6. Инфракрасная техника

Инфракрасная техника

С появлением быстродействующих инфракрасных излучателей, прежде всего - ИК диодов, быстро растет интерес к спектру электромагнитных колебаний, имеющих длину волны l=0,8.. .1,3 мкм. Важной особенностью ИК диода является то, что он способен сконцентрировать в короткой вспышке* мощность Римп, в сотни раз превышающую мощность непрерывного его излучения Рнепр. С соответствующим (в ЦРимп /Рнепр раз) увеличением его «дальнобойности».

ИК излучение может быть пространственно преобразованосжато в узкий пучок, сфокусировано, отражено, изогнуто и др. самыми обычными оптическими средствами - линзами, зеркалами, световодами. Важно и то, что в этом диапазоне электромагнитных излучений земная атмосфера сохраняет достаточно высокую прозрачность.

ИК - свободный диапазон. Работа в нем не требует от кого-то - разрешения, кому-то - оплаты и др. В отличие от СВЧ радиодиапазонов, имеющих тот же характер распространения волн, но уже поделенных между старыми и новыми «хозяевами».

Все это может оказаться существенным и при обычном, традиционном использовании электромагнитного излучения - для нужд связи, например, но особенно - в новых приложениях.

Владельцы современных телевизоров, видеомагнитофонов, кондиционеров и др. уже познакомились с инфракрасной техникой:

пульты дистанционного управления многими бытовыми аппаратами используют кодированное ИК излучение. Но это - лишь одно из его применений.

Устройство невидимого ИК барьера, пересечение которого будет зафиксировано охранной системой, показано на рис. 28. В него входит ИЗ - импульсный генератор-излучатель и ПР - фотоприемник, реагирующий лишь на его импульсы.

2-1.jpg

Рис. 28. ИК барьер

В ИК барьер может быть включено и «зеркало» - пассивный отражатель И К лучей.

Расстояние l, на которое можно разнести фотоприемник и излучатель, зависит от мощности ИК импульсов Римп : l=кЦРимп , где к - коэффициент, учитывающий конструктивные особенности излучателя и реальной чувствительности фотоприемника, его способности выделять на фонепомех сигнал своего ИК излучателя.

Основа инфракрасной техники - импульсные ИК генераторы. Рассмотрим ряд практических их схем и конструкций, которые могут войти в охранную систему нужной конфигурации или быть использованы как-то иначе.

*) Длительность фронта tф и спада tсп ИК вспышки зависит от типа ИК диода. Обычно tф @ tсп=0,1...0,5 мкс. Но существуют ИК диоды, обладающие и значительно большим быстродействием, например, ЗЛ139В с tф @ tсп@0,003 мкс.

 

1. Простой ИК генератор

Простой ИК генератор

Принципиальная схема генератора приведена на рис. 29. На элементах DD1.1, DD1.2 собран мультивибратор, возбуждающийся на частоте F=30...35 Гц (F@1/2R2*C1). Дифференцирующая цепочка R3C2 и элементы DD1.4...DD1.6 формируют в базе нормально закрытого транзистора VT1 импульс тока длительностью tимп@ 10 мкс (tимп@R3*C2), возбуждающий включенный в его коллектор ИК диод VD1. В таблице 5 приведена зависимость амплитуды тока

2-2.jpg

Рис.29. Генератор ИК импульсов

2-3.jpg

Рис. 30. Печатная плата генератора

в ИК диоде Iимп и потребляемого генератором тока Iпотр от напряжения источника питания Uпит.

Печатную плату генератора изготавливают из двустороннего фольгированного стеклотекстолита толщиной 1...1,5 мм (рис. 30). Фольгу со стороны деталей используют лишь в качестве нулевого провода-«земли». В местах пропуска проводников в ней должны быть вытравлены кружки диаметром 1,5...2 мм (на рисунке не показаны), места пайки к нуль-фольге «заземляемых» выводов конденсаторов, резисторов и др. показаны зачерненными квадратами.

В качестве примера на рис. 31 приведена зависимость относительной мощности излучения ИК диода АЛ402 от прямого импульсного тока Iпр.и. Почти линейная их связь и при столь значительном форсаже импульсных токов, которая вообще характерна для ИК диодов, позволяет ориентироваться при расчетах «дальнобойности» системы не на мощность излучения, а на легко контролируемый ток в ИК диоде.

2-4.jpg

Рис. 31. Зависимость относительной мощности излучения от прямого импульсного тока

Таблица 5

Uпит,B

Iимп,A

Iпотр,мА

4,5

0,24

0,40

5,0

0,43

0,57

6.0

0,56

0,96

7,0

0,73

1,50

8,0

0,88

2,10

9.0

1,00

2,80


 

Рис. 30. Печатная плата генератора

Изображение: 

Рис. 31. Зависимость относительной мощности излучения от прямого импульсного тока

Изображение: 

Рис.29. Генератор ИК импульсов

Изображение: 

2. Экономичный ИК генератор

Экономичный ИК генератор

Излучатель ИК датчика, реагирующего на прерывание луча, нередко относят от фотоприемника на 10...20 м и более. Его размещение, удовлетворяющее требованиям охранной техники (скрытность позиции, защита от непогоды, намеренной порчи, блокировки и др.), существенно упростится, если он будет выполнен в виде автономно функционирующего блока. Важнейшим параметром такого излучателя будет, очевидно, его способность максимально эффективно использовать энергозапасы встроенного в него источника питания.

Принципиальная схема энергоэкономичного ИК генератора, формирующего достаточно мощные ИК импульсы, показана на рис. 32.

Режим его работы задан мультивибратором, выполненном на микросхеме DD1, в стоки транзисторов которой введены резисторы R1 и R3, многократно снижающие сквозные токи переходного режима. Частота мультивибратора - F@1/2·R2·C1@40 Гц. Длительность импульса тока, возбуждающего ИК диод BL1, зависит от параметров дифференцирующей цепочки R4C3: tимп@R4·C3@10 мкс. Формирователь DD2.3...DD2.6 преобразуют поступающий на его вход импульс с затянутым спадом в «прямоугольный», открывающий на это время до насыщения нормально закрытый транзистор VT1.

Напряжение питания микросхем зависит от номинала резистора R7, при возможных изменениях Uпит оно должно оставаться в пределах +(3...5) В.

2-5.jpg

Рис. 32. Экономичный генератор ИК импульсов

2-6.jpg

Рис. 33. Печатная плата ИК генератора

2-7.jpg

Рис. 34. Компоновка ИК генератора

Таблица 6

Uпит,B

Iимп,A

Iпотр, мА

4,3

0,36

0,15

5

0,46

0,22

6

0,64

0,31

7

0,85

0,43

8

1,05

0,53

9

1,1.8

0,64

10

1,36

0,75


 

Генератор монтируют на двусторонней печатной плате размером 17,5х55х1,2 мм (рис. 33). Фольгу под деталями используют лишь в качестве нулевой шины-«земли» (с ней соединяют «-» источника питания), в местах пропуска проводников она имеет выборки — кружки диаметром 1,5...2 мм (на рисунке не показаны). Выводы деталей, соединяемые с «землей», припаивают непосредственно к нуль-фольге (показаны зачерненными квадратами).

Транзистор VT1 устанавливают параллельно плате, его выводы согнуты под прямым углом, расстояние между ним и платой - 4...5 мм.

Общая компоновка излучателя показана на рис. 34. Помещенный в гнездо сечением 45х18 мм и глубиной 57...60 мм, вырубленное в стене дома, в столбе веранды, в перилах крыльца, в засохшем дереве и т.п., излучатель маскируют наклейкой подходящего цвета и фактуры. Если она непрозрачна для ИК лучей, в ней делают небольшое, по диаметру ИК диода, отверстие. Батарею питания лучше поместить снизу. Это позволит избежать порчи излучателя в случае ее разгерметизации.

В таблице 6 приведены зависимости Iимп - амплитуды тока в ИК диоде и Iпотр - тока, потребляемого генератором от источника питания, от Uпит - напряжения источника питания. Частота F и длительность tимп остаются при этом практически неизменными.

Токовый КПД ИК излучателя ррррh=Iимп·tимп·F / Iпотр =0,82...0,87. С батареей «Корунд» он сможет проработать непрерывно 2...3 месяца. А с аккумулятором «Ника», 7Д-ОД25 и т.п., подзаряжаемым солнечной батареей (БС-0.5-9П, БСМ-У1.1, Электроника M1 и др.), в не слишком плохих погодных условиях — без ограничения времени.

 

Рис. 32. Экономичный генератор ИК импульсов

Изображение: 

Рис. 33. Печатная плата ИК генератора

Изображение: 

Рис. 34. Компоновка ИК генератора

Изображение: 

3. Приемники импульсного ИК излучения

Приемники импульсного ИК излучения

Из фоточувствительных приборов далеко не все обладают достаточным быстродействием, чтобы реагировать на каждую вспышку ИК диода. Обычно в фотоприемниках импульсного излучения используют фотодиоды (см. приложение 2)*.

Импульсные микротоки, возникающие в фотодиоде при его облучении, необходимо усилить и привести к нормам цифрового стандарта, т.е. преобразовать каждую И К вспышку в импульс напряжения, пригодный для непосредственного управления цифровой микросхемой того или иного типа.

Высокое входное сопротивление и усиление, значительная широкополосность усилителя, пригодного для решения такой задачи, делают его чувствительным к электрическим наводкам самого разного происхождения. В том числе и к работе электронной «начинки» прибора, в который он входит сам. Поэтому фотодиод и его усилитель обычно тщательно экранируют.

Чувствительность фотоприемника может быть заметно снижена паразитной подсветкой. Поэтому его фотодиод прикрывают, как правило, блендой - зачерненным внутри отрезком металлической или пластмассовой трубы, отгораживающим его от источников света, находящихся в стороне от оптической оси.

Прямую, соосную подсветку фотодиода уменьшают фильтрами, ослабляющими видимую часть спектра подсветки. Лучше, конечно, воспользоваться для этого специальным инфракрасным фильтром с полосой прозрачности, совпадающей со спектром излучения ИК диода. Но опыт показывает, что неплохим ИК фильтром может быть тонкий эбонит, гетинакс, окрашенный полистирол, темные пластиковые обои. Однако, почти полностью «отрезая» видимый свет, такие материалы вносят заметное ослабление и в ИК сигнал.

Хотя современный фотодиод имеет, как правило, встроенную оптику, концентрирующую фотопоток на его р-п переходе, из-за малых размеров ее эффективность относительно невелика. Чувствительность фотоголовки значительно увеличится, если ее фотодиод будет помещен в фокус линзы диаметром 20...40 мм и более, концентрирующей на нем значительно больший световой поток. В этом качестве можно использовать, например, конденсор фотоувеличителя. Или объектив от старого фотоаппарата с наводкой на резкость «по метрам», который позволит к тому же настроить оптический канал наилучшим образом.

*) Непригодны, например, фотосопротивления. Достаточно высоким быстродействием обладают вакуумные фотоэлементы и фотоумножители (ФЭУ). Но для их питания требуются источники высокого напряжения: для фотоэлементов 50...300 В, для ФЭУ - до 1 кВ и более (см. приложение 6). Значительные габариты и хрупкость также ограничивают сферу их применения.

 

4. ИК приемник на транзисторах

ИК приемник на транзисторах

Принципиальная схема приемника импульсных ИК сигналов показана на рис. 35. Его выход может быть подключен ко входу цифровой КМОП-микросхемы непосредственно. Если фотоголовка должна быть удалена от цифрового анализатора, а емкость соединяющего их кабеля превысит 100...200 пФ, фотоусилитель потребуется дополнить буферным усилителем. Таким, например, как на рис. 36, а (усилитель-инвертор) или на рис. 36, б. Емкостная нагрузка фотоголовки с таким усилителем на выходе может быть увеличена до 0,01 мкФ.

2-8.jpg

Рис. 35. ИК приемник на транзисторах

2-9.jpg

Рис. 36. Усилители мощности в КМОП-технике

Таблица 7

Uпит,B

Iпотр,мA

4,5

0,30

5,0

0,30

6,0

0,32

7,0

0,34

8,0

0,35

9,0

0,37


 

Фотодиод ФД263-01 можно заменить на ФД320. А при наличии хорошего оптического концентратора - почти на любой из указанных в приложении 2.

ИК приемник сохраняет работоспособность при изменении напряжения источника питания Uпит в широких пределах. Зависимость потребляемого им тока Iпотр от напряжения питания показана в таблице 7.

 

Рис. 35. ИК приемник на транзисторах

Изображение: 

Рис. 36. Усилители мощности в КМОП-технике

Изображение: 

5. ИК приемник на микросхеме

ИК приемник на микросхеме

Принципиальная схема приемника импульсных ИК сигналов на специально для этой цели разработанной микросхеме показана на рис. 37.

Выход этого фотоприемника также может быть соединен с входами цифровых КМОП-микросхем напрямую. Но хотя его выходное сопротивление меньше, чем у описанного выше транзисторного, при большой длине линии, связывающей фотоприемник с электронным анализатором сигналов, его также нужно дополнить буферным усилителем (см. рис. 36, а, б). Емкость линии связи в этом случае может доходить до 0,01 мкФ.

Фотодиод ФД320 можно заменить на ФД263-01, а если в фотоприемнике есть линза-концентратор - практически любым фотодиодом из приложения 2.

2-10.jpg

Рис. 37. ИК приемник на микросхеме

Таблица 8

Uпит,B

Iпотр, мА

4,5

0,84

5,0

1,00

6,0

1,30

7,0

1,55

8,0

1,90

9,0

2,90


 

Усиление фотоголовки можно уменьшить, зашунтировав вход усилителя резистором сопротивлением 0,3...3 МОм.

В таблице 8 приведена зависимость тока Iпотр , потребляемого фотоголовкой, от напряжения источника питания Uпит.

 

Рис. 37. ИК приемник на микросхеме

Изображение: 

6. Инфракрасная «визитная карточка»

Инфракрасная «визитная карточка»

ИК система автоматического опознания узнает «своего» по особому сигналу, который излучает брелок-генератор владельца.

Таким сигналом может быть «пакет», содержащий строго определенное число очень коротких инфракрасных импульсов- вспышек. Факторами, затрудняющими информационный «взлом» такой системы, являются, кроме того, длительность каждой вспышки и длительность всего «пакета». Они ограничиваются, как правило, довольно жесткими пределами.

Ниже описан брелок-генератор, формирующий такой пакет-код, и соответствующее ему приемное устройство.

 

7. ИК генератор «визитной карточки» с шифратором

ИК генератор «визитной карточки» с шифратором

На рис. 38 приведена принципиальная схема ИК генератора, формирующего пакет, содержащий N импульсов, где NО{1,...,1023} - может быть любым в этих пределах*.

Здесь DD1.1, DD1.2, R2, С1 - управляемый мультивибратор, частота возбуждения которого f@160 кГц (f=1/2 R2·C1); DD2 - 14-разрядный двоичный счетчик; R3C2 - дифференцирующая цепочка, формирующая из спада меандра ( 1 на выходе DD1.3) короткий - 5...10 мкс - импульс, открывающий нормально закрытый транзистор VT1; VD1-VD10, R6 - шифратор (диодно-резисторный «И»), числом и размещением диодов в котором задают N;SB1 - кнопка включения излучателя.

При включении питания на входе R счетчика DD2 формируется импульс «единичной» амплитуды, устанавливающий его в исходное состояние (в этом состоянии на всех его выходах устанавливается напряжение низкого уровня), а мультивибратор, сделав семь холостых «оборотов», выходит на нормальный режим работы. Частота следования меандров на выходе 7 DD2 (четвертый разряд счетчика) F=f/2^4=10 кГц. С соответствующими интервалами - Тп@100 мкс- будут следовать друг за другом и 5...10-микросекундные ИК вспышки излучателя BL1.

2-11.jpg

Рис. 38. ИК генератор «визитной карточки»

Генерация ИК вспышек продолжится до тех пор, пока на выходе шифратора - входе элемента DD1.6 - не появится напряжение высокого уровня, и, соответственно, на его выходе - напряжение низкого уровня, закрывающего мультивибратор. Число импульсов в пакете зависит от числа и «веса» диодов в шифраторе:

N=VD1+2VD2+4VD3+8VD4+16VD5+32VD6+64VD7+128VD8+256VD9 +512VD10, где: VDi=l, если диод VDi установлен в шифратор, и VDi=0, если его нет. Так как N =1023 и Тп=10^4 с, то длительность пакета не превысит, очевидно, 0,11 с.

Амплитуда импульса тока в самом излучателе - в ИК диоде BL1 - зависит от напряжения питания генератора Uп и сопротивления резистора R7: Iи=(Uп-2,5)/R7 (Iи - в амперах, Uпит - в вольтах, R7 - в омах). Здесь, очевидно, Iи@0,07 А.

Однако нет особой необходимости строго следовать указанным номиналам и типам элементов, составляющих генератор. В качестве VT1 может быть взят практически любой n-p-n транзистор с h21э>100 и Iк max>100 мА, а излучателем BL1 могут служить ИК диоды типа АЛ115А, АЛ118А, АЛ119Б, АЛ147А и др. (см. приложение 3). В качестве кнопки SB1 можно воспользоваться каким-либо микропереключателем из перечисленных в приложении 1.

2-12.jpg

Рис. 39. Печатная плата ИК генератора «визитной карточки»

Особое внимание необходимо уделить постоянно подключенному к источнику питания конденсатору С5, поскольку при неудачном выборе он может оказаться здесь основным энергопотребителем. Если ИК генератор имеет небольшие размеры и питается, соответственно, от источника небольшой емкости, то ток утечки в конденсаторе С5 Ic5<1мкА. При небольших N конденсатор С5 может иметь меньшую емкость (и меньший, соответственно, Ic5). В первом приближении можно принять C5(мкФ)»N.

Печатную плату генератора изготавливают из двухстороннего фольгированного стеклотекстолита толщиной ~1,5 мм (рис. 39). Фольгу со стороны деталей используют лишь в качестве нулевого провода, для пропуска проводников она имеет выборки-кружки диаметром 1.5...2 мм (на рисунке не показаны).

В качестве источника питания ИК генератора можно взять алкалиновую батарею типа 11А (Ж10,3х16 мм, Uп=6 В, Е=33 мА·ч). Заметим, что в подобного рода приборах не так-важна электрическая емкость источника питания, как его саморазряд, физическая сохранность. Лучшие из нынешних батарей - литиевые - сохраняют свою работоспособность до 10 лет.

*) Запись NО{A} означает, что элемент N принадлежит множеству {А}, т.е. может быть одним из перечисленных в нем элементов.

 

Рис. 38. ИК генератор «визитной карточки»

Изображение: 

Рис. 39. Печатная плата ИК генератора «визитной карточки»

Изображение: 

8. ИК приемник «визитной карточки» с дешифратором

ИК приемник «визитной карточки» с дешифратором

Принципиальная схема приемника «визитной карточки» приведена на рис. 40. Здесь DA1 - микросхема, преобразующая импульс тока, возникающий в фотодиоде VDI под воздействием ИК вспышки, в импульс напряжения, амплитуда которого достаточна для непосредственного управления КМОП-микросхемами (рис. 41, а). На элементах DD1.1 и DD1.2 собран одновибратор, преобразующий короткий импульс, соответствующий длительности ИК вспышки*, в импульс длительностью tф=50 мкс (tф@1/2 tп, где tп - период следования ИК вспышек в кодовой посылке (рис. 41, б)). На элементах DD1.3, DD2.3-DD2.5 собрано устройство, формирующее импульс на входе R счетчика DD3 (рис. 41, г), которым он переводится в нулевое состояние по фронту первой же ИК вспышки, и временной

2-13.jpg

Рис. 40. ИК приемник «визитной карточки»

2-14.jpg

Рис. 41. Эпюры сигналов в ИК приемнике

интервал Тпр (рис. 41, в), в пределах которого счетчик DD3 может беспрепятственно вести подсчет импульсов (по их спаду), поступающих на его вход С.

Дешифрация кодовой посылки, выяснение того, содержит ли она Nкод - кодовое число импульсов, возлагается на дешифратор Д1. В качестве примера, демонстрирующего его структуру, на рис. 42, а приведена конфигурация Д1 для Nкод=284. Поскольку «вес» выхода Qi в DD3 равен 2^(i-1), то в двоичной записи Nкод=000100011100 (2^(3-1)+ +2^(4-1)+2^(5-1)+2(9-1)=4+8+16+256=284). Дешифратор состоит из 4-входового конъюнктора** (Rl, VD3-VD5, VD9), входы которого

2-15.jpg

Рис. 42. Дешифратор для Nкод=284

подключены ко всем Qi=1, и 8-входового дизъюнктора (R2, VD1, VD2, VD6-VD8, VD10, VD12), входы которого подключены ко всем Qj=0. Легко видеть, что напряжение высокого уровня (лог.1) возникнет и сохранится на выходе DD1.4 (см. рис. 41, д) лишь в случае, если в счетчике DD3 будет зафиксирован Nкод, в любом другом оно так или иначе будет сведено к нулю. На рис. 42, б показана конфигурация конъюнктора в шифраторе ИК излучателя, формирующего Nкод =284; иное его положение на выходах счетчика связано с тем, что «вес» выхода Qi здесь равен 2^(i-5).

Подобную же структуру будет иметь дешифратор Д1 и для другого Nкод , с иными, конечно, позициями диодов в конъюнктере и дизъюнкторе.

Для того, чтобысистема реагировала на Nкод лишь при достаточно длительной его экспозиции, в цепь формирования выходного сигнала введена цепочка R9·C11@tэксп. Обычно принимают tэксп =0,3...3 с. На кратковременное появление Nкод (в попытках, например, побыстрее подобрать код) такая система просто не отреагирует.

Выход устройства - транзистор VT1 с открытым коллектором - может быть дополнен тем или иным исполнительным механизмом. Например, тональным генератором (рис. 43, а), предупреждающим

2-16.jpg

Рис. 43. Тональный генератор (а) и электронный ключ к электромеханическому замку (б)

о приходе «своего», или электронным ключом, управляющим электромагнитным замком Y1 (рис. 43, б).

В правильно собранном И К приемнике потребуется, возможно, уменьшить его чувствительность. Это можно сделать как электрически - зашунтировав, например, вход усилителя DA1 резистором R12 (показан на рис. 40 штриховой), так и оптически - прикрыв фотодиод «серым» фильтром, в качестве которого можно использовать, например, пластиковые обои, выполняющие заодно и функцию фильтра, почти полностью «отрезающего» видимую часть спектра паразитной подсветки.

Опыт показал, что излучение ИК генератора способно «пробить» даже 1,5...2-миллйметровый пластик. Кроме того, защитная накладка больших размеров, не позволяющая визуально определить положение фотодиода, окажется еще одним препятствием на пути несанкционированного проникновения в систему.

Защита от подбора кода - основная забота конструкторов такого рода устройств. Принятая здесь система кодирования относительно проста: Nкод - лишь одно число из тысячи возможных. Но подбор кода осложнен здесь и рядом других обстоятельств. Заметим, что длительность кодовой посылки Ткод не может быть ни слишком малой (иначе «слипнутся» импульсы на входе С счетчика DD3), ни слишком большой, больше Тпр (следующая затем ИК вспышка трансформируется в R-импульс, возвращающий DD3 в исходное состояние). Осложняет подбор кода и t^, во всяком случае очень его замедляет. Защитные функции заложены даже в яркость ИК вспышки - она должна быть лишь достаточной. Повышенная освещенность фотодиода может вывести фотоголовку приемника из рабочего режима и. привести к ошибкам в счете;

И все это, заметим, при отсутствии каких-либо специальных контрмер, которые здесь, конечно же, нетрудно предусмотреть. Можно ввести еще один (или не один) находящийся в стороне фотодатчик, засветка которого немедленно заблокирует систему. Или блокировку, реагирующую на слишком большое число сделанных попыток. Более четырех за минуту, например. Блокировки могут, конечно, и дополнять друг друга.

На рис. 44 показана печатная плата ИК приемника. Ее изготавливают из двустороннего фольгированного стеклотекстолита толщиной 1.5...2 мм. Фольгу со стороны деталей используют лишь в качестве нулевой шины-«земли» (к ней присоединен «-» источника питания), в местах пропуска проводников она имеет вытравленные

2-17.jpg

Рис. 44. Печатная плата ИК приемника «визитной карточки»

кружки диаметром 1.5...2 мм (на рисунке не показаны). Соединения с нуль-фольгой «заземляемых» выводов показаны зачерненными квадратами.

фотоусилитель (VD1, DA1 и др.) с его большой чувствительностью, широкополосностью, высоким входным сопротивлением необходимо экранировать. В противном случае электрические наводки, в том числе и от работы собственного дешифратора, могут сделать ИК приемник совершенно неработоспособным. Экран, имеющий «окно» для фотодиода, изготавливают из жести в виде коробки и припаивают к нуль-фольге в двух-трех точках. На рис. 44 штриховой линией показано примерное его расположение.

Таблица 9

Uпит, В

Iпотр, мА

4,2

0,9

5,0

1,1

6,0

1,3

7,0

1,6

8.0

1,9

9,0

2,3


 

Рекомендуется также принять меры к минимизации подсветки фотодиода посторонними источниками света, поскольку это может заметно снизить чувствительность приемника к сигналам своего ИК генератора. В качестве бленды, ограничивающей боковой подсвет фотодиода, можно взять отрезок зачерненной внутри пластмассовой или металлической тубы диаметром 10... 15 мм.

Фоточувствительную часть приемника можно изготовить в виде отдельной головки, соединенной с другими его элементами тонким трехпроводным кабелем («+», «-», выв. 10 DA1). Малые размеры такой фотоголовки позволят установить ее в вырезе дверного «глазка», за маскирующей накладкой в толще двери, в дверной коробке и т.п.

ИК приемник сохраняет работоспособность в широком диапазоне питающих напряжений. Зависимость потребляемого им тока Iпотр от напряжения питания Uпит показана в таблице 9.

*) Напомним, что длительность импульса на выходе фотоусилителя DA1 зависит не только от длительности ИК вспышки, но и ее яркости - освещенности фотодиода. Причина - в относительно медленном восстановлении его темновой проводимости.

**) Физические элементы, реализующие конъюнкцию и дизъюнкцию, - так в работах по математической логике обычно называют логические функции И и ИЛИ. Если мы и далее намерены пользоваться результатами математических исследований и не намерены повторять их (что было бы, кстати, совсем непросто), то должны, как минимум, понимать их язык.

 

 

Рис. 40. ИК приемник «визитной карточки»

Изображение: 

Рис. 41. Эпюры сигналов в ИК приемнике

Изображение: 

Рис. 42. Дешифратор для Nкод=284

Изображение: 

Рис. 43. Тональный генератор (а) и электронный ключ к электромеханическому замку (б)

Изображение: 

Рис. 44. Печатная плата ИК приемника «визитной карточки»

Изображение: 

9. Инфракрасный «электронный пароль»

Инфракрасный «электронный пароль»

Независимо от характера излучения, будь то радиоволна, ультразвук или свет, особое внимание в устройствах автоматического опознания «своего» уделяют самому сигналу. Основное к нему требование: вероятность появления точно такого же сигнала из постороннего источника должна быть пренебрежимо малой.

В современной технике кодовая посылка обычно имеет вид двоичной последовательности, например, 1001101000111..., где единице соответствует наличие излучения, а нулю - пауза «чистого» эфира или какое-то другое излучение. Если n - число разрядов (знако мест) в таком сигнале, то по-разному расставляя единицы и нули, мы сможем получить 2" различных их сочетаний. Так при n=7 их 128, при n=15-32768, а при n=23 - 8388608.

Среди множества возможных какую-то одну двоичную последовательность выделяют особо - в качестве кода, электронного пароля.

 

10. ИК генератор «электронного пароля» с шифратором

ИК генератор «электронного пароля» с шифратором

На рис. 45 приведена принципиальная схема генератора, формирующего подобным образом последовательность инфракрасных вспышек.

Здесь DD1.1, DD1.2, Rl, ZQ1 - задающий генератор, работающий на частоте часового кварцевого резонатора ZQ1 - 32768 Гц. Микросхемы DD4 и DD5 составляют электронный коммутатор, его выход (объединенные выводы 3 DD4 и DD5) оказывается соединенным с одним из Х-входов этих микросхем в зависимости от адреса, поступающего на входы 1, 2,4, и сигнала на входе S (активизируется микросхема с S=0). Адрес и сигнал S формирует счетчик DD3. Легко вычислить, что смена адреса будет происходить здесь каждые 0,976 мс ((2^5)/32768 с), это tзн - длительность знакоместа в кодовой посылке В середине каждого знакоместа может быть сформирован короткий (R4C2@10 мкс) импульс на выходе DD1.4. Но это произойдет лишь в том случае, если данному знакоместу будет соответствовать сигнал 1 на выходе коммутатора. Этот импульс откроет нормально запертый транзисторный усилитель (VT1, VT2 и др.) и ток, возникший в ИК диоде BI1, преобразуется в ИК вспышку той же длительности.

2-18.jpg

Рис. 45. ИК генератор «электронного пароля»

Генерация кодовой последовательности начинается (SA1 включен, кнопка SB1 нажата) с формирования короткого импульса на входе R счетчика DD3 (tr@R3·C1), устанавливающего его в исходное, нулевое состояние, и заканчивается с появлением сигнала 1 на выходе 29(вьIB. 14) DD3. Знакоместа - их, очевидно, 16 - следуют во времени в соответствии нумерацией (по стрелкам) Х-входов электронных коммутаторов: 1, 2,..., 14, 15 (нулевому знакоместу всегда соответствует 1; это стартовый импульс пакета, не входящий, конечно, в число кодообразующих). Общая продолжительность кодовой посылки составит таким образом 0,976x15@14,6 мс.

Нужное число-код формируют, так или иначе коммутируя Х-входы микросхем DD4, DD5: соединяя i-ую стрелку с «+» источника питания, если в i-том разряде кода должна быть 1 (X1 DD4, формирующий стартовый импульс пакета , уже соединен с +Uп, или с «землей», если должен быть 0. Так, например, для генерации кода 111011100111001 потребуется соединить стрелки 1, 2, 3, 5, 6, 7, 10, 11, 12, 15 с «+», а стрелки 4, 8, 9,13, 14 - с «-» источника питания.

2-19.jpg

Рис. 46. Печатная плата ИК генератора «электронного пароля»

Поскольку n=15, то число различных сигналов, из которых любой может быть закоммутирован в качестве кодового, составляет здесь 2^15=32768.

Генератор монтируют на печатной плате, изготовленной из двустороннего фольгированного стеклотекстолита толщиной 1,2...1,5 мм (рис. 46). Фольгу со стороны деталей используют лишь в качестве общего провода (с ней соединен «-» источника питания): в местах пропуска проводников она должна иметь выборки - кружки диаметром 1,5...2 мм (на рисунке не показаны). Места соединения с нуль-фольгой «заземляемых» выводов резисторов, конденсаторов и др. показаны черными квадратами; черными квадратами со светлой точкой в центре - «заземляемые» выводы микросхем и положение проволочной перемычки, соединяющей с нуль-фольгой «минусовой» вывод конденсатора С4.

В качестве источника питания генератора можно взять 6-вольтную батарею 11 А (габариты - Ж10,3х16 мм, электрическая емкость - 33 мА·ч).

Выключатель SA1 типа ПД9-1 монтируют непосредственно на корпусе генератора. Кнопка SB1, типа ПКн-159 или подобная ей,
должна иметь провод длиной 6...8 мм, достаточный для его вывода сквозь стенку корпуса.

2-20.jpg

Рис. 47. Осциллограмма кода «111011100111001»

Правильно собранный генератор наладки не требует. Проконтролировать его работу можно с помощью осциллографа, подключив его вход к коллектору транзистора VT1. После включения SA1 и нажатия кнопки SB1 на экране осциллографа (время ждущей развертки 20...30 мс) должна возникнуть и исчезнуть последовательность импульсов, расставленных во времени в соответствии с закоммутированным сигналом. Если это рассмотренный выше код 111011100111001, то ему будет соответствовать осциллограмма, изображенная на рис. 47 («лишний» импульс ,в начале пакета - стартовый). По амплитуде импульсов, измеренных на резисторе R9, можно судить о токе в ИК диоде Iимп@Uимп /R9 (Iимп - в амперах, Uимп - в вольтах, R9 - в омах), а в быстрой развертке (20...50 мкс, тоже ждущей) - об их форме и длительности, которая должна быть в пределах 5...15 мкс.

Двухступенчатое включение кодового излучателя - сначала выключателем SA1, а затем кнопкой SB1 - связано с особенностью самовозбуждения кварцованных генераторов, с их довольно медленным (из-за высокой добротности кварцевого резонатора) вхождением в рабочий режим.

2-21.jpg

Рис. 48. Вариант включения генератора

Выключатель SA1 можно исключить, организовав питание генератора так, как показано на рис. 48. Но в таком случае кнопку SB1 потребуется нажимать дважды: первое нажатие даст, скорее всего, неверную комбинацию (которая, кстати, может быть даже полезна как маскирующая истинный код). Без выключателя SA1 можно обойтись и в том случае, если в качестве источника питания генератора будет взята низковольтная батарея достаточной емкости, способная обеспечить продолжительную его работу при постоянно включенных микросхемах. Например, литиевый элемент с ЭДС=3 В, имеющий электрическую емкость 0,1 А·ч, сможет проработать в таком режиме около года.

Таблица 10

Uпит, В

Iпотр, мкА

Iимп, А

2,4

5

0,18

3,7

16

0,38

4,3

30

0,38

5,0

60

0,46

6.0

140

0,59

7,0

360

0,72


 

В кодовом излучателе могут быть использованы практически любые ИК диоды, ограничения - лишь габаритные: высота деталей на печатной плате не должна превышать 8 мм. Все резисторы здесь типа МЛТ-0,125, неэлектролитические конденсаторы - КМ-5, КМ-6, К10-17Б и др. Конденсатор С4 - типа К50-35 или К50-40. Рабочее напряжение конденсатора С6 (CE-DS Магсоп, его монтируют в положении «лежа») должно соответствовать напряжению источника питания. В варианте, показанном на рис. 48, необходимо предварительно проконтролировать состояние его диэлектрика: ток утечки в С6 должен быть меньше 1 мкА. При увеличении сопротивления резистора R9, ограничивающего ток в ИК диоде, емкость конденсатора С6 может быть соответственно уменьшена. Довольно большая «дальнобойность» ИК излучателя (с R9=3,9 Ом превышающая 10 м) может оказаться просто ненужной.

Кодовый генератор сохраняет свою работоспособность в широком диапазоне питающих напряжений. В таблице 10 показана зависимость потребляемого им тока Iпотр и тока в ИК диоде Iимп от напряжения источника питания Uпит.

 

Рис. 45. ИК генератор «электронного пароля»

Изображение: 

Рис. 46. Печатная плата ИК генератора «электронного пароля»

Изображение: 

Рис. 47. Осциллограмма кода «111011100111001»

Изображение: 

Рис. 48. Вариант включения генератора

Изображение: 

11. ИК приемник «электронного пароля» с дешифратором

ИК приемник «электронного пароля» с дешифратором

Принципиальная схема устройства, принимающего кодированный ИК сигнал брелка-генератора, показана на рис. 49.

Микросхема DA1, представляющая собой фотоусилитель, преобразует импульсы тока в фотодиоде BL1, возбуждаемые ИК вспышками брелка-излучателя, в импульсы напряжения, пригодные для прямого их введения в цифровой анализатор. На рис. 50, а показана импульсная последовательность на выходе фотоусилителя, соответствующая коду 111011100111001, который мы здесь и ниже будем рассматривать в качестве примера.

В приемнике два формирователя. Один из них, выполненный на элементах DD1.1 и DD3.1, расширяет каждый из поступающих импульсов (напомним: их длительность - около 10 мкс) до tф1@R3·C5@0,6...0,8 мс (должно быть выполнено условие: 0,5·tзн<tф1<tзн где tзн=0,976 мс - длительность знакоместа в кодированном сигнале; см. рис. 50, а, б). А второй, собранный на элементах DD1.2 и DD3.3, формирует импульс длительностью tф2@R4·C6=30...50 мс (должно быть: tф2 >16 tзн; см. рис. 50, г). По фронту этого импульса на выходе элемента DD3.5 формируется короткий импульс (tr @R5·C7@10 мкс), устанавливающий сдвигающий регистр DD4-DD5 и счетчик DD6 в нулевое состояние (рис. 50, д).

Элементы DD1.3, DD1.4, R7, ZQ1 образуют задающий генератор, работающий на частоте кварцевого резонатора ZQ1 - 32768 Гц (задающий генератор ИК излучателя, напомним, работает на этой же частоте).

Принимаемый сигнал (или помеха) фиксируется в сдвигающем регистре DD4-DD5 следующим образом. Фронтом первой же ИК вспышки все запоминающие элементы устройства переключаются

2-22.jpg

Рис. 49. ИК приемник «электронного пароля»

2-23.jpg

Рис. 50. Эпюры сигналов для кода «111011100111001»

в нулевое состояние (на выходах микросхем DD4-DD6 устанавливаются нули) и счетчик DD6 начинает счет. Примерно через 0,5 мс (tзн/2) нуль на выходе 2^4 (выв. 5) счетчика DD6 будет замещен единицей. В сдвигающем регистре К561ИР2 изменение напряжения на входе С вида J приводит к перемещению хранящегося в нем числа на один разряд в сторону старших (на рис. 49 - вниз), а в младший разряд регистра DD4 будет вписано то значение, которое в этот момент окажется на его входе D (выв. 7). Это может быть и 1 - расширенный до tф1 «единичный» импульс, и 0 - если ИК вспышка в этом знакоместе кодовой посылки отсутствовала. Следующий сдвиг числа произойдет через tзн=0,976 мс - «шаг», который сохранится в дальнейшем.

Система сделает лишь 16 поразрядных сдвигов (сдвигающие импульсы, генерируемые счетчиком DD6, показаны на рис. 50, в) - с появлением единицы на выходе 29 счетчика DD6 и, соответственно, нуля на входе DD2.2 (выв. 9), счетчик самозаблокируется и останется в этом состоянии до очередного старта системы.

Таким образом принятая последовательность И К вспышек преобразуется в число, хранящееся в регистре DD4-DD5. Остается выяснить - является ли оно кодовым.

Осуществляется это диодно-резисторным дешифратором Д1, схему которого (для того же кода 111011100111001) иллюстрирует рис. 51. Идея дешифрации проста. Все выходы регистра, на которых в соответствии с кодовой комбинацией должна быть единица, подключают к входам диодно-резисторного конъюнктора (VD1,VD4- VD6, VD9-VD11, VD13-VD15, R1), а выходы, на которых должен

2-24.jpg

Рис. 51. Дешифратор для кода «111011100111001»

быть нуль, — к входам диоднорезисторного дизъюнктора (VD2, VD3, VD7, VD8, VD12, R2). Если в регистре зафиксировано число- код, то на выходе конъюнктора установится напряжение высокого уровня - 1, а Выходе диэъюнктора - низкого - 0. И только в этом случае на выходе ИК приемника возникнет сигнал 1. Это «единичное» его состояние продержится до тех пор, пока не будет нажата кнопка SB1 «Сброс» (параллельно ей может быть включено несколько кнопок такого же назначения) или по каналу не пройдет какой-либо посторонний сигнал*.

Приемник смонтирован на плате размером 83х54 мм, выполненной из двустороннего фольгированного стеклотекстолита толщиной 1,5 мм (рис. 52). Технология изготовления платы и приемы монтажа деталей на ней те же, что и при изготовлении платы брелка-генератора.

Особое внимание при монтаже приемника следует обратить на электрическую экранировку фотоголовки (BL1, DA1 и др.): обладая высокой чувствительностью и значительной широкополосностью, она подвержена воздействию электрических сигналов самого разного происхождения. Экран можно изготовить из жести, его раскрой показан на рис. 53: по штриховым линиям сгибают коробку, пропаивают ее в углах, выравнивают низ и установив так, как показано штрих-пунктиром на рис. 52, припаивают в двух-трех точках к нуль-фольге. При необходимости усиление фотоголовки можно уменьшить, зашунтировав вход микросхемы DA1 резистором сопротивлением R1=0,3...З МОм.

 

2-25.jpg

Рис. 52. Печатная плата ИК приемника «электронного пароля»


Все резисторы в приемнике - типа МЛТ-0,125. Габариты конденсаторов С4 и С10 - Ж8х12 мм. Конденсатор С2 - типа К53-30, остальные - КМ-6, К10-176 и КД. Габариты кварцевого резонатора - Ж2х6 мм.

На плате выделено место для размещения элементов описанного выше (см. рис. 43, а) звукового генератора. На рис. 52 оно оконтурено штрих-пунктиром.

Необходимо принять меры по ослаблению засветки фотодиода посторонними источниками света, способными существенно

2-26.jpg

Рис. 53. Выкройка экрана фотоусилителя

уменьшить чувствительность фотоприемника. Фотодиод можно поместить в «колодец», склеенный из черного полистирола, который защитит его от воздействия источников, расположенных в стороне от оптической оси. К тому же образующийся невидимый «коридор», в пределах которого только и будет возможен оптический контакт приемника с брелком-излучателем, умножит и без того немалые трудности информационного «взлома» системы.

Окно фотодиода полезно заклеить пленкой, ослабляющей по преимуществу видимый свет. Тем более, что расстояние, на котором приемник способен обнаружить и дешифровать ИК вспышки брелка, в не слишком плохих условиях превышает 10 м. В чем, чаще всего, нет никакой необходимости.

К выходу приемника (выв. 12 элемента DD3.6) могут быть подключены самые разные сигнальные устройства. Например, светодиод, показанный на рис. 49 штриховым контуром, или звуковой генератор, оповещающие о появлении «своего». Но если по сигналу приемника охранная система должна принять решение самостоятельно (включить, например, привод электрозамка), то в электронный ключ, управляющий исполнительным механизмом (ИМ), нужно ввести задержку. Так, например, как это показано на рис. 54. Запаздывание включения ИМ зависит здесь от постоянной времени R2C1 и может составить несколько десятых долей секунды. Длительность задержки увеличится еще, если в эмиттерную цепь транзистора VT1 включить диод VD3, рассчитанный на рабочий ток ИМ, например, КД213А. Напряжение питания ИМ, с учетом возникающих при его выключении экстранапряжений (диод VD2 при индуктивных нагрузках обязателен), не должно превышать максимально допустимого для транзистора VT1 (60 В - для КТ972А, 45 В - для КТ972Б). Рабочий ток исполнительного механизма не должен превышать здесь 2 А.

2-27.jpg

Рис. 54. Электронный ключ с задержкой

Задержка срабатывания исполнительного механизма - эффективное средство в борьбе с попытками выяснить подбором задействованный в системе код. В принятой здесь системе кодирования даже секундная задержка заставит злоумышленника простоять у чужих дверей не один час. И это - при наличии у него соответствующей аппаратуры, знания принципов кодирования и время-импульсных характеристик ИК излучения. «Подсмотреть» же работу ИК брелкагенератора, не войдя в визуальный контакт с его владельцем, несравненно сложнее, нежели это допускают кодовые генераторы, работающие в радиодиапазоне.

Приемник сохраняет работоспособность при снижении напряжения питания до 4 В, потребляемый им ток не превышает 1,4 мА.

*) Заметим, что дешифратору безразлично состоянием старшего разряда регистра DD5, поскольку по окончании записи на его выв. 2 обязательно окажется 1 - стартовый бит кодовой комбинации или первый бит помехи.

 

Рис. 49. ИК приемник «электронного пароля»

Изображение: 

Рис. 50. Эпюры сигналов для кода «111011100111001»

Изображение: 

Рис. 51. Дешифратор для кода «111011100111001»

Изображение: 

Рис. 52. Печатная плата ИК приемника «электронного пароля»

Изображение: 

Рис. 53. Выкройка экрана фотоусилителя

Изображение: 

Рис. 54. Электронный ключ с задержкой

Изображение: 

12. ИК линия связи в охранной системе

ИК линия связи в охранной системе

Большие помехи в радиоэфире, легкость обнаружения переданного по радио и последующей его имитации, административно-финансовые препятствия, созданные перед каждым желающим воспользоваться радиоканалом в своей охранной системе (ОС)*, заставляют искать здесь какие-то иные средства связи. С появлением полупроводниковых излучателей, способных генерировать мощные ИК вспышки, и фотодиодов с встроенной оптикой инфракрасный диапазон стал представлять интерес и в этом отношении.

В линии связи, работающей в системе охранной сигнализации, должны, очевидно, по-разному представляться три возможные ситуации: а) на охраняемом объекте нарушений нет; б) объект передает сигнал тревоги; в) «обрыв» в канале связи.

*) В России передачу сигналов охранных систем по радио разрешено вести лишь в двух частотных каналах (см. с. 10). Это - для всех нас. Напомним, что в особом состоянии ионосферы, на так называемом «проходе», помеху, блокирующую радиоканал, может вызвать не только сигнал соседа, находящегося «лишь» в 5...10 км, но и радиопередатчик, удаленный на 1.5...2 тысячи километров.

 

13. Передатчик в ИК линии связи

Передатчик в ИК линии связи

Его принципиальная схема приведена на рис. 55. Здесь DD1.1, DD1.2, R3, ZQ1 - тактовый генератор, возбуждающийся на частоте кварцевого резонатора fр=32768 Гц. DD3 - счетчик, на выходе 11 (выв. 15) которого формируется 16-герцовый меандр (f11=fр/2^11), а на выходе 14 (выв. 3) - 2-герцовый (f14=fр/2^14). Элементы DD2.1- DD2.4 образуют переключатель, на выходе которого (выход DD2.4) возникает 2-герцовый или 16-герцовый меандр в зависимости от уровня напряжения на входе 5 элемента DD2.1*.

Из фронта меандра дифференцирующая цепочка R5C3 и импульсный усилитель DD1.4-DD1.6 формируют в базе нормально запертого транзистора VT1 импульс тока длительностью tи@10 мкс (tи@R5·C3). Возникающий в цепи коллектора транзистора VT1 ток возбуждает ИК диод BI1 ив пространство излучается короткая ИК вспышка.

Итак, ИК передатчик всегда что-то излучает - либо редкие, 2-герцовые импульсы, если оснований для тревоги нет, либо частые,
16-герцовые - тревожные.

2-28.jpg

Рис. 55. Передатчик ИК линии связи

2-29.jpg

Рис. 56. Печатная плата передатчика

На рис. 56 показана печатная плата передатчика, которую изготавливают из двухстороннего фольгированного стеклотекстолита толщиной 1,5 мм. Фольга со стороны деталей используется лишь в качестве нулевого провода-«земли»; в местах пропуска проводников в ней вытравлены фрагменты той или иной конфигурации. Место пайки к нуль-фольге «заземляемого» вывода резистора, конденсатора и др. показано зачерненным квадратом; соединение с ней вывода микросхемы или проволочной перемычки - квадратом со светлой точкой в центре.

В центре платы сверлят отверстие под ИК диод, его выводы припаивают к соответствующим уширениям на печатных проводниках внакладку.

Все резисторы ИК передатчика - типа МЛТ-0,125. Конденсаторы: С1, С2, С5 - КМ-6 (выводы в одну сторону); С4 - К50-6; С6 - TOWA или другой, диаметром не более 10 мм; СЗ - КМ-5 (выводы в разные стороны).

Имеющиеся в продаже ИК диоды предназначены для работы в устройствах дистанционного управления бытовыми радиоаппаратами и обычно имеют довольно широкий - до 30...400 - лепесток излучения. Для увеличения «дальнобойности» такого излучателя в него нужно ввести линзу-конденсор. Так, как показано на рис. 57. Здесь: 1 - печатная плата передатчика; 2 - ИК-диод; 3 - корпус передатчика (ударопрочный полистирол толщиной 2...2,5 мм); 4 - обойма стандартной 5-кратной часовой лупы (на ней должен быть значок «х5»); 5 - ее линза.

2-30.jpg

Рис.57. Корпус с линзой- концентратором

Лупу приклеивают к передней стенке корпуса (клей - распущенные в растворителе 647 или RS-2 кусочки полистирола; им же клеят и сам корпус), в которой сделано отверстие диаметром 30...35 мм. При указанном на чертеже расстоянии между основанием лупы и печатной платой ИК диод оказывается в фокусе ее линзы, его излучение сжимается в узкий луч и освещенность окна фотоприемника на другом конце ИК линии связи многократно увеличивается.

Важнейшим параметром ИК передатчика, как и любого элемента охранной техники, является его энергопотребление в дежурном режиме. В таблице 11 показана зависимость потребляемого им тока Iпотр от напряжения источника питания Uпит. В режиме передачи тревожного сигнала Iпотр увеличивается примерно на 10%.

Невысокое общее энергопотребление позволяет ввести резервный источник питания непосредственно в корпус ИК передатчика без увеличения его габаритов. Это может быть, например, 6-вольтная батарея типа 11А (Ж10,3х16 мм, емкость 33 мА·ч) или 476А (Ж13х25 мм, емкость 105 мА·ч). Показанная в таблице 11 зависимость тока в ИК диоде Iимп от напряжения питания позволяет судить о мощности ИК вспышек, излучаемых передатчиком, и, соответственно, о его «дальнобойности».

Таблица 11

Uпит ,B

Iпотр, мА

Iимп, А

4,2

0,20

0,36

5,0

0,40

0,46

6.0

0,77

0,64

7,0

1,30

0,82

8,0

1,90

0,97

9,0

2,70

1.23

10,0

3,60

1,38


 

Размещая передатчик, нужно помнить об очень узкой диаграмме его излучения. Узел крепления должен позволить точную наводку передатчика и жесткую его фиксацию в лучшем положении. Можно воспользоваться, например, шарнирной головкой от фотоаппарата или кинокамеры, установив ее на стене, раме окна и т.п. Или выполнить этот узел в виде двух латунных пятачков, соединенных отожженной медной

2-31.jpg

Рис. 58. Узел крепления передатчика

проволокой диаметром 2...2,5 мм (рис. 58). Один из пятачков крепят винтами к боковой стенке излучателя (резьба - в стенке), другой - шурупами к опоре. Проволоку сгибают так, чтобы излучатель занял нужное положение. Во избежание значительных вибраций она должна быть возможно более короткой.

Испытания показали, что при Uпит=6 В передатчик способен обеспечить связь на расстоянии r@70 метров (с отоприемником, описание которого приведено ниже). Но это не предел. Зависимость r от Iимп при прочих равных условиях имеет вид: г@к·ЦIимп , где к - коэффициент, учитывающий «Прочие условия». Таким образом, при Uпит =10 В r@100 м. Ток в ИК диоде может быть увеличен и за счет сопротивления резистора R7: Iимп=[Uпит-4] /R7 (Iимп - в амперах, Uпит - в вольтах, R7 - в омах). Но делать это нужно с осторожностью: в любом сочетании Uпит и R7 амплитуда тока в ИК диоде не должна превышать предельно допустимую (см. приложение 3).

Значительное увеличение яркости ИК вспышки можно получить, перестроив «сильноточную» часть импульсного усилителя так, как показано на рис. 59 (печатная плата - на рис. 60, а, б). В этом случае может быть достигнут ток в импульсе Iимп=10 А - допустимый для ИК диода типа АЛ123А. Резистор R4 - самодельный, отмеренный по цифровому омметру или вычисленный (см. приложение 8) отрезок нихромовой, константановой или манганиновой проволоки.

2-32.jpg
Рис. 59. Головка излучателя с ИК диодом АЛ123А

2-33.jpg

Рис. 60. Печатная плата головки мощного ИК излучателя

Амплитуду и форму тока, возбуждающего ИК диод, можно проконтролировать осциллографом, подключив его к резистору R4.

Излучающую головку можно выполнить в виде отдельного блока во «всепогодном» исполнении. Все остальные элементы ИК излучателя могут войти в электронную часть охранной системы в качестве ее фрагмента, связанного с ИК головкой лишь тонким трехпроводным кабелем.

2-34.jpg

Рис. 61. Приемник ИК линии связи

*) Выделенное на рисунке штрих-пунктиром - пример датчика охранной системы, формирующего на своем выходе нужный сигнал.

 

Рис. 55. Передатчик ИК линии связи

Изображение: 

Рис. 56. Печатная плата передатчика

Изображение: 

Рис. 58. Узел крепления передатчика

Изображение: 

Рис. 59. Головка излучателя с ИК диодом АЛ123А

Изображение: 

Рис. 60. Печатная плата головки мощного ИК излучателя

Изображение: 

Рис. 61. Приемник ИК линии связи

Изображение: 

Рис.57. Корпус с линзой- концентратором

Изображение: 

14. Приемник в ИК линии связи

Приемнике ИК линии связи

Принципиальная схема приемника в ИК линии связи приведена на рис. 61. Здесь DA1 - усилитель-формирователь, преобразующий ИК вспышку, освещающую фотодиод BL1, в импульс напряжения с амплитудой U10@Uc4 (эпюра 1 на рис. 62). Одновибратор, выполненный на элементах DD1.1, DD2.1 и др., расширяет этот импульс* до tф1@R2·C5@15 мс (эпюра 2 на рис. 62) для задержки его спада (1) на входе С счетчика DD3 и формирования «щелчка» длительностью tф1, в звуковом генераторе, выполненном на DD2.5, DD2.6, BF1 и др.

Одновибратор DD1.3, DD2.3 и др. формирует импульс длительностью tф2@R4·C6@1,5 с (эпюра 3 на рис. 62), разрешающий беспрепятственный подсчет импульсов в DD3 лишь на этом временном интервале.

Приемник активизируется фронтом первой же ИК вспышки. Из него формируется короткий (tr@R6-C7) импульс на входе R счетчика DD3 (эпюра 4 на рис. 62), устанавливающий счетчик в предстартовое состояние (ему соответствует 0 - напряжение низкого уровня - на всех его выходах), а спадом импульса длительностью tф1

2-35.jpg

Рис. 62. Эпюры сигналов

в счетчик записывается первая единица. Если на фотоприемник поступают импульсы, следующие с частотой 2 Гц (с такой частотой, напомним, следуют ИК вспышки, если датчики на охраняемом объекте не потревожены), то на выходе 4 (выв. 5) счетчика DD3 сохраняется 0, так как фронтом четвертого импульса (он появится через 0,5х4=2 с - по окончании разрешающего счет интервала tф2 =1,5 с) счетчик DD3 будет возвращен в исходное состояние.

По иному ведет себя приемник, если на него приходят ИК импульсы, период следования которых равен 62,5 мс, т.е. - сигнал тревоги. Поскольку 62,5х4=250 мс < tф2-1,5 с, то четвертый импульс переведет счетчик DD3 в состояние «4» (000100; на его выводе 5 появляется 1 - напряжение, близкое к напряжению питания), счетчик в этом состоянии самозаблокируется (сигнал 1 на входе 8 элемента DD1.2 делает его нечувствительным к сигналам на входе 9), а включившийся красный светодиод HL1 и 16-герцовые щелчки звукового генератора доведут сигнал тревоги до окружающих (эпюры 5 и 6 на рис. 62). Это будет продолжаться примерно 1,25 с (tф2 -0,25), после чего возникнет 0,25-секундная пауза и тревожная сигнализация повторится.

При обрыве связи приемник ведет себя иначе. Если на временном интервале tобр (tобр=R11·C8) приемник не обнаруживает ИК вспышки, конденсатор С8 разряжается по цепи VD6, R11, DD2.3, транзистор VT1 открывается до насыщения, напряжение на резисторе R8 увеличивается с -О В почти до напряжения питания, на выходе DD 1.4 устанавливается напряжение низкого уровня и звуковой генератор начинает излучать монотонный сигнал с частотой fтон@1/2R14·C9. С появлением первой же ИК вспышки конденсатор С8 быстро заряжается по цепи R10, VD5, тональное излучение прекращается и приемник приступает к анализу поступающих сигналов.

Печатную плату приемника изготавливают из двустороннего фольгированного стеклотекстолита 50х50 мм толщиной 1,5 мм (рис. 63) подобно тому, как это сделано в ИК передатчике.

Фотоголовку ИК приемника (BL1, DA1 и др.), обладающую высокой чувствительностью к электрическим наводкам в широком спектре частот, необходимо экранировать. Экран изготавливают из жести, его выкройка показана на рис. 64. Штриховые линии здесь - места сгибов. Согнутый экран пропаивают в углах, выравнивают его низ и, установив в нужном положении

2-36.jpg

Рис. 63. Печатная плата приемника

на нуль-фольгу (на плате оно показано штриховой линией), припаивают к ней в двух-трех точках.

Конструктивно ИК приемник может быть выполнен так, как показано на рис. 65. Здесь: 1 - корпус приемника (черный полистирол толщиной 2...2,5 мм); 2 - обойма 7-кратной ручной лупы (ручка срезана); 3 - ее линза; 4 - печатная плата; 5 - экран фотоголовки;

6 - фотодиод ФД 263-01. Обойму лупы приклеивают к передней стенке корпуса, имеющей отверстие диаметром 35 мм (клей — распущенные в растворителе 647 или в RS-2 кусочки полистирола).

Расстояние между стоящими соосно фотодиодом и линзой должно быть близко к ее фокусному расстоянию. Это сконцентрирует

2-37.jpg

Рис. 65. Конструкция приемника

поступающий световой поток на фотодиоде и значительно увеличит чувствительность фотоприемника к слабым сигналам**.

К узлу крепления приемника предъявляются те же требования, что и к креплению передатчика: должна быть обеспечена удобная его наводка и надежная фиксация в лучшем положении.

Если по условиям связи ИК приемник должен быть вынесен на улицу (для связи, например, с автомобилем, стоящим у торца дома, или с квартирой на другом его конце), то его лучше составить их двух частей: внешней, во влагозащитный корпус-бленду которой помещают лишь объектив и фртоголовку, и внутренней - со всем остальным. Эти части связывают тонким трехпроводным кабелем («+», «-», выв. 10 микросхемы DA1).

Приемник может быть дополнен акустическим излучателем большей мощности, например, динамической головкой, включенной так, как показано на рис. 66, или пьезосиреной ACT-10 (рис. 67), сохраняющей достаточную мощность и при пониженном напряжении питания.

Как показали предварительные испытания, протяженность ИК линии связи с описанными здесь ИК приемником и передатчиком достигает 70 метров. Существенное ее увеличение может дать переход

В ИК приемнике важнее диаметр объектива. С его увеличением увеличивается освещенность р-п перехода фотодиода и, соответственно, расстояние, с которого может быть зафиксирована ИК вспышка излучателя.

2-38.jpg

Рис. 66. Динамическая головка в акустическом излучателе

2-39.jpg

Рис. 67. Пьезосиренав акустическом излучателе

на настраиваемую оптику - если вместо неподвижной линзы с ее приблизительной фокусировкой использовать объектив от старого фотоаппарата с наводкой на резкость по расстоянию, «Дальнобойность» передатчика может быть увеличена еще в 1,5...2 раза и более за счет увеличения яркости ИК вспышки.

С другой стороны, в линиях связи, не превышающих 20...25 м (автомобиль или «ракушка» под окнами 3...4-этажного дома, окно дома на другой стороне улицы и т.п.), оптика может не потребоваться вообще, во всяком случае - в ИК приемнике.

*) Напомним, что при умеренной засветке длительность этого импульса близка к длительности самой ИК вспышки. При интенсивной, от близко расположенного излучателя, например, она может увеличиться в 3...5 раз и более из-за относительно медленного «рассасывания» зарядов в р-n переходе фотодиода.

**) Угол расхождения лучей в объективе ИК передатчика, его так называемая апертура, должен соответствовать лепестку ИК диода (см. углы излучения ИК диодов в приложении 3). Тогда объектив «соберет» все его излучение.

 

Рис. 62. Эпюры сигналов

Изображение: 

Рис. 63. Печатная плата приемника

Изображение: 

Рис. 65. Конструкция приемника

Изображение: 

Рис. 66. Динамическая головка в акустическом излучателе

Изображение: 

Рис. 67. Пьезосиренав акустическом излучателе

Изображение: 

ИК-барьер

Изображение: