3. Эксперименты с переменным током.

Эксперименты с переменным током.

1. Ознакомление с осциллографом

ЭКСПЕРИМЕНТ 16 Ознакомление с осциллографом

Цели

После проведения данного эксперимента Вы сможете использовать органы управления осциллографа для вывода на его дисплейный экран осциллограмм сигналов и осуществления измерений амплитуды и частоты для постоянного и перемен-ног» тока.

Необходимые принадлежности

* Осциллограф

* Мультиметр

* Генератор функций

* Источник постоянного напряжения

ВВОДНАЯ ЧАСТЬ

Осциллограф становится относительно простым в использовании прибором после первого знакомства с ним. Затруднение может вызывать лишь изучение и запоминание функции каждого из различных органов управления на передней панели. На передней панели осциллографов имеется множество ручек, лимбов, переключателей, кнопок и соединителей. Для непосвященных это кажется очень трудным. Изучите назначение каждого органа управления и проследите за его действием на дисплее. В результате Вы быстро поймете способ

его использования. Одним из лучших способов изучения функций и методов использования осциллографа является получение по возможности большего опыта во время практической работы.

Осциллограф

Используемый Вами осциллограф, по-видимому, двухканального типа (он позволяет наблюдать одновременно два отдельных сигнала). Следовательно, он имеет два входных кабеля и соединителя. Они обычно маркируются как канал 1 и 2 или А и В. Каждый кабель также имеет наименование; имеются два основных типа — прямой и аттенюаторный.

Кабели осциллографа

Кабель прямого типа является коаксиальным кабелем с двумя выводами, которые обычно имеют концевую заделку посредством зажимов типа «крокодил» для подключения к схеме. В этом кабеле могут использоваться также щуповые наконечники вместо двух зажимов типа «крокодил». В любом случае данный кабель подводит сигнал, который должен воспроизводиться на экране, напрямую (без ослабления) к осциллографу.

С аттенюаторным типом соединителя также используется коаксиальный кабель, но в общем случае применяется щуп вместо зажимов типа «крокодил». Узел щупа содержит последовательный резистор с большим сопротивлением, которое вместе с полным входным сопротивлением осциллографа формирует делитель напряжения. Таким образом, данный щуп и кабель выполняют ослабление (аттенюацию) сигнала в 10 раз.

Преимуществом такого кабеля является то, что он создает меньшую емкостную нагрузку для схем высокой частоты, позволяя визуализировать высокочастотные сигналы и сложные формы сигнала. Тем не менее, взамен имеет место потеря амплитуды сигнала, которая может обычно компенсироваться увеличением усиления осциллографа. Чтобы получить корректное измерение амплитуды сигнала, настройка осциллографа умножается на 10. Такие щупы называются щупами Х10.

Измерение амплитуды

Для амплитудных измерений на осциллографе используется откалиброванная сетка или координатная сетка на экране электронно-лучевой трубки для определения числа делений между максимальным положительным и минимальным отрицательным отклонениями сигнала (такое измерение называется измерением размаха или двойной амплитуды сигнала). Для измерений выполняйте следующие шаги:

Шаги при измерении амплитуды

1. Установите переключатель управления коэффициентом усиления по вертикали для визуализации как можно большего размаха сигнала на координатной сетке.

2. Установите ручку непрерывного управления коэффициентом усиления по вертикали в позицию CAL (калибровка).

3. Подсчитайте количество делений и долей деления между положительным и отрицательным пиками сигнала. Используйте регулятор вертикальной позиции для перемещения осциллограммы сигнала при необходимости. Заметьте, что большая часть осциллографов имеет восемь больших вертикальных делений, разделенных на пять меньших делений.

4. Умножьте число делений на значение установки переключателя коэффициента усиления по вертикали. Вы получаете значение размаха сигнала.

5. Если Вы использовали щуп Х10, умножьте Ваше

значение в шаге 4 на 10. Это даст правильное

значение размаха напряжения.

Пример: Коэффициент усиления по вертикали устанавливается 50 мВ/деление. Это означает, что каждое большое вертикальное деление соответствует 50 мВ. При этом каждое из пяти малых делений соответствует 50/5 = 10 мВ.

Предположим, что амплитуда Вашего сигнала перекрывает 6, 3 делений. Тогда его значение амплитуды равно 50 х 6, 3 = 315 мВ. Если использовался щуп Х10, то амплитуда сигнала равна 315 х 10 = 3150 мВ или 3, 15В.

Измерение частоты

Для измерений частоты (f) на осциллографе сначала измерьте период (t) сигнала. Период — это время одного цикла. Самый простой способ сделать это — подсчитать количество горизонтальных делений между двумя последовательными пиками сигнала. Для измерений выполняйте следующие шаги:

Шаги при измерении частоты

1. Установите переключатель горизонтальной развертки для визуализации одного или двух периодов (циклов) сигнала.

2. Установите ручку непрерывного управления горизонтальной частотной разверткой в положение CAL (калибровка).

3. Подсчитайте количество делений между последовательными пиками сигнала. Используйте регулятор горизонтального сдвига для перемещения осциллограммы сигнала при необходимости.

4. Умножьте число делений на значение установки переключателя горизонтальной развертки. Вы получаете значение периода сигнала (t). 5. Чтобы вычислить частоту сигнала, найдите обратную величину периода: f = 1/t Пример: Переключатель горизонтальной развертки устанавливается на 20 мкс/деление. Предположим, Вы насчитали 4, 4 деления между последовательными пиками сигнала. Тогда его период (1) равен: 4, 4 х 20 = 88 микросекунд. А частота сигнала равна:

f = 1/(88 х 10^-6) = 11363, 64 Гц или 11, 36 кГц

ПРОЦЕДУРА

1. Рассмотрите измерительные выводы осциллографа, чтобы определить, какого они типа. Запишите эти типы:

СН А (канал А. __________

СН В (канал В) __________

2. Включите питание осциллографа при помощи переключателя на передней панели. Дайте электронно-лучевой трубке приблизительно одну минуту, чтобы прогреться:

а) пока электронно-лучевая трубка прогревается, установите переключатель управления режимом развертки в положение Авто;

б) установите селектор источника в положение СН 1 (канал 1) или CН А (канал А);

в) установите регулятор горизонтального сдвига в среднее положение;

г) регулятор вертикального сдвига предусмотрен для обоих входных каналов; установите его также в среднее положение;

д) установите входной переключатель для каждого канала в положение GND (масса);

е) когда осциллограф прогреется, Вы должны видеть яркую горизонтальную линию на экране осциллографа. Поворачивайте регулятор вертикального сдвига, чтобы переместить горизонтальную линию в центр экрана. 3. След на экране должен быть ярким и четким. Если это не так, отрегулируйте его ручками фокусировки и яркости, которые обычно расположены на передней панели осциллографа. Используя регулятор фокусировки, Вы должны попробовать сделать линию размытой, а затем сфокусировать ее до четкого состояния. Попробуйте поработать регулятором яркости, который устанавливает уровень яркости линии. Не делайте линию слишком яркой, ибо в этом случае она будет слишком широкой, что снизит точность Ваших измерений.

ПРИМЕЧАНИЕ: Запомните в качестве основного правила, что яркость делать надо низкой, насколько возможно, лишь бы она обеспечивала удобное наблюдение при нормальном окружающем освещении.

4. Подсоедините щуповой наконечник для канала 1 (СН 1) к небольшому соединителю на передней панели, с маркировкой CAL. Осциллограф содержит встроенный мультивибратор, который работает на частоте 1 кГц и формирует прямоугольное колебание (меандр) с размахом того или иного указанного напряжения. Этот сигнал с внутренней калибровкой позволяет Вам быстро контролировать измерения при помощи осциллографа частоты и амплитуды для корректных калибровок.

CAL (калибровочное) напряжение ___ Vpp

(напряжение размаха). Установите регуляторы передней панели осциллографа таким образом, чтобы регуляторы по горизонтали и вертикали были полностью выведены по часовой стрелке в позиции CAL. Затем установите частоту горизонтальной развертки при помощи переключателя TIME/DIV в положение 0. 1 мс. И, наконец, установите коэффициент усиления по вертикали при помощи переключателя VOLTS/DIV в положение 50 мВ.

5. Если Вы даже подали откалиброванный сигнал на вертикальный вход осциллографа, на его экране не появляется никакого сигнала. Причиной этого является то, что Вы предварительно должны установить входной переключатель в положение GND (масса). Это просто заземлит входную линию и даст Вам опорную позицию нуль вольт для входного сигнала. Вы можете теперь при помощи регулятора вертикального сдвига выполнять перемещение развертки вверх и вниз, чтобы одна из горизонтальных линий на координатной сетке соответствовала положению нуль вольт. Входной переключатель установите в позицию АС (переменный ток). Сразу же Вы должны увидеть прямоугольные колебания на экране. Выполняйте регулирование при помощи регулятора вертикального и горизонтального сдвига, чтобы меандр был четко виден на экране. ПРИМЕЧАНИЕ: Когда Вы устанавливаете входной переключатель в положение АС, последовательно с входной линией включается конденсатор. На основании этого любое постоянное напряжение во входном сигнале блокируется, и на индикацию выводится только переменная составляющая сигнала. В этом случае происходит следующее. Установив линию нуля вольт на центральной горизонтальной линии, Вы заметите, что прямоугольный сигнал коммутируется выше и ниже нулевой линии. Другими словами, блокировочный конденсатор внутри осциллографа подавляет выход постоянного напряжения мультивибратора, так что на экране осциллографа появляется только переменная составляющая сигнала. 6. Далее, используйте регулятор коэффициента усиления по вертикали, чтобы варьировать амплитуду сигнала. По мере вращения регулятора Вы можете заметить, что амплитуда может изменяться в широком диапазоне. Это позволяет Вам удобно разместить сигнал на экране осциллографа для наблюдения за ним. Помните, тем не менее, что для осуществления точных измерений этот регулятор должен быть в полностью выведенном по часовой стрелке положении (CAL).

лишь в этом случае обозначения напряжений на делениях регулятора коэффициента усиления по вертикали корректны. Поворачивайте регулятор горизонтальной развертки. Вы сейчас изменяете скорость развертки внутреннего генератора пилообразного напряжения. Следовательно, Вы можете наблюдать на экране осциллографа больше или меньше периодов сигнала. Таким образом, данный регулятор позволяет Вам удобно отрегулировать количество периодов для индикации. Тем не менее, для измерения периода или других временных параметров сигнала регулятор развертки должен быть в полностью выведенном по часовой стрелке положении (CAL), чтобы значения времени на делениях переключателя были корректны.

7. Установите входной переключатель в положение DC (постоянный ток) и заметьте влияние на форму сигнала. Вам может потребоваться поработать регуляторами вертикального и/или горизонтального сдвига, чтобы снова увидеть форму сигнала. Чтобы временно локализовать и установить нулевую линию, установите входной переключатель назад в положение GND. Затем совместите линию развертки с одной из горизонтальных линий в нижней части экрана. Это опорная линия нулевого напряжения. Теперь установите входной переключатель снова в положение DC. Заметьте, что прямоугольный сигнал появляется выше нулевой линии. Это означает, что прямоугольный сигнал переключается приблизительно от нуля вольт до пикового значения. Заметьте, что когда форма сигнала разворачивается вверх от базисной нулевой линии, она представляет положительное напряжение. Если форма сигнала разворачивается вниз от базисной нулевой линии, она отражает отрицательное напряжение. 8. Измерьте амплитуду сигнала. Обеспечьте, чтобы регулятор коэффициента усиления по вертикали был полностью выведен по часовой Стрелке в положение калибровки. Подсчитайте количество вертикальных делений между основанием прямоугольного колебания и вершиной прямоугольного колебания. Например, если напряжение CAL равно 0, 25В или 250 мВ (размах), Вы должны насчитать 5 делений, когда VOLTS/DIV установлен в. положение 50 мВ. Пять делений по 50 мВ каждое дают напряжение размаха 250 мВ. Если Вы использовали аттенюаторный щуп Х10, установите регулятор коэффициента усиления по вертикали на значение 5 мВ на одно деление, затем умножьте это значение на 10, чтобы получить 250 мВ.

калибровочное напряжение =________ Vpp

Внутренняя схема калибратора недостаточно точна, однако сигнал на экране должен приблизительно соответствовать указанному на передней панели.

9. Измерьте частоту сигнала. Большинство калибраторов используют частоту 1 кГц, однако может использоваться и другое значение. Установите переключатель TIME/DIV в положение 1 мс. Убедитесь, что регулятор развертки находится в положении CAL. Это означает, что каждое горизонтальное деление на экране соответствует одной миллисекунде. Вы должны суметь увидеть, что один период прямоугольного сигнала занимает до одной миллисекунды на экране. Вспомните, что один период состоит из одного развернутого в положительную сторану и одного развернутого в отрицательную сторону импульса.

Установите переключатель TIME/DIV в положение 0, 1 мс. Теперь каждое деление на экране соответствует 0, 1 мс или 100 мкс. Поскольку период сигнала 1 кГц равен 1 миллисекунде, один полный период сигнала должен занимать весь экран (10 горизонтальных делений). Выполняйте перемещение при помощи регулятора горизонтального сдвига туда и сюда, чтобы Вы могли видеть, что положительный фронт импульса на левой стороне экрана начинается у дальней левой вертикальной линии, а затем положительный фронт следующего импульса начинается приблизительно у дальней правой вертикальной линии. Повторите это движение, чтобы Вы могли лучше разобраться в этом. Поскольку калибратор не является чрезмерно точным, длительность одного периода может быть несколько меньше или несколько больше, чем 10 полных делений на экране. Какова измеренная частота калибратора?

частота CAL = ____ Гц

0. Пока Вы рассматриваете эту форму сигнала, установите переключатель MODE в положение NORM. Если картинка исчезает, подстраивайте регулятор порогового уровня до тех пор, пока сигнал не появится снова. Вы используете теперь функцию запускаемой развертки. Вы можете регулировать пусковой

уровень или точку на форме сигнала, где сигнал запускает горизонтальную развертку. Поскольку входной сигнал представляет собой положительный импульс, запуск будет осуществляться по положительному напряжению. Варьируйте регулятором пускового уровня как в направлении по часовой стрелке, так и против часовой стрелки, замечая его влияние на форму сигнала. Установите регулятор пускового уровня таким образом, чтобы, сигнал визуализировался на экране. Вытяните ручку регулятора пускового уровня. Данный переключатель изменяет полярность при запуске. Теперь Вы заметите, что форма сигнала начинается на левой стороне экрана с разворачиванием в отрицательном направлении, а не в положительном, как раньше. Позже, когда Вы будете выводить на экран колебания синусоидальной формы, Вы снова более подробно будете знакомиться с этой пусковой функцией.

11. Подключите кабель осциллографа к выходу генератора функций.

12. Установите генератор функций для формирования синусоидального сигнала с частотой 1 кГц. Поверните регулятор амплитуды или регулятор выходного уровня на генераторе функций до упора по часовой стрелке. Вы должны увидеть синусоидальный сигнал с частотой приблизительно 1 кГц на экране осциллографа. Если на экране ничего нет, переключатель режима MODE может находиться у Вас в положении NORM, а пусковой уровень может быть некорректно отрегулирован.

Регулируйте ручкой пусковой уровень, пока на экране не появится форма сигнала. После этого отрегулируйте положения переключателя коэффициента усиления по вертикали и переключателя горизонтальной развертки таким образом, чтобы Вы могли видеть на экране несколько периодов синусоидального сигнала. Поработайте с регуляторами, пока не получите на экране удовлетворительную картинку. 13. Теперь Вы будете исследовать частотный диапазон генератора функций. На генераторе функций установите переключатель диапазонов в положение самого низкого значения и поверните регулятор частоты в крайнее положение против часовой стрелки. Установите ручку переключателя режима MODE на осциллографе в положение AUTO. Вы видите горизонтальную линию поперек экрана, перемещающуюся вверх и вниз с небольшой скоростью. Скорость небольшая потому, что частота развертки вашего осциллографа слишком быстра для Вас, чтобы визуализировать (то есть, выводить на экран) полный период синусоидального сигнала, генерируемого генератором функций на такой малой частоте. Вы можете получить представление о частоте, если подсчитаете, сколько раз нарастает и убывает синусоидальное колебание. Синусоидальному сигналу должна потребоваться приблизительно 1 секунда, чтобы пройти от самой низкой до самой высокой позиции, а затем вернуться назад. Во время наблюдения за синусоидальным сигналом начните вращать ручку регулятора частоты в направлении по часовой стрелке. Скорость движения вверх и вниз должна возрастать. В некоторый момент Вы должны будете иметь возможность установить переключатель TIME/DIV на большее значение, и Вы будете наблюдать синусоидальный сигнал низкой частоты.

Установите переключатель диапазонов на генераторе функций в положение следующего более высокого значения и заметьте эффект на экране. Частота должна сразу же возрасти до значительно большего значения, и Вы увидите уже больше периодов, визуализируемых на экране. Поверните переключатель TIME/DIV в положение большего значения, и наблюдайте за синусоидальным сигналом на экране. Варьируйте положение регулятора частоты на генераторе функции, чтобы видеть, как изменяется частота.

Продолжайте этот процесс, переключая генератор функций на более высокие частоты и варьируя регулятор частоты по всему его диапазону. Этим Вы будете продолжать увеличивать частоту. При увеличении частоты синусоидальные колебания не будут больше видны, если только Вы нс растянете их при помощи переключателя горизонтальной развертки TIME/ DIV. Всякий раз, когда Вы повышаете частоту. необходимо уменьшать частоту развертки, чтобы наблюдать за формой сигнала. 14. В качестве последнего наблюдения за частотой генератора функций установите переключатель диапазонов на генераторе функций в положение максимального значения и поверните регулятор частоты R полностью выведенное по

часовой стрелке положение. То, что Вы увидите, это сигнал максимальной частоты, которую может обеспечить генератор функций. Используя описанную методику установите переключатель развертки в удобное положение. После этого выполните измерение периода между смежными положительными или отрицательными пиками. Оцените время периода, затем рассчитайте частоту. Какова приблизительно максимальная выходная частота у генератора функций?

Максимальная частота = ___ Гц

15. Пока Вы исследуете максимальную выходную частоту генератора функций, измерьте также амплитуду этого сигнала:

а) обеспечьте, чтобы регулятор амплитуды находился в его полностью выведенном по часовой стрелке положении. Это положение максимального выходного напряжения, которое может быть получено от генератора функций без нагрузки;

б) установите на осциллографе регулятор коэффициента усиления для входного сигнала по, вертикали в полностью выведенное по часовой стрелке положение калибровки;

в) переключатель VOLTS/DIV установите в удобное положение для измерения;

г) используйте регулятор сдвига по вертикали для перемещения сигнала вверх и вниз таким образом, чтобы Вы смогли подсчитать количество делений между отрицательным пиком и положительным пиком сигнала;

д) подсчитайте количество делений и умножьте это число на цену одного деления. Затем снова

умножьте полученное значение на коэффициент 10, если Вы используете аттенюаторный щуп для измерений;

е) какое максимальное выходное напряжение Вы можете получить от генератора функций? Максимальное выходное напряжение = __ В (размах) Наконец, продемонстрируйте, как уменьшить выходное напряжение сигнала с помощью регулятора амплитуды на генераторе функций в направлении против часовой стрелки. Вы должны иметь возможность понизить выходное напряжение до очень низкого уровня, однако это напряжение не опустится полностью до нуля, и при низких амплитудах форма сигнала будет несколько искажена. Однако в любом случае Вы можете варьировать формой выходного сигнала в довольно широком диапазоне.

16. Большинство генераторов функций формируют также прямоугольные сигналы и/или сигналы треугольной формы. Если Вы захотите понаблюдать за другими формами сигналов, формируемыми генератором функций, Вы можете добиться этого настройкой органов управления на передней панели. Рассмотрите сигнал треугольной формы. Какой это сигнал, АС (переменного тока. или DC (постоянного тока)? Рассмотрите сигнал прямоугольной формы. Какой это сигнал, АС (переменного тока. или ОС (постоянного тока)?

Сигнал треугольной формы _________

Сигнал прямоугольной формы _______

ОБЗОРНЫЕ ВОПРОСЫ

1. Щуп х10 осциллографа:

а) ослабляет входной сигнал в 10 раз,

б) усиливает входной сигнал в 10 раз.

2. Расстояние между положительным и отрицательным пиками синусоидального сигнала составляет 6, 4 делений. Регулятор коэффициента усиления по вертикали установлен на 50 мкВ/деление. Используется щуп х10. Значение размаха напряжения составляет:

а) 3, 2 мкВ,

б) 32 мкВ,

в) 320 мкВ,

г) 3, 2 мВ.

3. Расстояние по горизонтали между смежными пиками синусоидального сигнала составляет 4, 7 делений. Скорость развертки составляет 2 мкс/ деление. Частота синусоидального сигнала равна:

а) 63, 5 кГц,

б) 94 кГц,

в) 106, 38 кГц,

г) 176, 24 кГц.

4. Какая форма сигнала обычно не формируется генератором функций?

а) синусоидальный сигнал,

б) пилообразный сигнал,

в) сигнал прямоугольной формы,

г) сигнал треугольной формы.

5. Какой регулятор Вы используете для перемещения сигнала вверх и вниз по экрану? а) регулятор коэффициента усиления по горизонтали,

б) регулятор коэффициента усиления по вертикали,

в) регулятор горизонтального сдвига,

г) регулятор вертикального сдвига.

2. Измерения синусоидальных сигналов

ЭКСПЕРИМЕНТ 17 Измерения синусоидальных сигналов

Цели

После проведения данного эксперимента Вы сможете измерять при помощи мультиметра и осциллографа напряжения синусоидальных сигналов и осуществлять преобразование эффективных значении в значения размаха и наоборот.

Необходимые принадлежности

* Мультиметр (цифровой мультиметр)

* Осциллограф

* Генератор функций

* Источник постоянного напряжения

* Резистор 2,7 кОм

ВВОДНАЯ ЧАСТЬ

Имеется два основных метода измерения напряжений синусоидальных сигналов — при помощи мультиметра и при помощи осциллографа. Если используется мультиметр, показания прибора осуществляются непосредственно в вольтах, которые отмечаются на шкале указателем аналогового прибора или в виде десятичного числа на жидкокристаллическом или светодиодном индикаторе цифрового прибора. При этом представляемое на индикации значение является эффективным значением или среднеквадратическим значением. Оно является также более точным показанием.

Осциллограф визуализирует на экране синусоидальный сигнал. Это наиболее легкий и более точный метод для измерения размаха сигнала. Из двух этих устройств значение мультиметра является более точным, как уже упоминалось. Тем не менее, осциллограф позволяет Вам видеть сигнал, а также любой шум, искажение или помехи, которые могут сопровождать сигнал.

Ограничения приборов

Мультиметр имеет ограничение по высокой частоте. Это предельное значение частоты варьирует от прибора к прибору, однако оно не превышает обычно нескольких тысяч герц. Осциллограф же может выполнять измерения напряжений сигналов с частотой до нескольких мегагерц.

Мультиметр позволяет Вам также измерять ток, тогда как осциллограф нет. При включении мультиметра последовательно с цепью или с компонентом Вы можете получить индикацию эффективной величины тока. Единственным способом измерить ток при помощи осциллографа является косвенный способ, а именно, надо измерить напряжение на резисторе, преобразовать значение размаха в эффективное значение, а затем разделить его на сопротивление резистора.

Формулы преобразования

При выполнении тестов и измерений в электронике обычно является необходимым преобразование

эффективных значении в значения размаха и наоборот. Для преобразования эффективных значении в значения размаха используйте следующие формулы:

Vpp = 2,828 Vrms Ipp = 2,828 Irms

(где: РР — размах, rms — эффективное значение) Для преобразования значений размаха, в эффективные значения используйте следующие формулы:

Vrms= 0,3535 Vpp

Irms= 0,3535 Ipp

Пример: Пусть требуется преобразовать показание 6,3 Vpp в эффективное значение:

Vrms= 0,3535 Vpp = 0,3535 (6,3) = 2,23 В

Пример: Пусть требуется преобразовать эффективное значение тока 7 мА в значение размаха:

Ipp = 2,828 Irms = 2,828 (7) = 19,8 мА

Осциллограф может выполнять также измерения по постоянному току. Смещение горизонтальной линии по вертикали относительно нулевой линии на экране осциллографа представляет собой входной уровень по постоянному току. Для измерения постоянного тока горизонтальную линию развертки совместите с линией координатной сетки, соответствующей нулю. Подайте входной сигнал постоянного тока, затем измерьте смещение по вертикали в делениях и преобразуйте в напряжение.

Краткое содержание

Вы познакомитесь с измерением токов и напряжений синусоидальных сигналов и выполните преобразования единиц в следующей процедуре.

ПРОЦЕДУРА

1. Включите осциллограф и визуализируйте горизонтальную линию.

2. Включите генератор функций, выберите формирование синусоидального сигнала и установите поворотный селектор на 1 кГц. Подключите выход генератора ко входу осциллографа. Визуализируйте сигнал. Отрегулируйте осциллограф для получения стабильной индикации. Отрегулируйте выход генератора до получения значения сигнала 4 V

3. Вычислите эффективное значение (rms) этого синусоидального сигнала. Измерьте эффективное значение при помощи цифрового мультиметра. Сравните Ваши расчетное и измеренное значения.

Vэфф(расчетное) = ______ В

Vэфф (измеренное) = ______ В

4. Измерьте период синусоидального сигнала при помощи осциллографа. Т = _______ секунд

5. Рассчитайте частоту синусоидального сигнала при помощи измеренного Вами периода. Сравните Ваши расчетное и измеренное значения и установку регулятора на генераторе функций.

f = ______ Гц

6. Повторите шаги 2—5 с синусоидальным сигналом 500 мВ на частоте 60 Гц и прямоугольным сигналом 15кГц, 3В Какое значение имеет эффективное напряжение в связи с синусоидальным сигналом?

7. Подключите выход генератора функции к резистору 2, 7 кОм. Отрегулируйте генератор для формирования 9 V с частотой 120 Гц. Проконтролируйте напряжение при помощи осциллографа.

8. Рассчитайте ток через резистор, используя закон Ома.

I = ______ мА

9. Измерьте ток через резистор, используя цифровой мультиметр. Сравните Ваши расчетное и измеренное значения. I = ______ мА

10. Отключите резистор от генератора. Включите один из лабораторных источников постоянного напряжения. Отрегулируйте его на формирование выходного напряжения+ 6 В. Измерьте это выходное напряжение при помощи цифрового мультиметра и осциллографа. Повторите действия для выходного постоянного напряжения-12 В.

11. Подключите выход генератора функций последовательно с источником постоянного напряжения и визуализируйте результирующий сигнал. Установите выходное напряжение источника питания на + 5 В и отрегулируйте генератор функций на 400 Гц и 2 Vpp. Начертите диаграмму комбинированного сигнала.

12. Приведите список источников возможных погрешностей, которые могут быть причиной раз

личий между расчетными и измеренными значениями в предыдущих шагах.

ОБЗОРНЫЕ ВОПРОСЫ

1. Чему равно напряжение размаха 85 мВ в переводе на эффективное значение?

а) 6 мВ,

б) ЗОмВ,

в) 170 мВ,

г) 240 мВ.

2. Чему равно эффективное значение 16 мкА в пересчете на значение размаха?

а) 5, 7 мкА,

б) 11, 3 мкА,

в) 7, 07 мкА,

г) 45, 23 мкА.

3. Мультиметр дает индикацию:

а) значений амплитуды,

б) "значений размаха (двойной амплитуды),

в) эффективных значений,

г) средних значений.

4. Осциллограф может измерять постоянный ток:

а) высказывание истинно,

б) высказывание ложно.

5. Какое устройство дает более точные измерения?

а) осциллограф,

б) мультиметр.

3. Катушки индуктивности и переменный ток

ЭКСПЕРИМЕНТ 18 Катушки индуктивности и переменный ток

Цели

После проведения данного эксперимента Вы сможете объяснить эффект индуктивности в схеме переменного тока и рассчитать значения индуктивности и реактивного сопротивления по результатам измерении.

Необходимые принадлежности

* Осциллограф

* Цифровой мультиметр

* Катушка индуктивности 100 мГн

* Генератор функций / сигнал-генератор

ВВОДНАЯ ЧАСТЬ

Когда катушка индуктивности включается в цепь переменного тока, непрерывные изменения напряжения приводят к изменениям тока, которые в свою очередь генерируют то возрастающее, то убывающее магнитное поле. Это магнитное поле индуцирует встречное напряжение в катушке индуктивности, и оно противодействует изменениям тока. В результате имеет место непрерывное противодействие протеканию тока. Это противодействие называется индуктивным сопротивлением (XL).

формула индуктивного сопротивления

Индуктивное сопротивление катушки или дросселя зависит от частоты приложенного переменного напряжения (f) и значения индуктивности (L) в генри. Для вычисления индуктивного сопротивления, выражаемого в омах, служит простая формула:

2-31.jpg

Индуктивное сопротивление прямо пропорционально частоте и индуктивности. Если известно индуктивное сопротивление, путем преобразования основной формулы может быть найдена или частота, или индуктивность, как показано ниже:

2-32.jpg

формула полного сопротивления

Вспомните, что чистых индуктивностей нет, поскольку катушки индуктивности сделаны с использованием проволоки, которая имеет сопротивление. Полное сопротивление, оказываемое катушкой индуктивности переменному току, представляет собой, следовательно, комбинацию индуктивного сопротивления и обычного (активного) сопротивления. Это комбинированное противодействие известно как полное сопротивление (или импеданс). Полное сопротивление может быть вычислено при помощи формулы:

2-33.jpg

Вспомните, что индуктивность приводит к запаздыванию тока относительно напряжения. По

этой причине напряжения на катушке индуктивности и на резисторе сдвинуты по фазе на 90 градусов друг относительно друга. Это как раз и не позволяет нам просто сложить вместе индуктивное сопротивление и активное, сопротивление, чтобы получить величину импеданса.

Если известно полное сопротивление, а индуктивное сопротивление или активное сопротивление неизвестно, предыдущая формула может быть преобразована для их нахождения следующим образом:

2-34.jpg

Если известно полное сопротивление индуктивной схемы, Вы можете рассчитать ток в схеме, если Вы знаете приложенное напряжение. Это осуществляется применением закона Ома:

I=V/Z

Естественно, эта формула также может быть преобразована для вычисления двух других переменных, если это потребуется:

z=v/I V=IZ

Краткое содержание

В данном эксперименте Вы познакомитесь с эффектом индуктивности в схеме переменного тока.

ПРОЦЕДУРА

1. Измерьте сопротивление обмотки катушки индуктивности при помощи мультиметра.

Сопротивление постоянному току =____ Ом

2. Присоедините катушку индуктивности 100 мГн к сигнал-генератору, формирующему напряжение размаха 4 Vpp с частотой 400 Гц.

3. Теперь измерьте фактическое значение тока первичной обмотки. Вспомните, что амперметр должен включаться последовательно со схемой для выполнения измерения. Подключите мультиметр для измерения переменного тока. Убедитесь, что генератор продолжает формировать 4 Vpp.

Is= _____ МА

4. Используя информацию, которую Вы собрали

в предыдущих шагах, и формулы, приведенные в вводной части, рассчитайте полное сопротивление схемы.

Z = _____ Ом

5. Используя информацию, которую Вы собрали в предыдущих шагах, и формулы, приведенные в вводной части, рассчитайте индуктивность (L) катушки. L = _____ мГн

ОБЗОРНЫЕ ВОПРОСЫ

1. При увеличении частоты переменного тока, пропускаемого через катушку индуктивности, индуктивное сопротивление:

а) возрастает,

б) уменьшается,

в) остается без изменения.

2. При уменьшении величины индуктивности в схеме индуктивное сопротивление:

а) возрастает,

б) уменьшается,

в) остается без изменения.

3. При уменьшении сопротивления катушки индуктивности ее полное сопротивление:

а) возрастает,

б) уменьшается,

в) остается без изменения.

4. Единицей измерения для величины индуктивного сопротивления является:

а) генри,

б) фарада,

в) ватт,

г) ом.

5. Катушка индуктивности имеет (активное) сопротивление 120 Ом. Когда к катушке прикладывается переменное напряжение 24 В с частотой 60Гц, протекает ток 111 мА. Значение индуктивности составляет приблизительно:

а) 0, 12Гн,

б) 0, 35 Гн,

в) 0, 48 Гн,

г) 1, 2 Гн.

Ф.1 Формула индуктивного сопротивления

Изображение: 

Ф.2 Определение частоты или индуктивности

Изображение: 

Ф.3 Формула полного сопротивления

Изображение: 

Ф.4 Определение индуктивного или активного сопротивления

Изображение: 

4. Работа трансформатора

ЭКСПЕРИМЕНТ 19 Работа трансформатора

Цели

После проведения данного эксперимента Вы сможете объяснить работу трансформатора в схеме переменного тока и рассчитать значения коэффициента трансформации.

Необходимые принадлежности

* Двухканальный осциллограф

* Цифровой мультиметр

* Силовой трансформатор

* Генератор, функций / сигнал-генератор

* Элементы:

резистор 100 Ом, резистор 1 кОм.

ВВОДНАЯ ЧАСТЬ

Трансформатор — это электронный компонент с одной или несколькими проволочными обмотками обычно на стальном сердечнике или на каркасе. Трансформатор имеет назначение передавать электрическую энергию из одной схемы в другую посредством магнитного поля. Трансформаторы используются для повышения или понижения напряжения, а также для согласования полного сопротивления.

Схема трансформатора

На рисунке 19-1 представлена типичная принципиальная схема трансформатора. Когда переменное напряжение полается на левую на схеме (первичную) обмотку, в ней протекает ток. Ток создает переменное магнитное поле, которое пересекает витки правой на схеме (вторичной) обмотки. Хотя физический контакт между двумя этими обмотками отсутствует, магнитное поле индуцирует (наводит) напряжение во вторичной обмотке. Это напряжение может использоваться затем для питания другой схемы или цепи.

2-41.jpg

Рис. 19-1.

Величина напряжения, индуцируемого во вторичной обмотке, зависит от количества витков в каждой обмотке. Отношение количества витков во вторичной обмотке (Ns) к количеству витков в первичной обмотке (Np) называется коэффициентом трансформации и выражается математически следующим образом:

Коэффициент трансформации = N = Ns/Np

Определение напряжения

Вы можете определить величину напряжения, создаваемого во вторичной обмотке (Vs), простым

умножением напряжения, подводимого к первичной обмотке (Vp), на коэффициент трансформации. Эта формула такова:

Vs=Vp(Ns/Np)

Если коэффициент трансформации больше 1, напряжение на вторичной обмотке будет больше, чем напряжение на первичной обмотке: повышающий трансформатор. Если коэффициент трансформации меньше 1, напряжение на вторичной обмотке будет меньше, чем напряжение на первичной обмотке: понижающий трансформатор. Коэффициент трансформации и напряжения на обмотках связаны следующим образом:

N= Ns/Np =Vs/Vp

Определение токов. в первичной и вторичной обмотках

Поскольку подводимая мощность трансформатора почти одинаковое выходной мощностью, коэффициент трансформации может быть использован также для определения токов первичной и вторичной обмоток трансформатора (Iр и Is). Здесь имеет место обратная зависимость, как показывает следующее выражение:

Ip/Is=Ns/Np,

Соединения трансформаторной обмотки могут бытъ такими, что выходное напряжение будет в фазе с входным напряжением или различаться по фазе на 180° с ним. Фаза может быть; изменена простым обращением соединений с одной обмоткой. Если соединения трансформатора выполнены

таким образом, чтобы формировать сдвиг по фазе на 180°, говорят, что напряжение на вторичной обмотке этого трансформатора инвертировано.

Некоторые трансформаторы имеют отводы от обмотки, чтобы обеспечить несколько выходных напряжении. Обычным соединением является отвод от средней точки (СТ) вторичной обмотки, который обеспечивает формирование двух напряжений, равных половине полного напряжения на вторичной обмотке (см. рис. 19-1).

Краткое содержание

В данном эксперименте Вы познакомитесь с работой трансформатора. Вы научитесь также измерять напряжения трансформатора и рассчитывать коэффициент трансформации.

ПРОЦЕДУРА

1. Подключите первичную обмотку (черные выводы) трансформатора к выходу сигнал-генератора. Подайте синусоидальное напряжение 100 Гц. Установите величину напряжения на первичной обмотке 10Vpp. Контролируйте сигнал на экране осциллографа.

2. Обратите внимание на три других вывода трансформатора. Два из них имеют один и тот же цвет, обычно желтый или красный. Это выводы от вторичной обмотки. Третий провод имеет другой цвет, обычно синий, и представляет собой отвод от средней точки обмотки. ПРИМЕЧАНИЕ: Концы проводов, по-видимому, неизолированы, так что будьте осторожны, чтобы концы не касались друг друга, в противном случае может иметь место короткое замыкание.

Если выводы вторичной обмотки изолированы, снимите приблизительно 1/2 дюйма изоляции с каждого конца.

3. Включите сигнал-генератор. Используя Ваш мультиметр, измерьте переменное напряжение, создаваемое на двух желтых или красных выводах вторичной обмотки. Не прикасайтесь к выводам при выполнении этого подключения. Запишите полученное напряжение;

Напряжение на вторичной

обмотке (Vs)= ________ В

4. При выполнении Ваших измерений измерьте напряжение между синим выводом и каждым из желтых выводов. Запишите эти значения:

Напряжение между синим выводом

и первым желтым выводом = __________ В

Напряжение между синим выводом и,вторым желтым выводом ==_____ Б

5. Используя полученные Вами в шагах 1 и 3 данные, рассчитайте коэффициент трансформации данного трансформатора,а также токи в первичной и вторичной обмотках. Предполагайте, что нагрузка во вторичной обмотке составляет 100 Ом. Коэффициент трансформации =______

Ip=_____

Is=———————

Какой это трансформатор, повышающий или понижающий?

6. Подключите к выводам вторичной обмотки резистор 1000м. Снова измерьте напряжение на вторичной обмотке. Vs=______В

7. Подключите мультиметр последовательно с вторичной обмоткой. Измерьте ток. 1s = _______ мА

8. Рассчитайте ток в первичной обмотке. 1р = ___ мА

9. Измерьте ток в первичной обмотке. Ip= _______ мА

10.Покажите на экране двухканального осциллографа напряжение на первичной обмотке и напряжение на вторичной обмотке. Какова фазовая зависимость между напряжением на первичной обмотке и напряжением на вторичной обмотке?

11 Обратите (реверсируйте) соединения вторичной обмотки. Какова теперь фазовая зависимость между напряжением на первичной обмотке и напряжением на вторичной обмотке?

12.Отключите резистор 1000м. Реверсируйте первичную и вторичную обмотки. Используйте желтые или красные выводы в качестве выводов первичной обмотки и подключите их к сигнал-генератору. Подключите резистор 1 кОм к вторичной обмотке (теперь это черные выводы).

13.Установите сигнал-генератор на формирование напряжения с размахом 1'2 В на первичной обмотке. Измерьте напряжение на вторичной обмотке:

Vs=_______В

Какой это трансформатор, повышающий или понижающий?

14.Рассчитайте коэффициент трансформации, а также токи в первичной и вторичной обмотках. N =______

Ip=______

Is=_______

15.Подключите мультиметр последовательно с нагрузкой 1 кОм. Измерьте ток во вторичной обмотке.

Is=_______ мА

16.Измерьте ток в первичной обмотке. = _______ мА

ОБЗОРНЫЕ ВОПРОСЫ

1. Трансформатор имеет 1600 витков во вторичной и 500 витков в первичной обмотке. Какого типа этот трансформатор?

а) повышающий,

б) понижающий.

2. Если к первичной обмотке трансформатора, описанного в шаге 6 процедуры, прикладывается напряжение 120 В, каким будет напряжение на вторичной обмотке?

а) 37,5 В,

б) 120 В,

в)384 В,

г) 462 В.

3. В данном эксперименте, если к вторичной обмотке трансформатора в шаге 6 прикладывается напряжение 120 В, какое напряжение Вы измерите в таком случае на первичной обмотке?

а) 14 В.

б) 120 В,

в) 134 В,

г) 1028 В.

4. Переменное напряжение 240В прикладывается к первичной обмотке трансформатора. Напряжение на вторичной обмотке составляет 48 В. Тогда коэффициент трансформации равен:

а) 0,12;

6)0,2;

в) 1,8;

г) 5.

5. Если трансформатор из вопроса 4 имеет отвод от средней точки, каково напряжение на одной половине вторичной обмотки?

а) 24 В,

б) 48 В,

в) 240 В,

г) 600 В.

Рис. 19-1. Схема трансформатора

5. Конденсаторы и переменный ток

ЭКСПЕРИМЕНТ 20 Конденсаторы и переменный ток

Цели

После проведения данного эксперимента Вы сможете рассчитывать и измерять токи и напряжения в последовательных и параллельных емкостных цепях.

Необходимые принадлежности

* Осциллограф

* Цифровой мультиметр

* Макетная панель

* Генератор функций

* Источник постоянного напряжения

* Элементы:

один конденсатор 0, 01 мкф, один резистор, 10 кОм.

ВВОДНАЯ ЧАСТЬ

Когда конденсатор используется в цепи переменного тока, он оказывает определенное противодействие току, которое называется емкостным сопротивлением. Емкостное сопротивление, подобно индуктивному сопротивлению, противодействует протеканию тока, но только в цепи переменного тока. Емкостное сопротивление измеряется в омах и зависит от частоты переменного тока и от емкости конденсатора. Емкостное сопротивление обратно пропорционально частоте (f) и емкости (С). Это

емкостное сопротивление может быть рассчитано при помощи формулы:

2-51.jpg

Обычно конденсаторы комбинируются с резисторами и другими компонентами в различные последовательные и параллельные цепи для создания фильтров, фазовращателей, цепей связи и прочих схем. Одной из наиболее распространенных конфигураций является последовательная резистивно-емкостная цепь, показанная на рисунке 20-1.

2-52.jpg

Рис. 20-1.

Исходное напряжение синусоидальной формы (Vs)прикладывается к резистору и конденсатору, включенным последовательно. Полное противодействие протеканию тока в этой цепи является комбинацией емкостного сопротивления и обычного (активного) сопротивления. Резисторы и конденсаторы функционируют различным образом, и поскольку конденсатор порождает сдвиг фаз в цепи на 90 градусов, нельзя непосредственно складывать сопротивление резистора и емкостное сопротивление, чтобы подсчитать общее сопротивление протеканию тока, которое называется полным сопротивлением или импедансом (Z). Для получения полного сопротивления используется приведенная ниже формула:

2-53.jpg

Теорема Пифагора и полное сопротивление

Это известная теорема Пифагора, используемая для решения прямоугольных треугольников. Сопротивление, емкостное сопротивление и полное сопротивление могут быть представлены сторонами прямоугольного треугольника, как показано на рисунке 20-2А.

2-54.jpg

Рис. 20-2.

В последовательной цепи один и тот же ток (I) протекает через все компоненты. Это означает,

что ток через конденсатор имеет ту же величину, что и ток через резистор, причем эта величина равна величине тока, потребляемого от источника напряжения. Поскольку ток общий для всех компонентов, мы можем использовать закон Ома и умножить величину тока на величину сопротивления, емкостного сопротивления и полного сопротивления, чтобы вычислить напряжения в цепи.

IR=Vr

IXc= Vc

IZ = Vs

Следовательно, мы можем снова нарисовать треугольник, используя напряжения, полученные нами указанным выше образом (см. рис. 20-2Б). Теперь треугольник представлен напряжением на сопротивлении (Vr), напряжением на конденсаторе (Vc) и напряжением источника питания (Vs). Закон Кирхгофа говорит о том, что сумма падении напряжения на компонентах последовательной цепи равна напряжению источника питания. Это означает, что в том случае, если мы сложим напряжение на резисторе и напряжение на конденсаторе, мы должны получить в результате напряжение источника питания. Однако, как можно видеть на рисунке 20-2Б, напряжения не совпадают по фазе друг с другом. По этой причине напряжения не могут складываться друг с другом непосредственно, и мы должны использовать теорему Пифагора для решения прямоугольного треугольника. Подставляйте поэтому значения из рисунка 20-2Б в формулу

в соответствии с теоремой Пифагора и находите напряжение источника питания следующим образом:

2-55.jpg

Итак, чтобы найти напряжение источника питания, просто измерьте напряжение на резисторе и напряжение на конденсаторе, возведите каждое значение в квадрат и сложите полученные значения друг с другом. После этого для получения значения напряжения источника питания извлеките корень квадратный из полученной суммы.

Не забывайте, что при известном напряжении источника питания и одном из других напряжений Вы можете вычислить неизвестное напряжение при помощи простого преобразования приведенной выше формулы. Тогда можно получить еще два варианта указанной формулы:

2-56.jpg

Краткое содержание

В данном эксперименте Вы убедитесь, что конденсатор оказывает противодействие переменному току. Затем Вы соберете последовательную резистивно-емкостную схему, аналогичную приведенной на рисунке 20-2, подсчитаете, а потом измерите все токи и напряжения для проверки существа сказанного ранее.

ПРОЦЕДУРА 1: измерение сдвига фаз

Чтобы завершить данный эксперимент. Вам потребуется измерить сдвиг фаз между двумя

синусоидальными сигналами. Для этого выведите два сигнала на двухканальный осциллограф. Один сигнал, верхняя осциллограмма, используйте в качестве опорного и подключите на вход канала 1 или А. Другой сигнал подведите к каналу 2 или В. После этого проделайте следующее:

1. Отрегулируйте скорость горизонтальной развертки, чтобы можно было видеть один период синусоидального сигнала. Установите непрерывную развертку в состояние калибровки CAL.

2. Измерьте период (t) синусоидальных сигналов, как описано в эксперименте 16.

3. Подсчитайте количество делений между двумя смежными или тремя последовательными положительными пиками синусоидальных сигналов.

4. Рассчитайте смещение во времени (t,) умножением количества делений на настройку скорости горизонтальной развертки.

5. Вычислите сдвиг фаз в градусах при помощи следующей формулы:

360 t1/t градусов

Пример

Период синусоидального сигнала равен 250 мкс. Промежуток между двумя смежными положительными пиками двух синусоидальных сигналов составляет 2,6 деления. Скорость развертки составляет 10 мкс/дел. Смещение во времени равно:

t1= 2,6 х 10 = 26 микросекунд

Сдвиг фаз равен:

360(26)/250 = 37,44 градуса

Процедура 2: резистивно-емкостная схема

1. Соберите резистивно-емкостную схему, показанную на рисунке 20-3.

2-57.jpg

Рис. 20-3.

2. Отрегулируйте частоту генератора на 600 Гц. Установите величину размаха напряжения на выходе генератора 10В.

3. Проделайте следующие измерения как при помощи осциллографа, так и при использовании мультиметра:

Осциллограф Мулътиметр Vr————В Vr=____В Vc—————В Vc=____В Объясните, почему они различны, но эквиваленты. Нарисуйте прямоугольный треугольник напряжений.

4. Выполните следующие вычисления для схемы на рисунке 20-3.

I=_____мА

Z =_____ Ом

5. Выполните измерение сдвига фаз между входным напряжением и выходным напряжением. _______ градусов

Опережает выходное напряжение или запаздывает по сравнению с выходным напряжением. Почему?

6. Измените входную частоту на 1000 Гц. Убедитесь, что величина размаха напряжения генератора все еще составляет 10 В. Повторите шаги 3, 4 и 5. Сделайте вывод о том, как полное сопротивление и ток варьируются в зависимости от частоты, путем сравнения с Вашими значениями, полученными в шаге 4.

7. Поменяйте местами позиции резистора и конденсатора. Повторите шаг 5. Опережает выходное напряжение или запаздывает по сравнению с выходным напряжением? ______ градусов

8. Найдите частоту, при которой R = Хc. в данной схеме. Сначала частоту вычислите. Затем, используя осциллограф и генератор звуковой частоты, выполните измерения, чтобы проверить Ваши расчеты.

f=_____Гц

Объясните, какую процедуру Вы использовали и почему.

9. Соберите параллельную резистивно-емкостную схему, показанную на рисунке 20-4. Вычислите ее общее активное сопротивление (Rt), общую емкость (Сt) и полное сопротивление (импеданс). Нарисуйте треугольник токов.

Rt = _____ Ом

Сt = _____ мкФ

Z =_____ Ом

2-58.jpg

Рисунок 20-4.

10.Приложите к схеме напряжение с размахом 10 В и с частотой 200 Гц. Измерьте полный ток в схеме, используя мультиметр. Вычислите импеданс схемы (полное сопротивление). Z=_____Ом

11.Каков сдвиг фаз между полным током и приложенным напряжением? ________градусов

12.Во всех вышеприведенных шагах объясните различия между измеренными и расчетными значениями.

ОБЗОРНЫЕ ВОПРОСЫ

1. При повышении частоты сигнала, приложенного к последовательной резистивно-емкостной схеме, напряжение на конденсаторе соответственно:

а) увеличивается,

б) уменьшается,

в) остается тем же,

г) падает до нуля.

2. При уменьшении емкости конденсатора в последовательной резистивно-емкостной схеме ток схемы соответственно:

а) увеличивается,

б) уменьшается,

в) остается тем же,

г) падает до нуля.

3. Напряжение на резисторе в последовательной резистивно-емкостной схеме имеет значение 3 В. Напряжение на конденсаторе имеет значение 4 В. Напряжение источника питания равно тогда:

а) 1 В,

б) 3,5 В,

в) 5 В,

г) 7 В.

4. Напряжение источника питания в последовательной резистивно-емкостной схеме имеет значение 6 В. Тогда ток в схеме имеет величину:

а) 0.2 Ом,

б) 2 Ом,

в) 20 Ом,

г) 200 Ом.

5. Напряжения на компонентах в последовательной резистивно-емкостной схеме имеют значения: Vr = 5 В и Vc = 4 В. Резистор имеет сопротивление 1,5 кОм. Частота равна 2 кГц. Какова емкость конденсатора?

а) 0,018 мкФ,

б) 0,047 мкФ,

в) 0,066 мкФ,

г) 0,075 мкФ.

Рис. 20-1. Последовательная резистивно-емкостная цепь

Изображение: 

Рис. 20-2. Сопротивление, емкостное сопротивление и полное сопротивление могут быть представлены сторонами прямоугольного треуго

Изображение: 

Рис. 20-3. Простая резистивно-емкостная схема

Изображение: 

Рисунок 20-4. Параллельная резистивно-емкостная схема

Изображение: 

Ф. 1 Емкостное сопротивление обратно пропорционально частоте (f) и емкости (С)

Ф. 2. К определению полного сопротивления или импеданса (Z)

Изображение: 

Ф. 3. Нахождение напряжения источника питания

Изображение: 

Ф. 4. Нахождение напряжения при помощи простого преобразования

Изображение: 

6. Резистивно-индуктивно-емкостные схемы

ЭКСПЕРИМЕНТ 21 Резистивно-индуктивно-емкостные схемы

Цели

После проведения данного эксперимента Вы сможете рассчитывать и измерять все токи, напряжения и полные сопротивления в последовательных LCR-схемах (резистивно-индуктивно-емкостных схемах).

Необходимые принадлежности

* Осциллограф

* Цифровой мультиметр

* Макетная панель

* Генератор функции

* Источник постоянного напряжения

* Элементы:

одна катушка индуктивности 100 мГн, один конденсатор 0,1 мкФ, один резистор 4700м.

ВВОДНАЯ ЧАСТЬ

Резистивно-индуктивно-емкостная схема (называемая также LCR-схемой или RLC-схемои) скомбинирована из сопротивления, индуктивности и емкости. Всякий раз, когда катушки и конденсаторы комбинируются в схеме переменного тока,. их реактивные сопротивления гасят друг друга.

Вспомните: катушка индуктивности приводит к запаздыванию тока по отношению к приложенному напряжению на 90 градусов; тогда как конденсатор приводит к тому, что ток опережает напряжение на 90 градусов.

Как результат этого катушка индуктивности аннулирует действие конденсатора, так как их действия противоположны. Аналогично в последовательной схеме, состоящей из индуктивности и емкости, компонент с большей величиной реактивного сопротивления подавляет меньшее реактивное сопротивление.

2-61.jpg

Рис. 21-1.

Пример. В схеме на рисунке 21-1 катушка индуктивности имеет индуктивное сопротивление 100 Ом, а конденсатор имеет емкостное сопротивление 750м, поэтому емкостное сопротивление аннулируется полностью, и поведение схемы будет таким, как будто она обладает общим индуктивным сопротивлением 100 — 75 = 25 Ом. Это

комбинированное общее (эффективное) реактивное сопротивление и используется при расчете полного сопротивления схемы. Поведение схемы имеет индуктивный характер, поскольку XL, больше, чем Хc.

Определение полного сопротивления

Для получения полного сопротивления последовательной резистивно-индуктивно-емкостной схемы используется приведенная ниже формула:

2-62.jpg

Следовательно, имеем:

2-63.jpg

После того, как Вы узнаете полное сопротивление схемы, можно, естественно, рассчитать ток в схеме при помощи закона Ома, в предположении, что известно напряжение источника питания (Vs). Это выполняется при использовании; следующего выражения с подстановкой найденных выше значений:

I=V/Z

I = 100/55,9 = 1,79 А

После этого, зная, что ток в каждом компоненте один и тот же, Вы можете определить падения напряжения на каждом, компоненте. Это снова осуществляется при помощи закона Ома и следующих формул:

Vс = IR = 1,79(50) = 89,5 В

Vс = IXL = 1,79(100) = 179 В

VL= IXc =1,79(75) = 134,25 В

Как и в любой последовательной схеме, значения напряжений распределяются пропорционально значениям активного сопротивления и реактивных сопротивлений: на реактивных сопротивлениях большей величины падают напряжения большей величины. Не забывайте только, что вследствие сдвига фазы, обусловленного типом схемы. Вы не можете попросту складывать непосредственно падения напряжений на компонентах, чтобы получить общее напряжение источника питания. Необходимо при этом выполнять сложение векторных величин. На рисунке 21-2 показано, как это делается при использовании данных предыдущего примера.

2-64.jpg

Рис. 21-2.

Краткое содержание

В данном эксперименте Вы соберете последовательную резистивно-индуктивно-емкостную схему и сделаете все вычисления, необходимые для расчета схемы. После этого Вы выполните измерения для проверки Ваших расчетов.

ПРОЦЕДУРА

1.Измерьте активное сопротивление катушки индуктивности 100 мГн при помощи вашего мультиметра.

RL =_____Ом

2. Соберите схему, показанную на рисунке 21-3. Отрегулируйте частоту генератора на 1 кГц и установите величину размаха напряжения на выходе генератора 4 В.

2-65.jpg

Рис. 21-3.

3. Измерьте Vr, Vl, Vc и Q и запишите полученные значения в таблицу. Напомним, что 9 означает

сдвиг фазы тока или V по отношению к приложенному напряжению Vs. 4. Используя табличные данные, вычислите I и Z и запишите их в таблицу. Определите характер схемы (индуктивная или емкостная схема) и отметьте в таблице.

2-66.jpg

5. Увеличьте частоту генератора до 2 кГц. Сохраняйте величину размаха генератора равной 4 В.

6. Повторите шаги 3 и 4 при этой более высокой частоте. Запишите Ваши данные в таблицу.

7. Нарисуйте эквивалентные схемы для частоты I кГц и частоты 2 кГц и укажите эквивалентные значения реактивных компонентов в мкФ или в мкГн, как это необходимо.

8. Рассчитайте фактическую мощность (Р), рассеиваемую схемой при каждой частоте, и запишите эти значения в таблицу. Назовите компоненты, которые рассеивают мощность, и сделайте пояснения.

ОБЗОРНЫЕ ВОПРОСЫ

I. Резистивно-индуктивно-емкостная схема имеет следующие компоненты: XL = 30 Ом, Хc = 42 Ом, R = 150м. Схема в общем является:

а) индуктивной, XL = 12 Ом,

б) индуктивной, ХL= 72 Ом,

в) емкостной, Хc= 72 Ом,

г) емкостной, Хc = 12 Ом.

2. В схеме, описанной в вопросе 1, наименьшее падение напряжения на:

а) резисторе,

б) катушке индуктивности,

в) конденсаторе.

3. Каково полное сопротивление (импеданс) схемы, описанной в вопросе I?

а) 15 Ом,

б) 19,2 Ом,

в) 72 Ом,

г) 87,5 Ом.

4. Последовательная резистивно-индуктивно-емкостная схема имеет индуктивный характер, если:

а) Хc > XL,

б) Хc > VL

в) VL > Vc, r)XL<Xc.

5. Конденсатор 0,02 мкФ и конденсатор 0,047 мкФ соединены параллельно. Общая эквивалентная емкость равна:

а) 0,0094 мкФ, 6)0,014 мкФ,

в) 0,0335 мкФ,

г) 0,067 мкФ.

Рис. 21-1. Принципиальная схема для определения параметров резистивно-индуктивно-емкостной схемы

Рис. 21-2. Сложение векторных величин

Изображение: 

Рис. 21-3. Принципиальная схема для определения параметров резистивно-индуктивно-емкостной схемы

Изображение: 

Таблица 1. К измерению параметров резистивно-индуктивно-емкостной схемы

Изображение: 

Ф. 1. Полное сопротивление последовательной резистивно-индуктивно-емкостной схемы

Изображение: 

Ф. 2. Пример расчета полного сопротивления последовательной резистивно-индуктивно-емкостной схемы

Изображение: 

7. Резонанс

ЭКСПЕРИМЕНТ 22 Резонанс

Цели

После проведения данного эксперимента Вы сможете рассчитывать резонансную частоту резистивно-индуктивно-емкостной схемы и выполнять измерения в схеме для определения существования условия резонанса в схеме.

Необходимые принадлежности

* Осциллограф

* Цифровой мультиметр

* Макетная панель

* Генератор функций

* Элементы:

одна катушка индуктивности 10 мГн, один конденсатор 0, 22 мкФ, один конденсатор 0, 47 мкФ, один резистор 100 Ом.

ВВОДНАЯ ЧАСТЬ

Резонанс — это такое состояние резистивно-индуктивно-емкостной схемы, когда индуктивное сопротивление и емкостное сопротивление одинаковы. Поскольку эти реактивные сопротивления одинаковы, они полностью компенсируют друг друга. • При резонансе имеют место многие специальные эффекты. Например, в силу того, что реактивные

сопротивления полностью гасят друг друга, схема проявляет себя как полностью резистивная.

Вы сможете обнаружить резонансные схемы почти во всех типах электронного оборудования. Они широко используются для выполнения различных задач настройки и фильтрации в электронном оборудовании. В данном эксперименте Вы рассмотрите эффект резонанса как в параллельных, так и в последовательных схемах.

Последовательный резонансный контур

Последовательный резонансный контур представлен на рисунке 22-1. Вспомните, что при наличии резонанса в схеме индуктивное сопротивление и емкостное сопротивление полностью компенсируют друг друга, и сопротивление току оказывает одно лишь активное сопротивление схемы. В такой схеме полное сопротивление попросту равно значению R плюс сопротивление постоянному току катушки. Главной характеристикой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.

Поскольку при резонансе в последовательном резонансном контуре полное сопротивление минимально, ток в контуре возрастает до пиковой величины. Эта большая величина тока при ее умножении на индуктивное сопротивление и на емкостное сопротивление дает очень высокие падения напряжения на катушке индуктивности и на конденсаторе. В действительности падения напряжения на катушке индуктивности и на конденсаторе

в условиях резонанса часто значительно превышают напряжение питания. Эти необычайно высокие при резонансе напряжения называются скачками напряжения при резонансе или резонансными повышениями напряжения.

2-71.jpg

Рис. 22-1. Параллельный резонансный контур

Параллельный резонансный контур представлен на рисунке 22-2. Конденсатор и катушка индуктивности соединяются параллельно друг с другом, и вся комбинация иногда соединяется последовательно с резистором. Поскольку при резонансе индуктивное сопротивление и емкостное сопротивление полностью компенсируют друг друга, схема обнаруживает очень значительное активное сопротивление. В такой схеме полное сопротивление параллельного индуктивно-емкостного контура возрастает до многих тысяч Ом при резонансе. При частотах, превышающих или лежащих ниже резонансной частоты, полное сопротивление уменьшается.

2-72.jpg

Рис. 22-2.

Если Вы измерите линейный ток в резисторе, соединенном последовательно с параллельным резонансным контуром, Вы обнаружите, что ток достигает минимума в условиях резонанса. Это происходит вследствие того, что при резонансе полное сопротивление максимально,и,следовательно, это приводит к формированию минимальной величины тока через контур. При изменении частоты в любую сторону от резонансной частоты полное сопротивление контура уменьшается, и линейный ток возрастает.

Полное сопротивление параллельного резонансного контура вычисляется на основании следующей формулы:

Z=L/CR

В этой формуле: R — сопротивление катушки индуктивности L. Например, если L = 2 мГн, С = 0,05 мкФ и R = 5 Ом, полное сопротивлений Z равно: '

Z = 2 х 10^-3 / (0,05 х 10 ^-6)(5)

Z = 8000 Ом

Вы можете также использовать такую формулу:

Z = Rw(Q^2 + 1)

где: Rw— это сопротивление обмотки катушки индуктивности и Q = Xl/Rw.

Краткое содержание

Как было указано ранее, в данном эксперименте Вы соберете последовательный резонансный контур и параллельный резонансный контур, а также познакомитесь с некоторыми из упомянутых эффектов. Вы практически рассчитаете резонансную частоту (fг ) при заданных значениях индуктивности и емкости. Это осуществляется при помощи следующей формулы:

fr = 1 / 2*3.14(LC)^0.5

ПРОЦЕДУРА

1. Обратитесь к рисунку 22-3. Рассчитайте резонансную частоту при заданных значениях, показанных на рисунке.

2-73.jpg

Рис. 22-3.

fr=______Гц

2. Прежде чем собирать схему, измерьте сопротивление катушки индуктивности. Это сопротивление оказывает влияние на полное сопротивление схемы.

Активное сопротивление катушки индуктивности = ____ Ом

ПРИМЕЧАНИЕ: Данные, полученные в шагах 3—11, должны заноситься в таблицу на рисунке 22-4, как указано ниже.

3. Вычислите полное сопротивление схемы при резонансе. Запишите Ваш результат.

2-74.jpg

Рис. 22-4.

4. Далее вычислите полный ток схемы. Запишите его величину.

5. Зная частоту входного сигнала, определите значения индуктивного и емкостного сопротивления. Используя резонансную частоту, которую Вы рассчитали в шаге 1, вычислите определите значения индуктивного и емкостного сопротивления при резонансе. Запишите Ваши результаты.

6. Теперь вычислите падения напряжения на каждом из компонентов схемы на базе значений, полученных в шаге 5. Запишите Ваши результаты.

7. Соберите схему, показанную на рисунке 22-3. При помощи регулятора амплитуды на генераторе функций сформируйте значение размаха напряжения 4 В.

8. При помощи осциллографа осуществляйте мониторинг (текущий контроль) напряжения на резисторе 1000м. Во время мониторинга напряжения добейтесь максимального значения напряжения настройкой регулятора частоты на генераторе функций. Выполняйте Ваши настройки медленно и позволяйте показаниям мультиметра установиться, прежде чем переходить к каждой новой настройке. ПРИМЕЧАНИЕ: настройка на максимальное значение — процесс очень медленный и утомительный, потратьте однако Ваше время, чтобы получить наиболее точные результаты. Продолжайте настройку до тех пор, пока Вы не получите это максимальное напряжение. В результате Вы получили настройку генератора функций на резонансную частоту схемы. Объясните, почему данная процедура используется для нахождения fr .

9. Выполните повторный контроль, чтобы убедиться, что размах выходного напряжения генератора функций составляет 4 В. Если необходимо, снова отрегулируйте выходное напряжение на это значение и повторите при этом шаг 8.

10.После того, как схема настроена в режим резонанса, измерьте падения напряжения на каждом из компонентов. Запишите их значения.

11.Сделайте разрыв в схеме в том месте, где конденсатор 0,22 мкФ соединяется с катушкой, как

Вы это делали в предыдущем эксперименте. Это позволит Вам включить в схему мультиметр для измерения тока в схеме. Переключите Ваш мультиметр для измерения переменного тока. Установите предел измерения 2 мА. Измерьте ток в схеме и запишите Ваш результат.

12. Теперь сравните Ваши расчетные и измеренные значения. Они должны быть одинаковыми или, по крайней мере, очень близкими. Объясните возможные различия.

13. В процессе измерения тока в последовательном резонансном контуре варьируйте выход генератора функций при помощи регулятора частоты. Поворачивайте ручку медленно против часовой стрелки для уменьшения частоты и замечайте влияние на величину тока. Регулировка частоты должна выполняться настолько медленно, чтобы Вы могли наблюдать за изменениями показания мультиметра, так как требуется несколько секунд, чтобы показания установились после каждого нового изменения частоты.

Далее поворачивайте ручку медленно в направлении по часовой стрелке для увеличения частоты и снова замечайте влияние на величину тока. При изменении частоты выше или ниже резонансной частоты Вы обнаружите значительные вариации тока. Во время наблюдения за этими вариациями определяйте сразу, каким образом частота влияет на ток схемы.

14. Снова соедините катушку и конденсатор 0, 22 мкФ.

15. Присоедините измерительные выводы осциллографа к конденсатору и к катушке индуктивности одновременно. Варьируйте частоту при. помощи регулятора частоты на генераторе функций, чтобы получить минимальный уровень напряжения. Когда будет достигнуто минимально возможное напряжение, схема настроена в резонанс. Заметьте положение указателя, регулятора частоты на генераторе функций. Объясните, что Вы здесь получили;

16. Удалите конденсатор 0, 22 мкФ из макетной панели и на его место установите конденсатор 0, 47 мкФ. Вычислите резонансную частоту этой новой комбинации.

fr=____Гц

При увеличении емкости в схеме до 0,47 мкФ резонансная частота:

_________ увеличивается

_________ уменьшается

17.Снова присоедините измерительные выводы осциллографа к комбинации конденсатора и катушки индуктивности. Варьируйте частоту при помощи регулятора частоты на генераторе функций, чтобы получить минимальный уровень напряжения. Когда будет достигнуто минимальное напряжение, заметьте то направление, в котором Вы повернули регулятор генератора функций. Частота в данном случае выше или ниже, чем раньше? _________ выше

_________ ниже

Соответствует это результатам, которые предсказаны Вами в шаге 16?

18.Соберите параллельный резонансный контур, схема которого представлена на рисунке 22-5.

Заметьте, что два конденсатора включены последовательно и их комбинация соединена параллельно с катушкой индуктивности. Это соединение образует параллельный резонансный контур, в котором два последовательно включенных конденсатора имеют единственное эквивалентное значение емкости. Затем параллельный резонансный контур соединен последовательно с резистором 1 кОм, и вся полученная комбинация подключена к генератору функций.

2-75.jpg

Рис. 22-5.

19. Вычислите резонансную частоту данной схемы. Индуктивность известна, но Вам требуется вычислить полную емкость схемы (Ст). Вспоминая, что Вы узнали ранее о последовательном включении конденсаторов, вычислите сначала полную емкость схемы. Запишите это значение. После этого вычислите резонансную частоту данной схемы и запишите Ваш результат в предусмотренное поле.

Ст = _______мкФ

fr=_______Гц

20.Используя формулу, приведенную ранее для полного сопротивления параллельного резонансного контура, найдите это полное сопротивление. Используйте значение сопротивления катушки, которое Вы измерили в шаге 2.

Z =_______ Ом

21.Подайте на вход схемы синусоидальный сигнал с частотой 3 кГц. При помощи регулятора амплитуды на генераторе функций сформируйте значение размаха напряжения 4 В.

22.Осуществляйте мониторинг напряжения на резисторе 1 кОм при помощи осциллографа. Затем, варьируя частоту при помощи ручки регулятора частоты на генераторе функций, добейтесь минимального напряжения. Как и раньше, делайте это медленно и шагами. Слегка измените частоту и заметьте новое показание напряжения после того, как оно стабилизируется. Продолжайте настройку вперед и назад, пока Вы не добьетесь такой частоты, при которой напряжение минимально. Вы получили при этом резонансную частоту. Запишите в этот момент величину напряжения, которое Вы измерили на резисторе 1 кОм. Vr=_______В

23. Зная значение величины напряжения на резисторе с известным сопротивлением, Вы можете теперь вычислить величину полного тока схемы, используя закон Ома. Сделайте теперь вычисление и запишите значение величины тока.

I =_______ мА

24.Далее измерьте падение напряжения на параллельном резонансном контуре. Самый простой

способ сделать эти — просто прикоснуться испытательными выводами параллельно катушке индуктивности.

VLc=_______В

25.Зная значение величины напряжения на параллельном резонансном контуре и ток, который Вы нашли вычислением в предыдущем шаге, Вы можете теперь вычислить величину полного сопротивления индуктивно-емкостного контура. Сделайте теперь это вычисление и запишите Ваш результат.

Z=_______Ом

Как это значение соответствует значению, которое Вы нашли в шаге 20?

26.Сложите падение напряжения на резисторе 1 кОм и падение напряжения на параллельном резонансном контуре. Равна ли приблизительно эта сумма величине напряжения источника? Объясните Ваш ответ.

27.Соедините измерительные выводы вашего осциллографа с параллельным контуром, прикасаясь ими к двум выводам катушки индуктивности. Вращайте ручку регулятора частоты на генераторе функций в одну и в другую сторону от резонансной частоты и следите за изменением выходного напряжения. Ручку поворачивайте медленно из полностью выведенного в направлении против часовой стрелки положения в полностью выведенное в направлении по часовой стрелке положения, а затем назад, и так несколько раз, чтобы заметить эффект. Объясните вариации напряжения, которые Вы наблюдаете.

28.Выключите генератор функции, но схему пока не разбирайте.

ОБЗОРНЫЕ ВОПРОСЫ

1. Если конденсаторы 0,22 мкф и 0,47 мкФ подключены параллельно к катушке индуктивности 10 мГн, резонансная частота контура составляет:

а)1158 Гц,

б)1406 Гц,

в) 1917 Гц,

г) 2323 Гц.

2. Резонанс в последовательном контуре обнаруживается по:

а) максимальному току,

б) максимальному полному сопротивлению,

в) минимальному току,

г) нулевому току.

3. При резонансе параллельный резонансный контур ведет себя как:

а) резистор с малым сопротивлением,

б) резистор с большим сопротивлением,

в) катушка индуктивности,

г) конденсатор.

4. Каково полное сопротивление параллельного резонансного контура с L = 5 мГн, С == 0,001 мкФ и R =40м?

а) 84 кОм,

б) 125 кОм,

в) 840 кОм,

г) 1,25 МОм.

5. При резонансе в последовательной резистивно-индуктивно-емкостной схеме полное сопротивление равно:

а) XL или Xc

б) сопротивлению катушки индуктивности,

в) XL + Xc,

г) сопротивлению катушки индуктивности плюс сопротивление резистора.

Рис. 22-1. Последовательный резонансный контур

Рис. 22-2. Параллельный резонансный контур

Изображение: 

Рис. 22-3. К расчету резонансной частоты последовательного контура

Изображение: 

Рис. 22-4. Таблица для записи результатов

Изображение: 

Рис. 22-5. Измерения параллельного резонансного контура

Изображение: 

8. Фильтры нижних и верхних частот

ЭКСПЕРИМЕНТ 23 Фильтры нижних и верхних частот

Цели

После проведения данного эксперимента Вы сможете рассчитывать частоту отсечки резистивно-емкостных фильтров нижних и верхних частот, а также познакомитесь с влиянием изменений частоты на выходное напряжение.

Необходимые принадлежности

* Цифровой мультиметр

* Макетная панель

* Генератор функций

* Элементы:

один дисковый конденсатор 0.01 мкФ, один резистор 15 кОм.

ВВОДНАЯ ЧАСТЬ

Фильтр — это частотночувствительная схема, выходная амплитуда которой варьирует в зависимости от частоты на входе.

Фильтр нижних частот — это такой фильтр, который пропускает частоты меньше некоторой определенной частоты отсечки (fco), но подавляет те частоты, которые больше частоты отсечки. Фильтр верхних частот — это такой фильтр, который пропускает частоты, которые больше некоторой определенной частоты отсечки, но подавляет

те частоты, которые меньше частоты отсечки. На рисунке 23-1 представлены выходные характеристики фильтра нижних частот и фильтра верхних частит.

2-81.jpg

Рис. 23-1.

Фильтры нижних и верхних частот могут быть реализованы различными способами. Простейший фильтр — это резистор и конденсатор, соединенные между собой, как показано на рисунке 23-2.

2-82.jpg

Рис. 23-2.

Характеристики фильтров

Ключевой характеристикой фильтра нижних частот или фильтра верхних частот является его частота отсечки (fco). Как Вы можете видеть на основании рисунка 23-1, частота отсечки — это такая частота, где выходное напряжение фильтра падает до 70,7% от его максимально возможного выходного напряжения. В фильтре нижних частот выходное напряжение остается относительно постоянным по мере того, как возрастает входная частота. С приближением к частоте отсечки выходное напряжение начинает уменьшаться. Когда достигается частота отсечки,'выходное напряжение понижается до 70,7% от его максимально возможного значения. Выходное напряжение продолжает убывать по мере возрастания частоты.

В фильтре верхних частот выходное напряжение имеет максимальное значение, когда входная частота с запасом превышает частоту отсечки. Когда входная частота постепенно уменьшается, выходное напряжение понижается по мере приближения к частоте отсечки. Когда достигается частота отсечки, выходное напряжение понижается до 70,7% рт его максимально возможного-значения. Выходное напряжение продолжает убывать по мере дальнейшего уменьшения входной частоты.

В фильтре нижних частот сигналы с частотой

ниже fco пропускаются без ослабления или лишь с незначительным ослаблением; сигналы с,частотой выше fco быстро ослабляются. В фильтре верхних частот сигналы с частотой ниже fco значительно подавляются, тогда как сигналы с частотой

выше fco, пропускаются с минимальным противодействием. Снова обратитесь к рисунку 23-1.

Частота отсечки простого резистивно-емкостного фильтра, подобного показанному-на рисунке 23-2, вычисляется при помощи следующей формулы:

fco = 1/2*3.147RC

Пример: Если R = 3,3 кОм и С = 0,15 мкф, частота отсечки равна:

fco = 1/6,28(3300)(0,15 х 10^-6)

fco= 322 Гц

Краткое содержание

В данном эксперименте Вы познакомитесь с действием резистивно-емкостных фильтров верхних и нижних частот. Поскольку в настоящий момент у Вас нет средств для точного измерения частоты, может быть получено лишь общее представление о работе фильтра. Тем не менее, Вы сможете четко показать, что указанные фильтры действительно пропускают некоторые частоты с минимальным ослаблением, тогда как другие частоты ими сильно подавляются.

2-83.jpg

Рис. 23-3.

ПРОЦЕДУРА

1. Вычислите частоту отсечки фильтра нижних частот, показанного на рисунке 23-3.

fco______Гц

2. Соберите схему, показанную на рисунке 23-3,

при помощи Вашей макетной панели. Подключите резистивно-емкостной фильтр ко входу генератора функций.

3. Установите регулятор частоты генератора функций на частоту 10 Гц. После этого поворачивайте регулятор амплитуды, чтобы подать напряжение с размахом 4 В к схеме.

4. Далее измерьте выходное напряжение фильтра на конденсаторе. Запишите полученное значение.

Выходное напряжение фильтра = ___ В

5. Подключите осциллограф к конденсатору фильтра. При наблюдении за выходным напряжением поворачивайте ручку регулятора частоты, чтобы увеличить частоту до 1000 Гц. Увеличивается или уменьшается выходное напряжение?

________ увеличивается

_________ уменьшается

6. Основываясь на входном значении в шаге 3, вычислите значение выходного напряжения при частоте отсечки.

Напряжение на частоте

отсечки = ________ В

7. Подавайте при помощи генератора функций синусоидальный сигнал в схему на каждой из частот, указанных в приведенной ниже таблице Установите размах напряжения на входе схемы равным 4 В. В процессе изменения частот

снова проконтролируйте входное напряжение, чтобы убедиться, что оно все еще имеет размах 4 В. Измеряйте выходное напряжение фильтра на каждой частоте и записывайте Ваши результаты в следующую таблицу.

Входная частота

Выходное напряжение

10Гц

100 Гц

200 Гц

500 Гц

1000 Гц

2000 Гц

5000 Гц

10кГц

20 кГц


8.. Постройте на основании Ваших данных график частотной характеристики на полулогарифмической бумаге.

9. Теперь соберите схему фильтра верхних частот, показанного на рисунке 23-4.

10.Определите частоту отсечки фильтра верхних частот на рисунке 23-4.

fco______Гц

11.Настройте частоту регулятором генератора функций на 10 Гц и величину размаха напряжения на 4 В.

2-84.jpg

Рис. 23-4.

12.Наблюдайте выходное напряжение фильтра на резисторе 1 кОм. Наблюдая за выходным напряжением на экране осциллографа, повышайте частоту на выходе генератора функций вплоть до 10кГц. Заметьте, как изменяется выходное напряжение по мере повышения частоты. Объясните эти изменения.

13.Как изменяется выходное напряжение с повышением частоты?

__________ увеличивается

__________ уменьшается

14. Подавайте при помощи генератора функций синусоидальный сигнал в схему на каждой из частот, указанных в приведенной ниже таблице. Установите размах напряжения на входе схемы равным 5 В. В процессе изменения частоты при необходимости поддерживайте на входе схемы величину размаха 5 В. Измеряйте выходное напряжение фильтра на резисторе для каждой частоты и записывайте Ваши результаты в таблицу.

Входная частота

Выходное напряжение

10 Гц

100 Гц

200 Гц

500Гц

1000 Гц

2000 Гц

5000 Гц

10 кГц

20кГц


15.Постройте на основании Ваших табличных данных график частотной характеристики на полулогарифмической миллиметровой бумаге, как Вы это делали в случае фильтра нижних частот.

ОБЗОРНЫЕ ВОПРОСЫ

1. Резистивно-емкостной фильтр нижних частот имеет частоту отсечки 23222 Гц. Сигнал с частотой 5,5 кГц при этом:

а) пропускается фильтром,

б) подавляется фильтром.

2. Резистивно-емкостной фильтр верхних частот имеет частоту отсечки 15 кГц. Какой сигнал при этом пропускается? а) 6,7 кГц,

б) 36 кГц.

3. Сигнал на входе фильтра нижних частот имеет размах 5 В. Тогда выходное напряжение на резонансной частоте будет равняться:

а) 3,5 В,

б) 4,5 В,

в) 5 В,

г) 7 В.

4. Фильтр нижних частот имеет компоненты с величинами R = 4,7 кОм и С = 0,1 мкФ. Частота отсечки такого фильтра равна:

а) 273 Гц,

б) 339 Гц,

в) 469 Гц,

г) 501 Гц.

5. Внутри мультиметра имеется внутренняя схема, которая заставляет мультиметр действовать как:

а) фильтр нижних частот, 6} фильтр верхних частот.

Рис. 23-1. Выходные характеристики фильтра нижних частот и фильтра высоких частот

Рис. 23-2. Простейший фильтр — это резистор и конденсатор

Рис. 23-3. Эксперимент для оценки характеристик фильтра нижних частот

Изображение: 

Рис. 23-4. Эксперимент для оценки характеристик фильтра высоких частот

Изображение: 

9. Полосовой фильтр и режекторный фильтр

ЭКСПЕРИМЕНТ 24 Полосовой фильтр и режекторный фильтр

Цели

После проведения данного эксперимента Вы сможете продемонстрировать работу индуктивно-емкостного полосового фильтра и резистивно-емкостного режекторного фильтра.

Необходимые принадлежности

* Осциллограф

* Цифровой мультиметр

* Макетная панель

* Генератор функции

* Элементы:

четыре конденсатора 0,1 мкФ, один конденсатор 0,47 мкФ, одна катушка индуктивности 10 мГн, один резистор 100 Ом, четыре резистора 15 кОм.

ВВОДНАЯ ЧАСТЬ

Полосовой фильтр — это частотночувствительная схема, которая пропускает узкий диапазон. частот в окрестности центральной резонансной частоты (fr)

Все другие частоты ниже или выше узкой полосы пропускания значительно подавляются. Типичная характеристика полосового фильтра показана на рисунке 24-1А.

2-91.jpg

Рис. 24-1.

Режекторный фильтр представляет собой противоположность полосовому фильтру. Он подавляет или устраняет сигналы, частоты которых попадают в узкий диапазон с центральной частотой fc. Все частоты выше и ниже центральной частоты фильтр пропускает с минимальным ослаблением (см. рис. 24-1 В). Режекторный фильтр иногда называют вырезающим фильтром, поскольку этот фильтр используется для вырезания или режекции мешающего сигнала одной частоты.

Краткое содержание

Имеется несколько различных способов схемной реализации полосового фильтра и режекторного фильтра. Индуктивно-емкостные резонансные схемы могут комбинироваться различными методами для создания обоих типов фильтров. В данном эксперименте Вы познакомитесь с полосовым фильтром.

Режекторный фильтр может быть реализован и на базе индуктивно-емкостных схем. Однако в данном эксперименте Вы познакомитесь с популярным и широко используемым двойным Т-образным мостовым фильтром. Это резистивно-емкостной режекторный фильтр, способный подавлять определенную частоту и частоты в ее окрестности. Центральная частота рассчитывается при помощи следующей формулы:

fp = 1/2*3.14RC

Поскольку у Вас нет удобных средств для точного измерения частоты, Вы будете просто варьировать частоту, генерируемую генератором функций, и отмечать при помощи мультиметра выходную характеристику фильтра. Таким образом, можно увидеть, как выходное напряжение изменяется в зависимости от частоты как в случае полосового фильтра, так и в случае режекторного фильтра.

ПРОЦЕДУРА

1. Обратитесь к рисунку 24-2. Соберите эту схему полосового фильтра на Вашей макетной панели. Выходное напряжение генератора функций прикладывается к конденсаторам, тогда как выходное напряжение фильтра снимается с резистора 1000м. Заметьте, что общая емкость схемы составлена из двух конденсаторов с емкостью 0,47 мкФ и 0,1 мкФ.

2. Используя значения, показанные на рисунке 24-2, рассчитайте общую емкость схемы и резонансную частоту данной схемы.

2-92.jpg

Рис. 24-2.

Сt = _______ мкФ

fr=_____Гц

3. Установите регулятором амплитуды генератора функций выходное напряжение размаха 4 В:

Затем установите частоту приблизительно 500 Гц.

4. Подключите осциллограф параллельно выходному резистору 1000м. Медленно увеличивайте частоту на выходе генератора функций и наблюдайте за изменением выходного напряжения схемы. Замечайте вариацию этого напряжения. Изменения частоты выполняйте медленно, чтобы Вы могли получать хорошую индикацию того, как изменяется напряжение, когда частота увеличивается или понижается. Увеличивайте частоту приблизительно до 5 кГц.

5. Регулируйте частоту, наблюдая за выходом фильтра. Настройте генератор функций на пиковое выходное напряжение. Заметьте по генератору функций или измерьте период и частоту при помощи осциллокрафа. f=____Гц

6. Объясните изменения, которые Вы наблюдали в шагах 4 и 5.

7.Демонтируйте .полосовой фильтр. Вместо него соберите схему двойного Т-образного мостового фильтра, который показан на рисунке 24-3. Будьте внимательны при монтаже схеме, поскольку она несколько сложна, и легко можно сделать ошибку во время монтажа.

2-93.jpg

Рис. 24-3.

Имеется несколько-важных моментов, которые Вы должны принять во внимание при монтаже данной схемы. Во-первых, значение одного (общего) конденсатора получается комбинированием емкостей двух параллельных конденсаторов 0,1 мкФ. Вспомните, что емкости параллельных конденсаторов складываются, образуя, следовательно. один конденсатор емкостью 0,2 мкФ. Другое значение в данной схеме получается соединением двух параллельных резисторов. Два параллельных резистора с одинаковым сопротивлением имеют общее сопротивление, равное половине сопротивления одного из резисторов. В данном случае два резистора 15 кОм соединены параллельно, чтобы получить сопротивление 7,5 кОм.

8. Используя значения, показанные на рисунке 24-3, рассчитайте частоту режекции или центральную частоту данного фильтра. fc=_____Гц

9. Настройте генератор функций на частоту 10 Гц и размах напряжения 4В. Подключите осциллограф на выход фильтра. Увеличивайте теперь выходную частоту приблизительно до 1000 Гц и наблюдайте за вариацией выходного напряжения фильтра. Повторяйте это несколько раз, чтобы Вы могли наверняка увидеть эффект.

10.Настройте генератор функций на нулевую частоту (минимальное напряжение). Измерьте частоту и запишите. f=_____Гц

11.Объясните полученные Вами результаты в шагах 9 и 10.

ОБЗОРНЫЕ ВОПРОСЫ

1. Режекторный фильтр может быть реализован на базе индуктивно-емкостных схем:

а) высказывание истинно,

б) высказывание ложно.

2. В индуктивно-емкостном полосовом фильтре центральная частота определяется значениями:

а) приложенного напряжения,

б) L и R,

в) R и С,

г) L и С.

3. Полосовой фильтр пропускает:

а) одну частоту,

б) только высокие частоты,

в) узкую полосу частот,

г) все частоты.

4. Двойной Т-образный мостовой фильтр представляет собой:

а) полосовой фильтр,

б) фильтр нижних частот,

в) фильтр верхних частот,

г) режекторный фильтр.

5. Какова центральная частота двойного Т-образного мостового фильтра при значениях R = 10 кОм и С = 0,47 мкФ?

а) 34 Гц,

б) 47 Гц,

в) 68 Гц,

г) 120 Гц.

Рис. 24-1. Типичная характеристика полосового и режекторного фильтра

Рис. 24-2. Схема для оценки характеристик фильтров

Рис. 24-3. Схема двойного Т-образного мостового фильтра