11. Охрана автомобиля с оповещением по радиоканалу

Охрана автомобиля с оповещением по радиоканалу

Устройство может использоваться для охраны любого автомобиля, гаража или другого удаленного до 500...1000 метров объекта.

В условиях города срабатывание звуковой сирены многих раздражает, особенно если это происходит ночью. Более надежным будет подключать охрану к системе оповещения по радиоканалу. Милиция рекомендует не отключать звуковой сигнал, даже если у вас установлена система радиоохраны. Однако ночью она вряд ли привлечет внимание окружающих с целью поимки воров.

Радиосторож состоит из трех основных блоков: передающего, приемногои стационарного источника питания с зарядным устройством для приемника, рис. 2.50. Радиопередатчик управляется блоком временных интервалов и при срабатывании датчиков начинает излучать высокочастотный радиосигнал, модулированный импульсным кодом. Приемник на фоне помех и других сигналов выделяет "свой" и включает звуковое оповещение хозяина. В случае тревоги может включаться также и звуковой сигнализатор, установленный на автомобиле.

Дальность устойчивого приема на открытой местности составляет не менее 1 км, но в условиях большого города из-за отражений и поглощения сигнала препятствиями, а также помех в эфире расстояние может уменьшиться. Чтобы быть уверенным в том, что высокочастотный сигнал нормально принимается приемником в данном месте, при включении блока охраны схема обеспечивает режим проверки радиоканала через 4 мин после установки в режим "охрана". Этого времени вполне хватит, чтобы дойти домой, где включенный приемник устанавливается в удобное место. При необходимости приемник соединяется со стационарным блоком питания. В этом случае может происходить подзаряд аккумуляторов приемника.

2-50.jpg

Рис. 2.50. Блок-схема системы

Приемник в переносном варианте питается от аккумулятора с напряжением 3...4 В, а передатчик может иметь смешанное питание — от аккумулятора автомобиля и резервной батареи. При использовании трех аккумуляторов типа Д-0,26 непрерывная автономная работа приемника может составлять 118 часов (около пяти суток).

Габаритные размеры блока, устанавливаемого на автомобиле, — 140х140х30 мм, радиоприемника— 127х67х25 мм.

 

2.10.1. Радиопередатчик

Радиопередатчик

Для работы охранных устройств с оповещением по радиоканалу Государственным комитетом по радиочастотам выделена фиксированная частота 26,945 МГц. А чтобы обеспечить для передатчика ее высокую стабильность в широком температурном диапазоне (-40...+60°С), необходимо использовать кварцевую стабилизацию частоты.

Передатчик собран по классической схеме, рис. 2.51. Высокочастотный сигнал с автогенератора на транзисторе VT1 через промежуточный усилитель на VT2 подается на оконечный усилитель VT4. У промежуточного усилителя коллекторный контур настраивается с помощью сердечника катушки L2 на первую гармонику задающего генератора. Катушка L2 имеет неполное включение, что увеличивает добротность контура. Усилитель на VT2 позволяет уменьшить влияние изменения режима оконечного каскада на работу задающего автогенератора, а также обеспечивает достаточный уровень сигнала для работы усилителя мощности.

2-51.jpg

Рис. 2.51. Электрическая схема высокочастотной части передатчика

Оконечный усилитель: работает в режиме класса С. Ключевой режим хотя и имеет меньшее усиление, но он самый экономичный при хорошей термоетабильности. Импульсная мощность ВЧ сигнала, подводимого к антенне, около
2 Вт. Для согласования каскада усилителя с низким входным сопротивлением антенны и уменьшения уровня высших гармоник в сигнале применен двухзвенный П-фильтр из элементов C12-L4-C14-L5-C16. Для точной настройки выходного фильтра предусмотрены элементы настройки: С13, С15 и подстроечный сердечник в катушке L4.

Импульсная модуляция ВЧ сигнала осуществляется в каскаде промежуточного усиления при помощи транзистора VT3. Конденсаторы С5 и С6 обеспечивают заваливание фронтов выходного сигнала, рис. 2.52. Это необходимо, чтобы ограничить спектр высокочастотного сигнала (отведенная полоса канала 10кГц).

2-52.jpg

Рис. 2.52. Форма выходного сигнала передатчика

Выход передатчика соединяется с антенной высокочастотным кабелем с 50-омным "волновым сопротивлением через разъем XW1. Вблизи от антенны расположено согласующее устройство, состоящее из катушки L6 (в экране). Длина соединительного кабеля от согласующего устройства до основного блока составляет 1,64 м или кратна этому значению (3,28 м).

Все остальные элементы высокочастотной части схемы располагаются на печатной плате из одностороннего стеклотекстолита толщиной 1,5...2 мм с размерами 115х35 мм, рис. 2.53, которая помещается в экранированном отсеке корпуса блока охраны.

В схеме применены детали: резисторы типа С2-23, постоянные конденсаторы К10-17, при этом СЗ...С7, С12, С14 и С16 выбираются с минимальным ТКЕ (М75, М47, МЗЗ), подстроечные С13 и С15 типа К4-236 или К4-216. Использован кварцевый резонатор РК169МВ-14ЕП-26945К-В. Катушки выполняются на диэлектрических каркасах диаметром 5 мм, и их вид показан для L1, L2 и L4 на рис. 2.54.

Катушка L5 должна иметь конструкцию, которая обеспечивает её горизонтальное расположение на плате (рис. 2.55) (это снижает влияние полей близко расположенных катушек друг на друга). Намотка выполняется виток к витку проводом ПЭТВ-2 или ПЭЛ-2: L1 содержит 14 витков проводом диаметром 0,23 мм; L2 14 витков с отводом от середины, L4 — 10 витков, L5 — 10 витков проводом диаметром 0,42 мм.

2-53.jpg

Рис. 2.53. Топология печатной платы и расположение элементов высокочастотной
части передатчика

2-54.jpg

Рис. 2.54. Конструкция катушки

2-55.jpg

Pис. 2.55. Конструкция катушки

Подстроечные сердечники могут быть из любого высокочастотного феррита с резьбой М4. Катушка дросселя L3, рис. 2.56, выполняется проводом диаметром 0,12 мм на корпусе резистора МЛТ-0,5 с сопротивлением 1...1.8 кОм и содержит 50 витков. После намотки у всех катушек провод фиксируется клеем "Момент", БФ-4. А для того чтобы сердечники катушек от вибрации при эксплуатации системы в жестких условиях не смещались, их до вкручивания в каркас катушки смазываем несохнущим вязким герметиком.

Поляризованное реле К.1 подойдет типа РЭС32Б РС4.520.204, РС4.520.212 или РС4.520.220. Транзистор VT4 можно заменить на КТ925Б.

На корпусе передатчика устанавливается высокочастотное гнездо XW1 (розетка приборная) типа СР-50-73Ф ГУ3.640.073Сп, а на кабеле от согласующего с антенной устройства — вилка кабельная СР-50-74Ф ГУ3.640.706Сп.

2-56.jpg

Рис. 2.56. Конструкция дросселя L3

2-57.jpg

Рис. 2.57. Антенна с согласующим устройством

Антенна, рис. 2.57, соединяется с согласующим устройством гибким многожильным проводом (длиной 100...200 мм). Согласующая катушка L6 выполняется на каркасе, рис. 2.54, и содержит 25 витков провода ПЭВ диаметром 0,23 мм. Соединение с блоком передатчика осуществляется высокочастотным кабелем РК50-2-16 или аналогичным.

Антенна передатчика может иметь два варианта исполнения. Обе конструкции обеспечивают ее скрытую установку внутри салона автомобиля (вблизи стекла). Это хотя и сильно снижает эффективность (КПД) антенны, но зато исключает повреждение радиоканала системы до срабатывания охраны.

Первый вариант выполняется из стальной проволоки длиной примерно 140...160 мм и диаметром 1,5...2 мм, что позволяет ее расположить над стеклом по дуге и закрепить концы стержня под уплотнительную резиновую прокладку стекла переднего или заднего вида. Она не мешает обзору водителя, а снаружи автомобиля при близком рассмотрении будет казаться, что стекло, имеет в этом месте внутреннюю трещину.

Второй вариант может быть установлен только вблизи стекла заднего вида, а для изготовления антенны взят трехпроводный телефонный кабель, имеющий форму в виде пружинящей спирали (ее удобно закрепить вблизи стекла по диагонали ее с помощью резиновых присосок). Такой провод используют в отечественных телефонных аппаратах для соединения разговорной трубки с аппаратом. Все провода спаиваются между собой и соединяются с согласующим устройством. Согласующее устройство с помощью лепестка экрана крепится к корпусу автомобиля под обшивкой в любом удобном месте.

2-58.jpg

Рис. 2.58. Эквивалентная антенна, нагрузка для настройки передатчика

Для предварительной настройки радиопередатчика потребуется изготовить эквивалентную антенне нагрузку (рис. 2.58), состоящую из четырех включенных параллельно резисторов на конце 50-омного кабеля длиной 1,64 м. Резисторы подойдут типа МЛТ или С2-23 мощностью 1 Вт. Выводы у них скручиваются между собой и припаиваются к кабелю при минимальной длине.

Настройка начинается с задающего кварцевого автогенератора. Для этого между выводами 1 и 2 схемы временно устанавливается резистор номиналом 150 Ом, а также перемычка между выводами 1 — 4. Питание подается на выводы 1 (+12 В) и 3 (общий провод) при подключенном эквиваленте антенны. Далее, вращая подстроенные сердечники L1, L2 и L4, добиваемся на выходе (на эквивалентной нагрузке) максимальной амплитуды сигнала.

Для обеспечения надежной работы передатчика задающий автогенератор настраивается на точку максимальной устойчивости колебаний. Выполняется это следующим образом: вкручиваем сердечник в катушку L1 до получения максимального уровня сигнала генератора, после чего поворачиваем подстроечник на пол-оборота назад, пока не будет заметно уменьшение сигнала. Настройку автогенератора можно также выполнять по максимальному току потребления. Такая методика подробно описана в литературе [Л 12, стр. 125]. При этом необходимо помнить, что работа передатчика в режиме непрерывного сигнала (без модуляции несущей) допускается кратковременно (не более 1 мин), так как транзистор VT4 не имеет теплоотвода — при усилении импульсно-модулированного сигнала он и не нужен.

Измерив амплитуду высокочастотного напряжения на нагрузке, например с помощью высокочастотного осциллографа (С1-99) или вольтметра, можно определить выходную мощность передатчика по формуле:

2-59.jpg

где:

U — действующее значение напряжения сигнала, [В];

Um — амплитуда сигнала на нагрузке, [В];

R — сопротивление нагрузки, [Ом].

Низкочастотный вольтметр, подключенный к гнездам XS1, XS2, будет измерять Um (стрелочный прибор обеспечивает достаточную точность для определения мощности).

Для удобства настройки приведена таблица с уже посчитанными по этой формуле значениями мощности в зависимости от измеренного напряжения (для нагрузки сопротивлением 45 Ом), а промежуточные значения можно посчитать по формуле.

Таблица 2.3

Um, [В]

8

9

10

11

12

12,5

13

13,5

14

14,5

U, [В]

5,66

6,36

7,07

7,77

8,48

8,84

9,19

9,54

9,9

10,25

Р, [Вт]

0,77

0,90

1,11

1,34

1,60

1,73

1,88

2,02

2,18

2,34


 

Если измеренная мощность будет меньше чем 1,8 Вт (из-за низкого коэффициента усиления транзистора VT4), то вместо резистора обратной связи по постоянному току R9 можно установить перемычку. В схеме элементы, отмеченные "*", могут потребовать подбора.

Рабочая частота передатчика не должна отклоняться от номинальной 26945 кГц более чем на 1,34 кГц (измеряем частотомером ЧЗ-63 на эквиваленте нагрузки в режиме кратковременной работы передатчика без модуляции). Окончательная настройка выполняется при подключенной цифровой схеме блока управления.

 

Pис. 2.55. Конструкция катушки

Изображение: 

Рис. 2.51. Электрическая схема высокочастотной части передатчика

Изображение: 

Рис. 2.52. Форма выходного сигнала передатчика

Изображение: 

Рис. 2.53. Топология печатной платы и расположение элементов высокочастотной части передатчика

Изображение: 

Рис. 2.54. Конструкция катушки

Изображение: 

Рис. 2.56. Конструкция дросселя L3

Изображение: 

Рис. 2.57. Антенна с согласующим устройством

Изображение: 

Рис. 2.58. Эквивалентная антенна, нагрузка для настройки передатчика

Изображение: 

Ф.1 Определение выходной мощности передатчика

Изображение: 

2.10.2. Блок управления

Блок управления

Управление включением передатчика, а также формирование временных интервалов и модулирующего сигнала осуществляет схема, приведенная на рис. 2.59. Она собрана на КМОП микросхемах, что позволяет получить малое потребление тока в ждущем режиме. При этом все основные временные интервалы получены без использования электролитических конденсаторов, что обеспечивает высокую надежность работы и стабильность параметров в широком температурном диапазоне.

2-60.jpg

Рис. 2.59. Схема управления

Питание на схему блока охраны подается группой контактов поляризованного реле (К1.1). Реле К1 является герметичным и имеет две обмотки. Оно не требует постоянного питания для фиксации контактов в нужном положении. Кнопка SB1 выполняет включение охраны, а скрытно установленная кнопка SB2 выключает блок.

Для того чтобы исключить быстрое выключение охраны вором, вместо одной кнопки SB2 можно использовать несколько последовательно соединенных или же установить миниатюрное гнездо многоконтактного разъема, в ответной части которого припаивается нужная перемычка. Временная установка в гнездо такого "ключа" отключит охрану.

В начальный момент подачи питания короткий импульс, сформированный цепью C2-R4 и C4-R5, устанавливает триггеры микросхемы D2 в исходное состояние (лог. "О" на выходе D2/1, лог. "1" на D2/12). Датчик на двери водителя F1 подключен на вход элемента D1.1, а конденсатор С1 предотвращает срабатывание элемента D1.1, а значит, и триггера D2.1 от дребезга контактов датчика при его переключении.

Схема переходит в ждущий режим охраны, когда после выхода из машины будет закрыта дверь водителя. В этом случае по фронту положительного перепада напряжения на входе D2.1/3 триггер переключится и появится сигнал лог. "1" на входе D2.2/9, что разрешает срабатывание D2.2 от очередного замыкания любых охранных датчиков.

2-61.jpg

Рис. 2.60. Форма модулирующих импульсов

При включении режима ОХРАНА лог. "1" на входе D1.4/9 разрешает работу автогенератора на элементах микросхемы D1.3 и D1.4 (все временные соотношения в устройстве зависят от частоты этого генератора). При этом будут работать счетчики D3 и D4. Индикатором перехода схемы в режим ОХРАНА является мигание светодиода HL1. Через интервал времени, задаваемый двоичным кодом на входах счетчика D4, на выходе D4/23 кратковременно (около 1 с) появится лог. "1" (через 4 мин). Проходя через элементы D7.2 и D7.3, высокий уровень включает коммутатор D5.2, который подает питание на задающий автогенератор передатчика.

На элементах микросхем D8, D9 и D11 собран формирователь пачки из 7 модулирующих импульсов, рис. 2.60. Работа такого формирователя подробно описана в первом разделе, (рис. 1.46.). А если вместо микросхемы D8 установить К561ИЕ8, число импульсов в пачке может быть увеличено до 8 или 9.

При срабатывании датчика F1 ВЧ сигнал будет прерывистым, а звуковая сирена включится через 6 с на интервал времени 18 с. Режим работы сирены 18 с и пауза 6 с будут повторяться в течение времени, пока на выходе счетчика D10/12 не появится лог. "1". Этот уровень через диод VD7 подается на обнуление триггера D2.2, что вернет счетчики D6 и D10 в исходное состояние. Время работы сигнализации в режиме ТРЕВОГА после однократного срабатывания любого датчика зависит от положения переключателя SA2.

В случае постоянного замыкания любого другого датчика F2...Fn звуковой сигнал будет включен без задержки и непрерывно. Высокочастотная модуляция передатчика будет также непрерывной (пачками импульсов). По длительности интервала, в течение которого работает звуковой сигнализатор, хозяин сможет определить, какая группа датчиков сработала, и отличить сигнал именно своей охраны.

Включение звукового сигнализатора выполняет высокий уровень сигнала с выходов счетчика D6.2. Через диоды VD8, VD9 он поступает на управление коммутатором D5.3. Транзистор VT1 подает питание на звуковой сигнализатор (ток нагрузки транзистора может быть до 5 А). Показанное на схеме включение транзистора позволяет закрепить его непосредственно на корпусе передатчика, обеспечивая теплоотвод, что избавляет от необходимости использовать дополнительный радиатор.

2-62.jpg

Рис. 2.61. Доработка схемы

При желании в сигнализацию можно ввести функцию кратковременной звуковой индикации установки режима ОХРАНА. Дополнительно установленный транзистор VT2, показанный на схеме (рис. 2.61 а), позволяет включить звуковой сигнализатор на 1 с (пока идет заряд конденсатора С7 от появившегося напряжения лог. "1" на выходе D2.1/1) при переходе схемы в режим ОХРАНА.

Для подключения к сигнализации датчика с нормально замкнутыми контактами в схему нужно внести изменения, показанные на рис. 2.616, а для подключения датчика колебаний можно воспользоваться рекомендациями, приведенными в статье [Л13].

При правильном монтаже устройство будет работать сразу, а настройка схемы заключается в установке резистором R7 частоты автогенератора 600 Гц на элементах D1.3, D1.4 и проверки формируемых временных интервалов:

а) появление сигнала проверки радиоканала — кратковременное включение передатчика через 4 мин после первоначального включения и установки ре жима ОХРАНА (интервал при необходимости можно увеличить во время первоначальной настройки с помощью цифрового двоичного кода на входах счетчика D4);

б) включение звукового сигнализатора через 6 с после открывания двери водителя и чередование интервалов: работа сигнализатора 18с — пауза 6 с;

в) включение звукового сигнала и работа передатчика при срабатывании любого другого датчика F2...Fn.

Светодиод с красным цветом свечения (включаемый коммутатором D5.4) позволяет обеспечить контроль за состоянием датчиков F2...Fn, а также формирование сигнала на включение сирены без ее подключения.

Топология печатной платы для схемы управления не разрабатывалась, а монтаж выполняется на универсальной макетной плате. Корпус передатчика может быть изготовлен из любого токопроводящего материала и состоит из двух отсеков, в одном из которых расположена плата управления. При этом конструкция корпуса должна предусматривать защиту от проникновения влаги внутрь.

Для удобства настройки и проверки режимов работы блока охраны на корпусе передатчика установлен переключатель SA1 (из серии ПГ2-5). Он позволяет, не вскрывая корпуcа, проверить все основные параметры передатчика. Так при замкнутых контактах датчика F2 и положении SA1: 1 — на выходе XW1 будут пачки из 7 импульсов; положение 2 — непрерывная генерация для измерения частоты и мощности передатчика; 3 — модуляция меандром, что обеспечивает удобство настройки каскадов передатчика, а так же измерение частоты низкочастотного задающего генератора на D1.3, D1.4 (сигнал снимается с эквивалента нагрузки после детектора, рис. 2.58.).

Сдвоенный светодиод HL1 можно заменить двумя обычными с разным цветом свечения. А в качестве диодов VD1...VD3 и VD6...VD10 могут использоваться любые импульсные. Транзистор КТ825 может иметь любую последнюю букву в обозначении. Микросхемы серии К561 заменяются аналогичными из серий КР1561 или 564.

Основным источником питания всего устройства является аккумулятор автомобиля, но предусмотрено подключение и резервного источника напряжением 12,6 В (G1). В ждущем режиме ОХРАНА блок потребляет не более 2,5 мА

(в основном за счет работы светодиода). При включении высокочастотного блока передатчика потребляемый ток не должен превышать 150 мА (если модуляция осуществляется пачками импульсов).

2-63.jpg

Рис. 2.62. Индикатор ВЧ поля

Окончательная настройка передатчика выполняется после установки на автомобиль. Для этого потребуется изготовить индикатор поля (рис. 2.62) или любой аналогичный из опубликованных в литературе [Л12], с помощью которого можно настроить антенну передатчика сердечником катушки L6 на максимальное излучение. Положение 1 переключателя SA1 в индикаторе поля позволяет предотвратить повреждение механизма измерительного прибора при транспортировке (катушка L1 имеет 11 витков провода МТ диаметром 2,51 мм на каркасе диаметром 25 мм с отводом от третьего витка, а дроссель L2 типа ДМ — 0,2-60 мкГн).

 

Рис. 2.59. Схема управления

Изображение: 

Рис. 2.60. Форма модулирующих импульсов

Изображение: 

Рис. 2.61. Доработка схемы

Изображение: 

Рис. 2.62. Индикатор ВЧ поля

Изображение: 

2.10.3. Радиоприемник

Радиоприемник

Приемник предназначен для приема амплитудно-модулированных сигналов на фиксированной частоте 26945 кГц. Для удобства его использования прием производится на встроенную рамочную антенну.

Известно, что дальность работы данной системы в основном зависит от чувствительности приемника. Чтобы увеличить дальность в 2 раза, необходимо во столько же раз увеличить чувствительность приемника или в 4 раза увеличить мощность передатчика (увеличивать мощность передатчика более 2 Вт нельзя из-за предъявляемых требований к таким устройствам).

Приемник, используемый в системе охраны, должен обеспечивать также длительную непрерывную работу от автономного источника питания. Так как отечественная промышленность не выпускает подходящих высокочастотных микросхем, которые способны работать от низковольтного питания в режиме малых токов, при этом обеспечивая высокую чувствительность, электрическую схему высокочастотной части приемника пришлось выполнять на дискретных элементах (рис. 2.63), что делает ее доступной для повторения....

2-64.jpg

Рис. 2.63. Высокочастотная часть приемника

Основные технические параметры приемника:

  1. чувствительность на внутреннюю антенну не хуже 0.5...1 мкВ;
  2. частота промежуточного усиления 465 кГц;
  3. избирательность по соседнему каналу не хуже 40 дБ;
  4. напряжение питания 3...4,5 В;
  5. потребляемый ток (вместе с цифровой схемой дешифратора):
    • в режиме "охрана" не более 2,2 мА;
    • в режиме "оповещения" не более 5 мА;
  6. диапазон рабочих температур +10...+50°С.

Высокочастотная часть приемника работает в режиме микротоков и построена по супергетеродинной схеме. Входной контур, состоящий из индуктивноети рамочной антенны WA1 и конденсаторов С1, СЗ, С5, а также контур L2-C12 ограничивают полосу принимаемых частот, что увеличивает помехоустойчивость приема и избирательность по зеркальному каналу. На транзисторе VT1 собран усилитель высокой частоты (УВЧ) приемника. Гетеродин на транзисторе VT2 стабилизирован по частоте кварцевым резонатором ZQ1 (26480 кГц). Это позволяет не проводить подстройку приемника на частоту передатчика в процессе эксплуатации.

2-65.jpg

Рис. 2.64. Конструкция катушек L1 и L2 приемника

Промежуточная частота 465 кГц выделяется смесителем, выполненным на транзисторе VT3. Усилитель ПЧ собран на транзисторах VT4, VT6...VT8. Пьезофильтр ZQ2 (ФП1П1-61,02) обеспечивает хорошее подавление сигналов соседних каналов. Усиленный сигнал ПЧ выделяется на контуре L5-C28, с которого через индуктивную связь подается на активный детектор из транзистора VT13.

2-66.jpg

Рис. 2.65. Конструкция рамочной антенны приемника WA1

Использование активного детектора позволяет ему работать при значительно меньшем уровне входного сигнала, чем это обеспечивают диодные схемы. После усиления транзисторами VT14 и VT9 выделенные низкочастотные импульсы поступают на дешифратор.

Транзистор VT5 используется в системе автоматической регулировки усиления. На диодном включении транзисторов VT10...VT12 собран низковольтный стабилизатор рабочих режимов усилительных каскадов, что необходимо для работы приемника в широком диапазоне питающих напряжений. По сравнению с обычными диодами транзисторные переходы дают лучшую стабилизацию при работе на малом токе.

2-67.jpg

Pис. 2.66. а) Топология печатной платы приемника

2-68.jpg

Рис. 2.66. 6) Расположение элементов

В схеме применены резисторы С2-23, подстроенный конденсатор С1 типа К4-236, остальные конденсаторы типа К10-17 или КМ6 (те из них, что применяются в контурах, лучше установить с минимальным ТКЕ). Электролитические конденсаторы С6, С8, С16, СЗЗ и С35 типа К50-16 на 6,3 В.

Катушки L1 и L2 выполнены на каркасе диаметром 5 мм проводом ПЭВ-2 диаметром 0,23 мм, рис. 2.64, и содержат: L1 — 12 витков, L2 — 12 витков с отводом от середины. Конструкция катушек контуров промежуточной частоты показана на рис. 2.17. Они выполняются проводом ПЭЛ диаметром 0,1 мм и содержат: L3 и L4 по 80 витков, L5 — обмотка 1-2 — 80 витков (ее индуктивность примерно 120 мкГн), 3-4 — 120 витков (намотка начинается с обмотки 3-4).

2-69.jpg

Рис. 2.67. Форма напряжения в контрольных точках

Антенна WA1 — выполнена печатными проводниками на монтажной плате из двухстороннего стеклотекстолита толщиной 1,0 мм и размерами 125х65 мм и содержит три витка, рис. 2.65. Печатные проводники второго слоя показаны пунктиром. Печатная плата, используемая для монтажа элементов приемника и закрепления трех аккумуляторов, приведена на рис. 2.66. Она содержит две перемычки, устанавливаемые до начала монтажа. Большинство резисторов располагаются вертикально, что уменьшает размеры конструкции. Аккумуляторы размещаются в картонных каркасах по их диаметру и прижимаются сверху печатной платой с размерами 95х30 мм (на этой же плате располагается дешифратор). Часть элементов основной платы, отмеченные штрихом, относятся к схеме дешифратора.

Настройка приемника начинается с усилителя промежуточной частоты на максимальное усиление. Для этого с генератора Г4-176 на базу VT3 через разделительный конденсатор 1000 пФ подаем сигнал 465 кГц (с точностью 0,5 кГц) с импульсной 100% модуляцией меандром на частоте 1 кГц. Изменяя амплитуду сигнала генератора от 100 мВ до 1 мкВ с помощью сердечников катушек L8, L6 и L5, получаем максимальное напряжение на выходе детектора. Сигнал удобно контролировать осциллографом, а его форма на коллекторе транзисторов VT13 и VT14 показана на рис. 2.67. Номинал резистора R33 может потребовать подбора, так чтобы при отсутствии входного сигнала на коллекторе VT14 было нулевое напряжение.

Окончательную регулировку УПЧ проводим при амплитуде выходного сигнала (Uq) не более 200 мВ. Если УПЧ после настройки не обеспечивает достаточного усиления, то вместо резисторов R16 и R12 можно установить перемычки и повторить настройку.

Настройка гетеродина на рабочую частоту выполняется по следующему методу:

а) от генератора Г4-176 подать сигнал уровнем 1 мВ на частоте 26945 кГц с импульсной 100% модуляцией меандром (1 кГц) на виток связи, закрепленный на пластине (рис. 2.68) (WA1 содержит два витка и выполняется проводом МГШВ диаметром 0,2 мм на прямоугольном каркасе с размерами 80х150 мм);

2-70.jpg

Рис. 2.68. Виток связи для настройки приемника при подаваемом с
генератора сигнале

б) вращая подстроенный сердечник поочередно в катушках L2, L3 и L4, необходимо получить максимальную амплитуду импульсов на выходе детектора, а окончательную подстройку проводим при сигнале Uq не более 120 мВ (в этом случае работа каскада автоматической регулировки усиления не будет снижать уровень сигнала, мешая настройке приемника на максимальную чувствительность);

в) настройка антенны WA1 на рабочую частоту проводится конденсатором С1 при уровне сигнала, подаваемом с генератора, менее 2 мкВ (можно установить перемычки вместо R3 и R23, если это не приведет к самовозбуждению каскадов).

После этого можно проверить действие автоматической регулировки усиления. Увеличивая ВЧ сигнал с генератора на 80 дБ, осциллографом контролируем ширину импульсов tu на коллекторе VT14 — длительность импульсов не должна увеличиваться более чем на 30% относительно начальной. Необходимо также проверить работу схемы при изменении питающего напряжения от 3 до 4,5 В. На этом настройка высокочастотной части приемника считается законченной, и можно подключать дешифратор кода.

 

Pис. 2.66. а) Топология печатной платы приемника

Изображение: 

Рис. 2.63. Высокочастотная часть приемника

Изображение: 

Рис. 2.64. Конструкция катушек L1 и L2 приемника

Изображение: 

Рис. 2.65. Конструкция рамочной антенны приемника WA1

Изображение: 

Рис. 2.66. 6) Расположение элементов

Изображение: 

Рис. 2.67. Форма напряжения в контрольных точках

Изображение: 

Рис. 2.68. Виток связи для настройки приемника при подаваемом с генератора сигнале

Изображение: 

2.10.4. Дешифратор

Дешифратор

Цифровая часть дешифратора позволяет выделить на фоне помех и других сигналов "свой". Схема простого дешифратора индивидуального кода приведена на рис. 2.69.

Так как от данной системы не требуется иметь дешифратор на много возможных вариантов кода, схему удалось выполнить всего на трех микросхемах. При этом используется свойство КМОП микросхем работать при низковольтном питании.

Пачки входных импульсов поступают на формирователь, собранный из элементов R1, С1 и D1.1. Такая схема предотвращает срабатывание повторителя сигнала D1.1 от кратковременных помех, а также обеспечивает крутые фронты импульсов на выходе, независимо от их крутизны на входе.

С выхода D1.1/3 импульсы поступают на счетчик импульсов D2 и детектор паузы, собранный на элементах R2, С2, VD1, D1.2. Пока на выходе D1.1 действует уровень лог. "0", конденсатор С2 через диод VD1 быстро разряжается и на выходе D1.2/4 будет действовать лог. "0". В паузе между пачками импульсов С2 постепенно зарядится через резистор R2 и на выходе D1.2 сформируются импульсы, положительный фронт которых выполняет запись состояния с выхода счетчика D2/10 в триггер D3.1. Этот же импульс, поступая на вход R, переводит счетчик D2 в исходное состояние (обнуляет). Данный процесс периодически повторяется при появлении очередной пачки импульсов на входе. Диаграмма напряжений, показанная на рис. 2.70, поясняет работу схемы.

Если число импульсов в пачке равно 7, на выходе D2/10 появляются импульсы, высокий уровень которых записывается в регистр триггера D3.1. На триггерах D3.1 и D3.2 собраны формирователи интервалов длительностью 1,5 и 35 с соответственно. Цепь из элементов R6-C5 исключает случайную запись в триггер D3.2 лог. "1" в момент включения питания приемника.

Светодиод HL1 индицирует наличие принятого кода, и по его состоянию можно легко определить, какая группа датчиков на охраняемом автомобиле сработала.

2-71.jpg

Рис. 2.69. Электрическая схема дешифратора

Так, при кратковременном срабатывании любого из датчиков HL1 будет мигать с интервалом около 2 с. Если же он постоянно светится, то, значит, постоянно замкнут один из датчиков F2...Fn. В случае, если включился звук оповещения, а светодиод не светится, — скорее всего дешифратор сработал от помехи (исключение составляет однократное срабатывание звукового сигнала приемника при включении режима проверки радиоканала).

2-72.jpg

Рис. 2.70. Эпюры напряжения в контрольных точках

Триггер D3.2 при появлении на его выводе 13 лог. "1" разрешает работу низкочастотного автогенератора на элементах D1.3, D1.4 в течение времени не менее 35 с. Этот интервал не зависит от того, какой из датчиков замкнулся. Звуковой сигнал в приемнике будет звучать, пока работает передатчик, а также некоторое время после его отключения (до 35 с). Выключение звукового сигнала выполняется кнопкой SB1, если светодиод не светится, или же выключателем SA1, в случае продолжения работы передатчика.

В качестве звукового сигнализатора использован пьезоизлучатель типа ЗП-25 (ЗП-22, ЗП-18). А для того чтобы повысить громкость его работы при низковольтном питании, параллельно с пьезокерамическим излучателем включена катушка 11. Она содержит 400 витков провода ПЭЛ диаметром 0,08 мм (0,1 или 0,12 мм), намотанных на склеенных клеем БФ-2 ("Момент") двух кольцах типоразмера К10х6х3 мм из феррита 700НМ1 (или 1000НН). Подбором номинала резистора R10 можно настроить частоту низкочастотного генератора так, чтобы громкость звукового сигнала была максимальной.

Предварительную проверку работы дешифратора удобно выполнять, подавая инверсный сигнал с модулятора передатчика на вход элемента D1.1.

В схеме применены резисторы МЛТ, конденсаторы типа К10-17, а С4 — К50-16.

Корпус приемника имеет такую же конструкцию, как и в опубликованном выше электрошоковом устройстве (две платы, одна из которых одновременно является антенной, образуют каркас, на который одевается кожух). Некоторые
стойки крепления между платами являются одновременно соединительными цепями.

После окончательной сборки и настройки приемника нужно измерить потребляемый схемой ток. Он не должен превышать значений, указанных в технических параметрах. Причиной повышенного потребления тока может быть ошибочное подключение полярности электролитических конденсаторов или ошибки монтажа.

Для уменьшения размеров дешифратора в схеме можно применять аналогичные микросхемы с планарным расположением выводов из серии 564.

Если на данной частоте имеется большой уровень помех, то большую помехоустойчивость может обеспечить дешифратор кода, схема которого описана в литературе [Л11, стр. 140]. Она содержит в два раза больше микросхем, но позволяет последовательно запоминать три принятых кодовых посылки, и, если не менее двух из них правильные — схема принимает решение о достоверном приеме своего сигнала.

 

Рис. 2.69. Электрическая схема дешифратора

Изображение: 

Рис. 2.70. Эпюры напряжения в контрольных точках

Изображение: 

2.10.5. Источник питания с автоматическим

Источник питания с автоматическим зарядным устройством

Для того чтобы не разряжать аккумулятор приемника при использовании системы охраны, находясь дома, он подключается к стационарному сетевому источнику. Схема, рис. 2.71, контролирует состояние аккумуляторов и при необходимости автоматически выполняет их подзаряд. Кроме этого, в случае появления сигнала тревоги транзистор VT1 выполняет усиление громкости звукового сигнала оповещения, что обеспечивает удобство эксплуатации.

2-73.jpg

Рис. 2.71. Схема источника питания с зарядным устройством

2-74.jpg

Рис. 2.72. Топология печатной платы п расположение элементов для схемы
источника питания

Индикатором включения источника питания в сеть является свечение зеленого светодиода (HL1), а при работе режима подзарядки аккумуляторов светится красный (HL2).

Устройство работает следующим образом. Микросхема D1 выполняетстабилизацию выходного напряжения, уровень которого может ступенькой меняться (6,6 или 5В — это зависит от того, светится светодиод HL2 или нет). Светодиод HL2 кроме световой индикации процесса заряда является еще и источником опорного напряжения 1,6 В для микросхемы.

На транзисторах VT2 и VT3 собран анализатор уровня выходного напряжения источника питания. Из-за большого коэффициента усиления этих транзисторов они переключаются из запертого состояния в открытое при изменении напряжения на выходе на 0,1 В. Схема при подключенных аккумуляторах на страивается резистором R8 так, чтобы порог открывания транзисторов составлял примерно 3,9...4 В (при этом светодиод HL2 не должен светиться).

Величина тока через аккумуляторы зависит от их состояния, и по мере заряда он постепенно снижается. Максимальный ток заряда ограничен величиной примерно 20 мА (задается номиналом резистора R5). По мере роста емкости заряда напряжение на аккумуляторах постепенно растет, и, когда оно достигнет величины 3,9 В, выходное напряжение стабилизатора D1 уменьшится с 6,6 В до 5 В. При этом подзаряд прекратится.

В схеме применены постоянные резисторы МЛТ, подстроечный R8 типа СП5-2; электролитические конденсаторы К50-35 на 25 В. Диоды можно заменить любыми на ток не менее 500 мА и обратное напряжение 50 В. Светодиоды использованы разных цветов из серии КИП32 или аналогичные с малым потребляемым током при свечении. Трансформатор подойдет из унифицированных, например типа ТН 1-220-50 или любой другой с напряжением во вторичной обмотке 9...12 В.

Вариант топологии печатной платы и расположение элементов для схемы источника питания приведен на рис. 2.72.

Конструктивно корпус источника питания выполняется в виде подставки под приемник, но так, чтобы при этом вертикально установленный приемник подключался через гнездо соответствующего разъема (Х1) к цепям источника питания. Разъем Х1 применен типа МРН4.

 

Рис. 2.71. Схема источника питания с зарядным устройством

Изображение: 

Рис. 2.71. Схема источника питания с зарядным устройством

Изображение: 

6. зарядным устройством

Источник питания с автоматическим зарядным устройством

Для того чтобы не разряжать аккумулятор приемника при использовании системы охраны, находясь дома, он подключается к стационарному сетевому источнику. Схема, рис. 2.71, контролирует состояние аккумуляторов и при необходимости автоматически выполняет их подзаряд. Кроме этого, в случае появления сигнала тревоги транзистор VT1 выполняет усиление громкости звукового сигнала оповещения, что обеспечивает удобство эксплуатации.

2-73.jpg

Рис. 2.71. Схема источника питания с зарядным устройством

2-74.jpg

Рис. 2.72. Топология печатной платы п расположение элементов для схемы
источника питания

Индикатором включения источника питания в сеть является свечение зеленого светодиода (HL1), а при работе режима подзарядки аккумуляторов светится красный (HL2).

Устройство работает следующим образом. Микросхема D1 выполняетстабилизацию выходного напряжения, уровень которого может ступенькой меняться (6,6 или 5В — это зависит от того, светится светодиод HL2 или нет). Светодиод HL2 кроме световой индикации процесса заряда является еще и источником опорного напряжения 1,6 В для микросхемы.

На транзисторах VT2 и VT3 собран анализатор уровня выходного напряжения источника питания. Из-за большого коэффициента усиления этих транзисторов они переключаются из запертого состояния в открытое при изменении напряжения на выходе на 0,1 В. Схема при подключенных аккумуляторах на страивается резистором R8 так, чтобы порог открывания транзисторов составлял примерно 3,9...4 В (при этом светодиод HL2 не должен светиться).

Величина тока через аккумуляторы зависит от их состояния, и по мере заряда он постепенно снижается. Максимальный ток заряда ограничен величиной примерно 20 мА (задается номиналом резистора R5). По мере роста емкости заряда напряжение на аккумуляторах постепенно растет, и, когда оно достигнет величины 3,9 В, выходное напряжение стабилизатора D1 уменьшится с 6,6 В до 5 В. При этом подзаряд прекратится.

В схеме применены постоянные резисторы МЛТ, подстроечный R8 типа СП5-2; электролитические конденсаторы К50-35 на 25 В. Диоды можно заменить любыми на ток не менее 500 мА и обратное напряжение 50 В. Светодиоды использованы разных цветов из серии КИП32 или аналогичные с малым потребляемым током при свечении. Трансформатор подойдет из унифицированных, например типа ТН 1-220-50 или любой другой с напряжением во вторичной обмотке 9...12 В.

Вариант топологии печатной платы и расположение элементов для схемы источника питания приведен на рис. 2.72.

Конструктивно корпус источника питания выполняется в виде подставки под приемник, но так, чтобы при этом вертикально установленный приемник подключался через гнездо соответствующего разъема (Х1) к цепям источника питания. Разъем Х1 применен типа МРН4.

 

Рис. 2.71. Схема источника питания с зарядным устройством

Рис. 2.71. Схема источника питания с зарядным устройством

Рис. 2.50. Блок-схема системы

Изображение: