4. Бета-функция и ее варианты

 

Бета-функция и ее варианты

Бета-функция определяется как

где Г (z) — гамма-функция. Неполная бета-функция определяется по формуле

  • beta(Z.W) — возвращает бета-функцию для соответствующих элементов комплексных массивов Z и W. Массивы должны быть одинакового размера (или одна из величин может быть скаляром).

  • beta i nc ( X , Z , W ) — возвращает неполную бета-функцию. Элементы X должны быть в закрытом интервале [0, 1].

  • beta 1 п ( Z , W ) — возвращает натуральный логарифм бета-функции log ( beta ( Z , W ) ) , без вычисления beta(Z.W). Так как сама бета-функция может принимать очень большие или очень малые значения, функция betaln(Z.W) иногда более полезна, так как позволяет избежать переполнения.

Пример:

» format rat;beta((l:10) 4 ,4) 

ans=

1/4

1/20

1/60

1/140

1/280

1/504

1/840

1/1320

1/1980

1/2860

 

21.gif

Изображение: 

22.gif

Изображение: