблице П8 в удобной для расчета форме, позволит изготовить резистор нужного сопротивления, не прибегая к измерениям.

Таблица П8

d, мм

R , Ом (длина З см)

Нихром

Константан

Манганин

0,15

3,00

1,35

1,27

0,20

1,80

0,76

0,71

0,25

1,10

0,49

0,46

0,30

0,76

0,34

0,32

0,35

0,56

0,25

0,23

 

Приложение 9. Химические источники тока

Приложение 9

Химические источники тока

Радиоэлектронные приборы, работающие автономно, имеют встроенный источник питания того или иного типа. Рсссмотрим химические источники тока (ХИТ) различных систем.

Для питания бытовой и радиолюбительской аппаратуры чаще других используют марганцево-цинковые элементы и батареи с различными электролитами (солевым, хлоридным или щелочным) и воздушной деполяризацией. Широкое распространение получили также ртутно-цинковые, серебряно-цинковые и литиевые ХИТ.

Конструктивно ХИТ обычно имеет форму цилиндра (цилиндр малой высоты называют «пуговицей»). По рекомендации МЭК такие ХИТ имеют в обозначении:

одну букву, определяющую электрохимическую систему (L - алкалиновая, S - серебряно-цинковая, М или N - ртутно-цинковая и др.);

букву R (от английского Ring - круг), говорящую о форме элемента;

число от 03 до 600, условно определяющее размеры элемента.

Применяя ХИТ той или иной системы, следует, конечно, знать ее возможности, особенности эксплуатации и т.п.

Марганцево-цинковые элементы и батареи. Электрохимическая система: цинк - двуокись марганца - электрод.

Это, прежде всего, хорошо известные элементы и батареи Лекланше (угольно-цинковые), с солевым электролитом (водным раствором хлорида аммония и хлорида цинка). Они могут эксплуатироваться при температурах от -5 до +50°С. Имеют заметный саморазряд и недостаточно хорошую герметичность. Дешевы.

Другой тип - угольно-цинковые ХИТ с водным раствором хлорида цинка. Энергетические показатели этих источников примерно в 1,5 раза выше, чем у элементов и батарей предыдущей группы. Могут эксплуатироваться при температурах от -15 до +70° С. Имеют, меньший саморазряд и лучшую герметичность. Допускают больший разрядный ток.

Алкалиновые элементы и батареи. Электрохимическая система аналогична электрохимической системе марганцево-цинковых элементов, но в качестве электролита здесь используется щелочь в виде водного раствора гидроокиси калия. Алкалиновый элемент можно перезаряжать до 10...15 раз, но его повторная отдача не превысит 35% начальной. Для перезарядки годятся элементы, сохранившие герметичность и имеющие напряжение не менее 1,1 В. Алкалиновые ХИТ могут эксплуатироваться при температурах от -25 до +55°С. Допускают значительные разрядные токи.

Элементы и батареи с воздушной деполяризацией. Электрохимическая система: цинк - воздух - гидрат окиси калия. Гидроокись марганца МnООН окисляется кислородом воздуха до МnО2 Для подвода и удержания О2 используют специальные конструкции и материалы катода (элемент активизируется лишь после извлечения пробки, открывающей доступ воздуху). ХИТ с воздушной депо- ляризацией могут работать при температурах от -15 до +50°С. Они обладают высокими энергетическими показателями. Могут быть рекомендованы при значительных импульсных нагрузках.

Ртутно-цинковые элементы и батареи. Электрохимическая система: цинк - окись ртути - гидрат окиси натрия. Источники тока имеют высокие энергетические показатели. Работоспособны лишь при положительных температурах (0...+50°С). При малых токах разряда и стабильной температуре напряжение на элементе остается почти неизменным. Практически не имеют газовыделения. Из-за наличия ртути экологически вредны и к применению не рекомендуются.

Серебряно-цинковые элементы и батареи. Электрохимическая система: цинк - одновалентное серебро - гидрат окиси калия или натрия. Источники обладают малым саморазрядом, имеют хорошие энергетические характеристики и почти неизменное напряжение в процессе работы (при неизменной температуре). Температурный диапазон - О...+55°С

Литиевые элементы и батареи с органическим электролитом. Сюда входят более десяти электрохимических систем. Напряжение на элемент - от 1,5 до 3,6 В. Энергетические показатели выше, чем у ртутно- и серебряно-цинковых элементов: по массе - в 3 раза, по объему - в 1,5...2 раза. Литиевые источники обладают исключительно малым саморазрядом (сохраняют более 85% емкости после 10 лет хранения). Они герметичны и имеют довольно стабильное напряжение. В микромощных устройствах, где важна надежность контактов, используют литиевые источники с выводами под пайку.

В таблице П9.1 приведены данные алкалиновых элементов и батарей по МЭК и ГОСТ, ТУ ([11], с. 36, 37).

В таблице П9.2 приведены данные серебряно-цинковых элементов и батарей по МЭК и ГОСТ ([11], с. 38, 39).

В таблице П9.3 приведены данные элементов и батарей Лекланше по международным (МЭК) и государственным (ГОСТ, ТУ) стандар- там ([11], с. 34, 35).

Таблица П9.1

Обозначение по стандарту

Габариты (Ж х h или L х В х Н), мм

Масса,г

Напряжение, В

Емкость, мА·ч

мэк

ГОСТ, ТУ

Элементы

LR1

293

12х30,2

9,5

1,5

650

LR03

286

10,5х44,5

13

1,5

800

LR6

LR6;A316; ВА316; 316-ВЦ; "Сапфир"

14,5 х 50.5

25

1.5

1000...3700

LR10

А332; ВА332

20,5 х 37

26

1,5

1300...2800

LR14

LR14; А343; ВА343

26,2 х 50

65

1,5

3000...8200

LR20

LR20; А373; ВА373

34.1 х61,5

125

1.5

5500... 16000

Батареи

6LF22

"Корунд"

26,5 х 17,5 х 48,5

46

9

620

 

Таблица П9.2

Обозначение по стандарту

Габариты (Ж х h), мм

Масса,г

Напряжение, В

Емкость, мА·ч

МЭК

ГОСТ, ТУ

Элементы

SR41

СЦ-21; СЦ-0.038

7,9 х 3,6

0,7

1,5... 1,55

38...45

SR42

СЦ.0.08

11.6х3,6

1.6

1,5...1,55

80...100

SR43

СЦ-32; СЦ-0,12

11,6х4,2

1.8

1,5...1,55

110...120

8R44

СЦ-0,18

11,6х5.4

2.3

1.5...1.55

130...190

СЦ-30

11,6х2,6

1,5

1,5... 1,55

60

Батареи

4SR44

13 х 25,2

14.2

6

170

 

Таблица П9.3

Обозначение по стандарту

Габариты (Ж х h или L х В х Н), мм

Масса,г

Напряжение, В

Емкость, мА·ч

МЭК

ГОСТ, ТУ

Элементы

R1

R 1:293

12х30,2

7,5

1,5

150

R03

R03; 286

10,5х44,5

8,5

1,5

180

R6

R6; 316; "Уран-М"

14,5 х 50,5

19

1,5

450...850

R10

R10; 332

21,8х37,3

30

1,5

280

R12

R12; 336

21,5х60

48

1,5

730

R14

R14; 343; "Юпитер-М"

26,2 х 50

46

1,5

1530... 1760

R20

R20; 373; "Орион-М"

31,4х61,5

95

1,5

4000

R40

R40; AR40

67 х 172

600

1,5

39000... 46000

Батареи

2R10

2R10

21,8х4,6

58

3

280

3R12

3R12;3336; "Планета"

62 х 22 х 67

125

4,5

1500

4R25

4R25

67 х 67 х 102

650

6

4000

6F22

6F22; "Крона"

26,5 х 17,5 х 48,5

30

9

190...250

6F100

6F100

66 х 52 х 81

460

9

3600

В таблице П9.4 приведены данные ртутно-цинковых элементов и батарей по МЭК и ГОСТ ([11], с. 39-41)..

В таблице П9.5 приведены данные литиевых элементов.

Таблица П9.4

Обозначение по стандарту

Габариты (Ж х h ), мм

Масса,г

Напряжение, В

Емкость, мА·ч

МЭК

ГОСТ, ТУ

Элементы

MR6

MR6

10,5х44,5

25

1,35

1700

MR9

РЦ53

16 х 6,2

4,2...4,6

1,35

250...360

MR19

РЦ85

30,8 х 17

43 .

1,35

3000

MR42

РЦ31

11,6х3,6

1,4...1,6

1,35

110

MR52

РЦ55

16,4 х 11,4

8...9

1,35

450...500

РЦ63

21 х7,4

11

1,34

700

РЦ65

21 х 13

18,1

1,34

1500

РЦ73

25,5х8,4

17,2

1,34

1200

РЦ75

25,5 х 13,5

27,3

1,34

2200

РЦ82

30,1 х 9,4

30

1,34

2000

РЦ83

30,1 х 9,4

28,2

1,34

2000

РЦ93

31 х60

170

1,34

13000

Батареи

3MR9

ЗРЦ53

17х21,5

15

4,05

250...360

4MR9

4РЦ53

17х27

20

5,4

360

2MR52

2РЦ 55с

17х23

19

2,7

450

3MR52

ЗРЦ 55с

17х35

28

4,05

450

4РЦ 55с

16,2 х 53

40

5,4

450

5РЦ 55с

16,2 х 66

50

6,7

450

6РЦ63

23х48

72

7,2

600

 

Таблица П9.5

Шифр типоразмера

Габариты

(Ж х h), мм

Масса, г

Напряжение, В

Емкость, мА·ч

333

3,8 х 33

1,1

3

40

426

4,2 х 25,9

0,55

3

20

436

4,2 х 35,9

0,85

3

40

721

7,9х2,1

0,45

1,5

18

772

7,9 х 7,2

1

3

30

921

9,5х2,1

0,55

1.5

35

926

9,5х2,6

0,7

1,5

45

1121

11,6х2,1

0,85

1,5

50

1136

11,6х3,6

1,25

1.5

100

1154

11,6х5,4

1,85

1,5

170

1154

11,6х5,4

1,7

3

130

1220

12,5х2

0,8

3

30

1225

12,5х2.5

0,9

3

36

1616

16 х 1,6

1

3

30

1620

16х2

1,2

3

50

2010

20 х 1

1,1

3

20

2016

20х1,6

1,7

3

50...65

2020

20х2

2,3

3

90

2025

20 х 2,5

2,5

3

120(100)

2032

20 х 3,2

3

3

170(130)

2192 .

21 х9,1

11

3,5

400

2192

21 х 9,2

8,9

3

800

2312

23 х 1,6

2,3

3

90

2320

23х2

3

3

80...110

2325

23 х 2,5

3,7

3

140...160

2420

24,5 х 2

3,2

3

120(100)

2430

24,5 х 3

4

3

200(160)

2432

24,5 х 3,2

4,2

3

180

2525

25 х 2,5

4

3

200

2779

27,3 х 7,9

13

3

1200

3506

35,5 х 6

19,5

3

1700

11100

11,6х 10,8

3,3

3

160

12600

12х60,2

16

3

1000

13250

13 х 25,2

9

6

160

14250

14,1 х24,5

7,3

1,5

1600

14250

14,5 х 25

10

3

1000

14500

14,1 х 49,5

17,4

1,5

3900

17230

17х23

9,5

3

750

17340

17х33,5

13,5

3

1200

26180

26,2 х 18,2

25

3,5

1000

26500

26х50

47

3

5000

34610

32 х 60,5

110

1,5

16000

Примечание: фирма Sanyo выпускает овальные литиевые элементы CR 736-2 (напряжение 3 В, емкость - 70 мА-ч, габариты 15,7х7,8х3,6 мм) для батарей типа «Крона» ([II], с. 42-44)

О некоторых особенностях элементов и батарей зарубежного производства, преимущественном их назначении можно судить по сделанным на них надписям ([II], с. 79, 80):

Alkaline - элемент (батарея) со щелочным электролитом

Camera - для фотокиноаппаратуры

Cigarette Lighter - для карманной зажигалки

Communication Device - для средств связи

Fishing Float - для поплавка

Game - для электронной игрушки

Hearing Aid - для слухового аппарата

Lighter - к зажигалке

Lithium - литиевый элемент (батарея)

Marganese-Zinc - марганец-цинковый элемент (батарея)

Measuring Equipment - для измерительных приборов

Medical Instrument - для медицинских приборов

Mercuric Oxide - ртутно-цинковый элемент (батарея)

Microphone - для микрофона

Mini Radios - для миниатюрного радиоприемника

Nickel-Zinc- никель-цинковый элемент (батарея)

Photographic Light Meter - для фотоэкспонометра

Pocket Bell - для карманного будильника

Silver Oxide - серебряно-цинковый элемент (батарея) Standart - универсальный элемент (батарея) Watch - для часов Wristwatch - для наручных часов

 

Приложение 10. КМОП-микросхемы

Приложение 10

КМОП-микросхемы

В таблице П10 приведены основные электрические параметры наиболее употребительных КМОП-микросхем ([12], с. 299-359).

Таблица П10

Тип микросхемы

Uпит, В

U0вых, В

U1вых, В

I0вых, мА

I1вых, мА

Iпот, мкА

t01, нс

t10, нс

Свх, пф

К561ЛА7

5

0,95

3,6

0,25

0,25

-

160

160

-

10

2,9

7,2

0,45

0,55

-

80

80

11

15

-

-

-

-

2

-

-

-

564ЛА7

5

0,95

3,6

0,25

0,25

0,05

160

160

-

К561ЛА9

10

2,9

7,2

0,25

-0,3

5

125

125

-

К561ЛЕ5

5

0,95

3,6

0,3

0,3

0,5

260

180

-

10

2.9

7,2

0,6

0.25

5

130

115

-

564ЛЕ5

5

0,95

3.6

0,4

0,5

0,05

205

110

-

К561ЛН2

5

0,95

3,6

2,6

1,25

-

120

110

-

10

2,9

7.2

8

1,25

-

90

50

30

15

-

-

-

-

2

-

-

-

К176ЛП1

9

0,3

8,2

-

-

0,3

200

200

-

К561ЛП2

5

0,95

3,6

2,6

1,25

-

120

120

-

10

2,9

7,2

8

1,25

-

90

50

30

15

-

-

-

-

2

-

-

-

К561КП2

10

-

-

-

-

-

400

400

15

15

-

-

-

-

100

-

-

-

К176ИЕ1

9

0,3

4,2

-

-

20

-

-

-

К176ИЕ2

9

0,3

8,2

-

-

100

-

-

• -

К176ИЕЗ

9

0,3

8.2

-

-

250

-

-

-

К176ИЕ4

9

0,3

8,2

-

-

250

-

-

-

К561ИЕ10

5

0,8

4,2

0,2

0,2

50

1500

1500

-

10

1,0

9,0

0,5

0,2

100

500

500

-

К176ИЕ12

9

0,3

8,2

-

-

25

-

-

-

К561ИЕ16

5

0,8

4,2

0,15

0,15

-

-

-

-

10

1,0

9,0

0,35

0,35

-

340

340

5

15

-

-

-

-

20

-

-

-

КР1561ИЕ20

5

0,5

4,5

0,44

-0,8

20

5000

5000

-

10

1,0

9,0

1,1

-0.4

40

1800

1800

-

15

1,5

13.5

3,0

-1,2

80

1400

1400

-

К176ИД2

9

0,3

8,2

-

-

100

850

850

-

К561ИР2

5

0,8

4,2

0,12

0,08

-

970

970

-

10

1,0

9,0

0.25

0,2

-

380

380

10

15

-

-

-

-

100

-

-

-

 

 

Приложение 11. Ионисторы

Приложение 11

Ионисторы

В последние годы появился новых класс приборов, функционально близких к конденсаторам очень большой емкости; по существу - занимающих положение между конденсаторами и источниками питания. Это - ионисторы, конденсаторы с двойным электрическим слоем [13].

Номинальное напряжение ионистора зависит от вида используе- мого в нем электролита и является для него максимально допустимым. Для получения более высокого рабочего напряжения ионисторы

7-5.jpg

Рис. П11.1. Ионисторы

соединяют последовательно. Но делать это самостоятельно не рекомендуется - параметры ионисторов в такой связке должны быть очень близкими.

Внутреннее сопротивление Rвн ионистора может быть рассчитано по формуле: Rвн=U/Iкз, где Rвн - в омах; U - напряжение на ионисторе, В; Iкз - ток короткого замыкания, А. Для ионистора К58-3 (японский аналог DC-2R4D225) Rвн=10...100 Ом.

Электрическую емкость ионистора рассчитывают по формуле: C=I·t/U , где С - емкость, Ф; I - постоянный ток разрядки, А;

U - номинальное напряжение ионистора, В; t - время разрядки от Uном до нуля, с;

Важнейший параметр ионистора - ток утечки. Особенно при использовании его в качестве резервного источника питания.

Габариты некоторых ионисторов, выпускаемых в России, показаны на рис. П11.1. Ионистор К58-9а представляет собой залитый компаундом ионистор К58-3 с приваренными проволочными выводами («+» маркирован черной точкой). Ионисторы К58-96 и К58-9в (японский аналог DB-5R5D105) на напряжение 5 и 6,3 В состоят, соответственно, из двух и трех соединенных последовательно ионисторов К58-3.

В принципе ионистор - неполярный прибор. Вывод «+» указывают для обозначения полярности остаточного напряжения после его зарядки на заводе изготовителе.

Основные характеристики отечественных ионисторов приведены в таблице П11. Их рабочие температуры - -25...+70°С; отклонения емкости от номинальной - -20...+80%.

Долговечность ионистора зависит от условий эксплуатации. Так, при работе под напряжением Uном при температуре окружающей

Таблица П11

Тип ионистора

Ёмкость, Ф

Номинальное напряжение, В

Внутреннее сопротивление, Ом

Габариты a-b-c-d-e, MM

Масса, г

58-3

2,00

2,5

30

18,3-*-*-*-2,7

2,0

58-9а

0,47

2,5

80

10,5-14-5-26-4,5

0,5

"

2,00

2,5

30

19-23-5-38-5,5

2,0

58-96

0,62

5,0

60

27-22,5-10-35-13

11.0

"

1,00

5,0

60

27-22,5-10-35-13

11,0

"

0,62

6,3

90

27-22,5-10-35-13

11,0

58-98

1,00

5,0

60

21,5-8-5-4-*

8,0

"

0,62

6,3

90

21,5-10,5-5-16,5-*

10,0

7-6.jpg

Рис. П11.2. Типовые разрядные характеристики ионисторов

7-7.jpg

Рис. П11.3. Зависимость емкости ионистора от тока разряда

среды +70°С гарантированная долговечность составит 500 часов. При работе под напряжением 0,8Uном она увеличивается до 5000 часов. Если же напряжение на ионисторе не превышает 0,6Uном , а температура окружающей среды - +40°С, то ионистор будет исправно работать не менее 40000 часов.

На рис. П11.2 показаны типовые разрядные характеристики ионисторов. Зависимость емкости ионистора от тока разряда (для температур +25°С и +70°С) показана на рис. П11.3.

На рис. П11.4 показана зависимость тока зарядки от времени зарядки ионистора (для температур -15-С , +25°С и +80°С).

Зависимость тока утечки ионистора от рабочего напряжения приведена на рис. П11.5, а от температуры окружающей среды - на рис. П11.6.

Обычная схема включения ионистора в качестве резервного источника питания приведена на рис. П11.7. Диод VD1 предотвращает разряд ионистора С1 при Uпит=0. Резистор R1 ограничивает зарядный ток ионистора, защищая источник питания от перегрузки при включении. Он не потребуется, если источник питания выдерживает кратковременную нагрузку током 100...250 мА.

Во многих случаях ионистор с успехом заменяет встраиваемые в прибор резервные источники питания. Весьма перспективен ионистор в качестве накопителя энергии при работе совместно с солнечными батареями. Здесь особенно ценна его некритичность к режиму заряда, практически неограниченное число циклов зарядразряд.

Ионистор не требует ухода в течении всего срока службы.

7-8.jpg

Рис. П11.4. Зависимость тока зарядки от времени зарядки ионистора

7-9.jpg

Рис. П11.5. Зависимость тока утечки ионистора от рабочего напряжения

7-10.jpg

Рис. П11.6. Зависимость тока утечки ионистора от температуры окружающей среды

7-11.jpg

Рис. П11.7. Включение ионистора в качестве резервного источника питания

 

Рис. П11.1. Ионисторы

Изображение: 

Рис. П11.2. Типовые разрядные характеристики ионисторов

Изображение: 

Рис. П11.3. Зависимость емкости ионистора от тока разряда

Изображение: 

Рис. П11.4. Зависимость тока зарядки от времени зарядки ионистора

Изображение: 

Рис. П11.5. Зависимость тока утечки ионистора от рабочего напряжения

Изображение: 

Рис. П11.6. Зависимость тока утечки ионистора от температуры окружающей среды

Изображение: 

Рис. П11.7. Включение ионистора в качестве резервного источника питания

Изображение: 

Приложение 12. Режимы зарядки аккумуляторов

Приложение 12

Режимы зарядки аккумуляторов

Проблемы зарядки никель-кадмиевых аккумуляторов попрежнему актуальны. Какое зарядное устройство лучше? Как определить момент окончания зарядки? Какой режим зарядки предпочтительнее? и др. - все это составило предмет исследований, которым посвящена статья, опубликованная в ноябрьском номере 1995 года чешского журнала «Amatererske Radio»; краткое изложение ее помещено в журнале Радио № 7 за 1996 год.

Зарядное устройство обязано, прежде всего, передать аккумулятору соответствующий электрический заряд. Но это требование дополняется обычно пожеланиями обеспечить быстроту зарядки аккумулятора, сохранить на протяжении длительного времени его номинальную емкость, сделать зарядку безопасной и др.

В зарядных устройствах любого типа важнейшим является определение момента окончания зарядки аккумулятора. Это делается несколькими способами.

1. При зарядке аккумулятора постоянным, не изменяющимся в процессе зарядки током ее прекращают вручную по истечении определенного времени. На такой режим ориентированы многие наиболее дешевые зарядные устройства. Зарядный ток в них составляет обычно I=0,1·Е, где I - зарядный ток в амперах, а Е - емкость аккумулятора в амперчасах. В этом режиме емкостной КПД аккумулятора принимают равным 2/3 и, соответственно, длительность зарядки устанавливают равной 15 часам. Режим зарядки малым током (он может быть и меньше 0,1·Е при соответствующем увеличении продолжительности зарядки) замечателен тем, что даже при значительной перезарядке аккумулятор не будет поврежден, во всяком случае - не взорвется.

2. Аккумулятор заряжают постоянным током, многократно превышающим 0,1·Е (в 10...20 раз). Зарядка прекращается автоматически по истечении заданного - более короткого - времени.

В режиме такой интенсивной зарядки обязательно должно соблюдаться следующее. Во-первых, аккумулятор необходимо предварительно разрядить (обычно - до 1 В на банку); во-вторых, должна быть обеспечена строгая зависимость продолжительности зарядки от установленного значения зарядного тока и, в третьих, обеспечено аварийное его отключение (например, по перегреву корпуса).

По идее к этой категории относятся многие зарядные устройства, появившиеся на нашем рынке, но, к сожалению, далеко не все они обеспечивают должную безопасность.

3. Ток зарядки - не обязательно постоянный. Зарядку аккумулятора прекращают при увеличении его температуры. Этот способ имеет серьезные недостатки (аккумулятор почти всегда перезаряжается, ненадежен тепловой контакт и др.) и используется, как правило, лишь для аварийного отключения аккумулятора.

4. Ток зарядки - фиксированный, многократно, как правило, превышающий 0,1·Е. По достижении на аккумуляторе заданного напряжения зарядка заканчивается автоматически. Этот принцип долгое время использовался в самых лучших зарядных устройствах, потеснив систему зарядки аккумулятора малым током.

Установка порогового напряжения здесь весьма критична. Обычно его значение выбирают в пределах 1,45...1,55 В на аккумуляторную банку, чаще - 1,48 В. Пороговое напряжение зависит, к тому же, от температуры окружающей среды и «возраста» аккумулятора.

Неизменный ток зарядки здесь, вообще говоря, не обязателен. Но это упрощает учет потерь на подводящих проводах. Если из-за их неучета на аккумуляторе будет установлено заниженное пороговое напряжение, это обернется недобором заряда, а установленное лишь на один милливольт выше реального, приведет к тому, что процесс зарядки аккумулятора никогда не кончится. Вернее, кончится тем, что аккумулятор либо перегреется - при малом зарядном токе, либо взорвется - при большом.

Во избежание этого некоторые зарядные устройства по достижении напряжения, чуть меньше порогового, переходят на дозарядку аккумулятора безопасным током, которым ее и завершают.

5. Процесс зарядки контролируют по скорости увеличения напряжения на аккумуляторе: оно быстро увеличивается непосредственно перед ее завершением. Отследив этот момент, зарядное устройство уменьшает большой ток зарядки (он доходит в них до 2·Е) до малого, безопасного, которым зарядка и завершается. По причинам, изложенным в п.4, оба эти тока также лучше иметь фиксированными, не изменяющимися во времени.

Этот способ стал привлекать к себе внимание с появлением специализированной микросхемы U2402B.

6. Как и в предыдущем случае, при зарядке постоянным током состояние аккумулятора определяют по скачку напряжения. Для получения хороших характеристик зарядку ведут током не менее 2·Е.

В таких зарядных устройствах обычно используют аналого-цифровые преобразователи (например, микросхему ТЕА1100 фирмы Philips), которые позволяют заметить 1%-ный скачок напряжения и во время прекратить зарядку. Зарядным устройствам, собранным на базе такой микросхемы, не нужны регулировки, связанные с изменением числа заряжаемых аккумуляторов. В качестве защитной меры в них контролируется продолжительность зарядки.

Ни один из рассмотренных выше способов зарядки сам по себе не является оптимальным. Поэтому нередко они сочетаются.

К наиболее интересным можно отнести сегодня зарядное устройство ULTRA DUO, в котором зарядка заканчивается по всплеску напряжения на аккумуляторе (как в варианте 6), но зарядный ток в ходе ее принимает разные значения. В этой процедуре минимизируется время зарядки аккумулятора.

В зарядном устройстве MULTI-CHARGE-A-MATIC CG-325 фирмы HITEC окончание зарядки определяется как ив предыдущем случае, но зарядка ведется установленным постоянным током (максимально 4,5 А). Кроме таких обычных функций, как разрядка аккумулятора перед зарядкой, проверка его емкости, защита от переполюсовки, контроль длительности зарядки и звуковая сигнализация ее окончания, это устройство благодаря встроенному преобразователю напряжения может заряжать от 12-вольтного автомобильного аккумулятора десять последовательно соединенных никель-кадмиевых аккумуляторов (напряжение на которых в заряженном состоянии доходит до 16 В). Это оценят прежде всего автомобилисты, пользующиеся портативными радиостанциями.

По установившейся терминологии зарядка аккумулятора может быть очень быстрой (до 15 мин), быстрой (до 1 ч), ускоренной (до 3...4 ч), нормальной (от 12 до 16 ч) и медленной. Реальная емкость аккумулятора зависит от температуры и значений тока зарядки и разрядки. Наибольшая измеренная емкость получается при зарядке аккумулятора большим током и разрядке малым.

 

5. Маркировка электронных компонентов

Справочный листок 1: Маркировка конденсаторов и резисторов

СПРАВОЧНЫЙ ЛИСТОК №1: МАРКИРОВКА КОНДЕНСАТОРОВ И РЕЗИСТРОВ

Для малогабаритных конденсаторов и резисторов кроме полной маркировки часто используют кодированное обозначение, которое состоит из букв и цифр, определяющих для конденсаторов: ТКЕ, номинальную емкость, допустимое отклонение емкости от номинала, рабочее напряжение (рис. 8.1) для резисторов: номинал сопротивления, допуск отклонения сопротивления от номинала (рис. 8.2).

Примеры маркировки номиналов конденсаторов и сопротивлений даны в таблице 8.1. На самих конденсаторах могут использоваться русские и латинские буквы для обозначения множителя величины:

П или р — пикофарады (10^(-12) Ф); Н или n — нанофарады (10^(-9) Ф);

М или (J,— микрофарады (10^(-6) Ф); И или m —миллифарады(10^(-3) Ф);

Ф или F — фарады.

Эти буквы используются в качестве запятых при указании дробных значений емкости, например: ЗНЗ или ЗnЗ — 3300 пФ (в резисторах аналогично).

Воспользовавшись таблицами 8.2...8.4, можно определить ТКЕ, допуск и максимальное рабочее напряжение для конденсаторов.

В таблице 8.5 приведен буквенный код для определения допуска отклонения номинала резистора. В скобках даны старые кодовые обозначения, использовавшиеся до 1980 года.

7-30.jpg

Рис. 8.1. Примеры кодового и полного обозначения номиналов конденсаторов

7-31.jpg

Рис. 8.2. Примеры маркировки резисторов

Таблица 8.1

 

Полное обозначение

Сокращенное обозначение

Единицы измерения

Обозн. един. измер.

Предел. номинал емкости, сопротив.

Пример обозн. на схеме

Пример обозн. на детали

Предел. Номинал емкости, сопротив.

Обозн. един. измер.

Единицы измерения

к

о

н

д

е

н

с

а

т

о

р

ы

ПИКОФАРАДЫ

пф

до 9100

1,5

1р5

до 91

Р или П

ПИКОФАРАДЫ

15

15П

150

Н15

от 0,1 до 91

n или Н

НАНОФАРАДЫ

1500

1Н5

МИКРОФАРАДЫ

мкф

от 0,01 и выше

0,015 мк

15Н

0,15 мк

М15 m15

от 0,1 и выше

m или М

МИКРОФАРАДЫ

1.5

1М5

15 мк

15М

100

100М

ОМЫ

Ом

до 999,9

0,47

Е47 R47

до 99,9

Е или R

ОМЫ

р

е

з

и

с

т

о

р

ы

4,7

4Е7 4R7

47

47Е

470

470R К47

КИЛООМЫ

кОм

до 999,9

от 0,1 до 99,9

К

КИЛООМЫ

4,7 к

4К7

47 к

47К

МЕГООМЫ

МОм

до 999,9

470К

470к М47

от 0,1 до 99,9

М

МЕГООМЫ

4,7 М

4М7

47 М

47М

ГИГАОМЫ

10м

до 999,9

470 М

G47

от 0,1 до 99,9

G

ГИГАОМЫ

4,7 Г

4G7

47 Г

47G

ГЕРАОМЫ

ТОм

1,0

470 Г

Т47

до 1,0

Т

ТЕРАОМЫ

1,0 Т

1ТО

Таблица 8.2

Обозначение ТКЕ конденсаторов

Полное обозначение группы ТКЕ

Вид маркировки

Буква кода

Цвет корпуса или цвет первого марк. знака

П210

-

синий

П100

А

синий

П60

G

синий

П33

N

серый

МП0

С

голубой

М33

Н

голубой

М47

М

голубой

М75

L

голубой

М150

Р

красный

М220

R

красный

М330

S

красный

М470

Т

красный

М750

V

красный

М1500

U

зеленый

М2200

K

зеленый

М3300

Y

зеленый

Н10

В

оранжевый

Н30

D

оранжевый

Н50

Х

оранжевый

Н70

Е

оранжевый

Н90

F

оранжевый

Примечание: Если цвет корпуса совпадает с цветом первого маркировочного знака, первый маркировочный знак не ставят.

Таблица 8.3

Допустимое отклонение емкости от номинала

Допуск,%

Буквенное обозначение

Допуск, %

Буквенное обозначение

±0,001

Е

±2,0

5(Л)

±0,002

L

±5,0

I (И)

±0,005

R

±10

К (С)

±0,01

Р

±20

М(В)

±0,02

U

±30

N(Ф)

±0,05

Х

-10+30

Q

±0,1

В (Ж)

-10+50

Т(Э)

±0,25

С (У)

-10+100

Y(Ю)

±0,5

D(Д)

-20 +50

S(Б)

±1,0

F(P)

-20 +80

Z (А)

Таблица 8.5

Допустимое отклонение номинала резистора

Допуск, %

Код

±0,1

В (Ж)

±0,25

С (У)

±0,5

D(Д)

±1

F(P)

±2

G(Л)

±5

I(И)

±10

К (С)

±20

N(В)

±40

-

Таблица 8.4

Рабочее напряжение конденсаторов

Напр., В

Код

1

I

1,6

R

2,5

М

3,2

А

4,0

С

6,3

В

10

D

16

Е

20

F

25

G

32

Н

40

S

50

J

63

К

80

L

100

N

125

Р

160

Q

200

Z

250

W

315

Х

350

T

400

Y

450

U

500

V

В последние годы на радиодетали часто наносят кодированное обозначение даты изготовления. Эти обозначения располагаются после основного кода и могут состоять либо из двух букв латинского алфавита, либо из одной такой буквы и арабской цифры. Условные обозначения, присвоенные годам, приведены в таблице 8.6, код месяца (второй знак в обозначении на элементе) даны в таблице 8.7. Эти же коды используются и на других деталях, например микросхемах.

Таблица 8.6

Год

Код

1983

R

1984

S

1985

Т

1986

U

1987

V

1988

w

Год

Код

1989

X

1990

A

1991

В

1992

С

1993

D

1994

Е

Год

Код

1995

F

1996

Н

1997

J

1998

К

1999

L

2000

N

 

Таблица 8.7

Месяц

Код

Январь

1

Февраль

2

Март

3

Апрель

4

Май

5

Июнь

6

Июль

7

Август

8

Сентябрь

9

Октябрь

0

Ноябрь

N

Декабрь

D

 

Рис. 8.1. Примеры кодового и полного обозначения номиналов конденсаторов

Изображение: 

Рис. 8.2. Примеры маркировки резисторов

Изображение: 

Справочный листок 2: Микросхемы стабилизаторов напряжения

СПРАВОЧНЫЙ ЛИСТОК №2: МИКРОСХЕМЫ СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ

Интегральные стабилизаторы напряжения из серии 142 не всегда имеют полную маркировку типа. В этом случае на корпусе стоит условный код обозначения (см. табл. 8.8) который и позволяет определить тип микросхемы.

Примеры расшифровки кодовой маркировки на корпусе микросхем:

7-32.jpg

Микросхемы стабилизаторов с приставкой КР вместо К имеют те же параметры и отличаются только конструкцией корпуса, см. рисунки. При маркировке этих микросхем часто используют укороченное обозначение, например вместо КР142ЕН5А наносят КРЕН5А.

Таблица 8.8

Наименование микросхемы

Напряжение стабил., В

Макс. 1ст нагр., А

Рассеив. Рмах, Вт

Потребление, мА

Код на корпусе

(К)142ЕН1А (К)142ЕН1Б К142ЕН1В К142ЕН1Г К142ЕН2А К142ЕН2Б

3...12±0,3 3...12±0,1 3...12±0,5 3...12±0,5 3...12±0,3 3...12±0,1

0,15

0,8

4

(К)06 (К)07 К27 К28 К08 К09

142ЕНЗ К142ЕНЗА К142ЕНЗБ 142ЕН4 К142ЕН4А К142ЕН4Б

3...30±0,05 3...30±0,05 5...30±0,05 1.2...15±0,1 1.2...15±0,2 3...15±0,4

1,0 1,0 0,75 0,3 0,3 0,3

6

10

10 К10 К31

11

К11 К32

(К)142ЕН5А (К)142ЕН5Б (К)142ЕН5В (К)142ЕН5Г

5±0,1 б±0,12 5±0,18 6±0,21

3,0 3,0 2,0 2,0

5

10

(К)12 (К)13 (К)14 (К)15

142ЕН6А К142ЕН6А 142ЕН6Б К142ЕН6Б 142ЕН6В К142ЕН6В

±15±0,015 ±15±0,3 ±15±0,05 ±15±0,3 ±15±0,025 ±15±0,5

0,2

5

7,5

16 К16 17 К17 42 КЗЗ

142ЕН6Г К142ЕН6Г К142ЕН6Д К142ЕН6Е

±15±0,075 ±15±0,5 ±15±1,0 ±15±1,0

0,15

5

7,5

43 К34 К48 К49

(К)142ЕН8А (К)142ЕН8Б (К)142ЕН8В

9±0,15 12±0,27 15±0,36

1,5

6

10

(К)18 (К)19 (К)20

К142ЕН8Г К142ЕН8Д К142ЕН8Е

9±0,36 12±0,48 15±0,6

1,0

6

10

К35 К36 К37

142ЕН9А 142ЕН9Б 142ЕН9В

20±0.2 24±0,25 27±0,35

1,5

6

10

21 22 23

К142ЕН9А К142ЕН9Б К142ЕН9В К142ЕН9Г К142ЕН9Д К142ЕН9Е

20±0,4 24±0,48 27±0,54 20±0,6 24±0,72 27±0,81

1,5 1,5 1,5 1,0 1,0 1,0

6

10

К21 К22 К23 К38 К39 К40

(К)142ЕН10 (К)142ЕН11

3...30 1.2...37

1,0 1.5

2

4

7 7

(К)24 (К)25

(К)142ЕН12 КР142ЕН12А

1.2...37 1,2...37

1.5 1,0

1 1

5

(К)47

КР142ЕН15А КР142ЕН15Б

±15±0,5 ±15±0,5

0,1 0,2

0,8 0,8

КР142ЕН18А КР142ЕН18Б

-1,2...26,5 -1,2...26,5

1,0 1,5

1

1

5

(LM337)

КР1157ЕН502 КР1157ЕН602 КР1157ЕН802 КР1157ЕН902 КР1157ЕН1202 КР1157ЕН1502 КР1157ЕН1802 КР1157ЕН2402 КР1157ЕН2702

5 6 8 9 12 15 18 24 27

0,1

0,5

5

78L05 78L06 78L08 78L09 78L12 78L15 78L18 78L24 78L27

КР1170ЕНЗ КР1170ЕН4 КР1170ЕН5 КР1170ЕН6 КР1170ЕН8 КР1170ЕН9 КР1170ЕН12 КР1170ЕН15

3 4 5 6 8 9 12 15

0,1

0,5

1,5

см. рис.

КР1168ЕН5 КР1168ЕН6 КР1168ЕН8 КР1168ЕН9 КР1168ЕН12 КР1168ЕН15 КР1168ЕН18 КР1168ЕН24 КР1168ЕН1

-5 -6 -8

-9 -12 -15 -18 -24 -1,5...37

0,1

0,5

5

79L05 79L06 79L08 79L09 79L12 79L15 79L18 79L24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

7-33.jpg

142ЕН3,К142ЕН3 142ЕН4,К142ЕН4 142ЕН6,К142ЕН6 142ЕН10.К142ЕН10

7-34.jpg

142ЕН5,К142ЕН5 U2EH8,К142ЕН8 142ЕН9,К142ЕН9 142ЕН11.К142ЕН11 142ЕН12,К142ЕН12.

7-35.jpg

КР142ЕН5, КР142ЕН8, КР142ЕН11.КР142ЕН12, КР142ЕН18.

7-36.jpg

К142ЕН1А.Б КР142ЕН15А.Б

 

стабилизаторы положительного напряжения

7-37.jpg

стабилизатор отрицательного напряжения

7-38.jpg

 

Рис. 1. Примеры расшифровки кодовой маркировки на корпусе микросхем

Изображение: 

Рис. 2. 142ЕН3,К142ЕН3 142ЕН4,К142ЕН4 142ЕН6,К142ЕН6 142ЕН10.К142ЕН10

Изображение: 

Рис. 3. 142ЕН5,К142ЕН5 U2EH8,К142ЕН8 142ЕН9,К142ЕН9 142ЕН11.К142ЕН11 142ЕН12,К142ЕН12.

Изображение: 

Рис. 4. КР142ЕН5, КР142ЕН8, КР142ЕН11.КР142ЕН12, КР142ЕН18.

Изображение: 

Рис. 5. К142ЕН1А.Б КР142ЕН15А.Б

Изображение: 

Рис. 6. Стабилизаторы положительного напряжения КР1157ЕН, КР1170ЕН

Изображение: 

Рис. 7. Стабилизатор отрицательного напряжения КР1168ЕН

Изображение: 

Справочный листок 3: Расположение выводов радиоэлементов

СПРАВОЧНЫЙ ЛИСТОК №3: РАСПОЛОЖЕНИЕ ВЫВОДОВ РАДИОЭЛЕМЕНТОВ

ДИОДНЫЕ СБОРКИ ——————————————————————————————

7-39.jpg

7-40.jpg

7-41.jpg

ТИРИСТОРЫ ——————————————————————————————————

7-42.jpg

7-43.jpg

ОПТРОННЫЕ ПАРЫ ——————————————-———————————————

7-44.jpg

7-45.jpg

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ ______________________

7-46.jpg

7-47.jpg

7-48.jpg

7-49.jpg

7-50.jpg

7-51.jpg

7-52.jpg

7-53.jpg

7-54.jpg

7-55.jpg

7-56.jpg

7-57.jpg

7-58.jpg

ПОЛЕВЫЕ ТРАНЗИСТОРЫ ————————————————————————

7-59.jpg

7-60.jpg

ЭЛЕКТРИЧЕСКИЕ РЕЛЕ ___________________________

7-61.jpg

7-62.jpg

7-63.jpg

7-64.jpg

ПОЛЯРИЗОВАННЫЕ РЕЛЕ —————————————————————————

7-65.jpg

7-66.jpg

7-67.jpg

 

7-39.jpg

Изображение: 

7-40.jpg

Изображение: 

7-41.jpg

Изображение: 

7-42.jpg

Изображение: 

7-43.jpg

Изображение: 

7-44.jpg

Изображение: 

7-45.jpg

Изображение: 

7-46.jpg

Изображение: 

7-47.jpg

Изображение: 

7-48.jpg

Изображение: 

7-49.jpg

Изображение: 

7-50.jpg

Изображение: 

7-51.jpg

Изображение: 

7-52.jpg

Изображение: 

7-53.jpg

Изображение: 

7-54.jpg

Изображение: 

7-55.jpg

Изображение: 

7-56.jpg

Изображение: 

7-57.jpg

Изображение: 

7-58.jpg

Изображение: 

7-59.jpg

Изображение: 

7-60.jpg

Изображение: 

7-61.jpg

Изображение: 

7-62.jpg

Изображение: 

7-63.jpg

Изображение: 

7-64.jpg

Изображение: 

7-65.jpg

Изображение: 

7-66.jpg

Изображение: 

7-67.jpg

Изображение: