2. Микромощные сетевые источники питания.

Микромощные сетевые источники питания.

 

1. Источник питания с гальванической развязкой от сети на оптронах.

Источник питания с гальванической развязкой от сети на оптронах

Микромощные ИП с гальванической развязкой от сети ~220 В можно выполнить с применением оптронов, включив их последовательно для увеличения выходного напряжения (рис. 3.2-1.). Перенос энергии осуществляется посредством однонаправленного светового потока внутри оптрона (оптрон содержит светоизлучающий и поглощающий элементы), таким образом, гальванической связи с сетью не возникает.

На одной оптопаре выделяется 0,5-0,7 В для АОД101. АОД302 и 4 В—для АОТ102, АОТ110 (притоке 0,2 мА). Для обеспечения требуемых значений напряжения и тока оптопары включаются последовательно или параллельно. В качестве буферного накапливающего элемента можно использовать ионистор, аккумулятор или емкость на 100-1000 мкФ. Светодиоды запитываются через емкость не более 0.2 мкФ во избежание разрушения. Необходимо помнить, что эффективность оптронов падает со временем (приблизительно на 25% за 15000 часов работы).

3-2-11.jpg

 

Рис. 3.2-1 Схема микромощного источника питания с гальванической развязкой от сети на оптронах

Изображение: 

2. Источники питания с раздельными конденсаторами.

Источники питания с разделительными конденсаторами

В микромощных источниках питания с гальванической связью с промышленной сетью обычно применяются т.н. разделительные конденсаторы, которые представляют собой не что иное, как шунтирующие сопротивления, включаемые последовательно в цепь питания. Известно, что конденсатор, установленный в цепи переменного тока, обладает сопротивлением, которое зависит от частоты и называется реактивным. Емкость разделительного конденсатора (при условии применения в промышленной- сети ~220 В, 50 Гц) можно рассчитать по следующей формуле:

3-2-31.jpg

Для примера: зарядное устройство для никель-кадмиевых аккумуляторов 12В емкостью 1 А/ч может быть запитано от сети через разделительный конденсатор. Для никель-кадмиевых аккумуляторов зарядный ток составляет 10% от номинала, т.е. 100 мА в нашем случае. Далее, учитывая падение напряжения на стабилизаторе порядка 3-5 В, получаем, что на входе зарядного устройства необходимо обеспечить напряжение ~18 В при рабочем токе 100 мА. Подставляя эти данные, получаем:

по первой формуле:

3-2-32.jpg

3-2-33.jpg

Таким образом, выбираем С = 1,5 мкФ с удвоенным рабочим напряжением 500 В (могут применяться конденсаторы типов:

МБМ, МГБП, МБТ).

Полная схема зарядного устройства с разделительным конденсатором приведена на рис. 3.2-2. Устройство пригодно для зарядки аккумуляторов током не более 100 мА при напряжении заряда не более 15В. Подстроечным резистором R2 устанавливают необходимое значение напряжения заряда. R1 выполняет роль ограничителя тока в начале заряда, а выделяемое на нем напряжение подается на светодиод. По интенсивности свечения светодиода можно судить — насколько разряжена АКБ.

3-2-34.jpg

При эксплуатации этого источника питания (и любых других ИП без гальванической развязки с сетью) необходимо помнить о мерах безопасности. Устройство и заряжаемая батарея все время находятся под потенциалом промышленной сети. В некоторых случаях такие ограничения делают невозможной нормальную эксплу-атацию устройств, поэтому приходится обеспечивать гальваническую развязку ИП от сети.

Маломощный источник питания с разделительным конденсатором , но с гальванической развязкой от промышленной сети можно изготовить на основе переходного трансформатора или реле

магнитного пускателя, причем их рабочее напряжение может быть и ниже 220 В. На рис. 3.2-3 показана принципиальная схема такого источника питания.

Емкость разделительного конденсатора рассчитывается с учетом параметров трансформатора (т.е., зная коэффициент трансформации. сначала рассчитывают напряжение, которое необходимо обеспечить на входе трансформатора, а затем, убедившись в допустимости такого напряжения для применяемого трансформатора, рассчитывают параметры конденсатора).

Мощность, отдаваемая таким источником питания, вполне может питать квартирный звонок, приемник, аудиоплеер.

3-2-35.jpg

 

Рис. 3.2-2 Зарядное устройство с разделительным конденсатором

Изображение: 

Рис. 3.2-3 Источник питания с разделительным конденсатором с гальванической развязкой от сети

Изображение: 

Ф.2 Пример расчета

Изображение: 

Ф.3 Пример расчета

Изображение: 

Ф1. Расчет емкости разделительного конденсатора

Изображение: 

3. Микромощный стабилизатор с малым потреблением.

Микромощный стабилизатор с малым потреблением

В некоторых радиолюбительских конструкциях требуются микромощные стабилизаторы, потребляющие в режиме стабилизации микроамперы. На рис. 3.2-4 приведена принципиальная схема такого стабилизатора с внутренним током потребления 10 мкА и током стабилизации 100 мА.

Для указанных на схеме элементов напряжение стабилизации составляет Uвых=3.4 В, для его изменения вместо светодиода HL1 можно включить последовательно диоды КД522 (на каждом падение напряжения составляет 0.7 В: на транзисторах

3-2-21.jpg

VT1, VT2 — 0,3 В). Входное напряжение данного стабилизатора (Uвх) не более 30 В. Должны применяться транзисторы с максимальным коэффициентом усиления.

 

Рис. 3.2-4 Схема микромощного стабилизатора с малым потреблением

Изображение: