6. Отдельные узлы электронных устройств.

Глава 6. Отдельные узлы электронных устройств.

 

6.1 Счетные декады.

6.1 Счетные декады

В этом разделе приведены описания различных узлов электронных устройств, которые могут быть использованы при разработке разнообразных конструкций. Применение таких узлов позволит упростить разработку приборов и сократить требующееся на это время.

На рис. 128 показаны схемы трех декад с использованием в них вакуумных люминесцентных индикаторов ИВ-3, ИВ-4, ИВ-6. В декаде по схеме рис. 128,а работают десятичный дешифратор К155ИД1 и дешифратор, выполненный на диодах VD1-VD2. В декаде по схеме рис. 128,б,в использована микросхема К176ИЕ4, представляющая собой двоичный счетчик, и дешифратор двоичного кода в код семисегментного индикатора. Триггеры микросхем К176ИЕ4 декад устанавливают в нулевое состояние подачей напряжения высокого уровня на вход R, а переключаются триггеры спадом положительных импульсов на входе С. На выходах a-g микросхемы формируются сигналы управления семисегментным индикатором. При подаче напряжения низкого уровня на вход S состояние декады определяется напряжением высокого уровня на выходах a-g; при поступлении же на вход 5 напряжения высокого уровня состояние декады определяется напряжением низкого уровня. Такое переключение полярности сигналов расширяет область применения микросхем.

В декадах по рис. 128,6 и в используются транзисторы разной структуры. В первой из них могут работать транзисторы КТ315 (Г-Е, И), КТ503, КТ608 (с любыми буквенными индексами), во второй -КТ208 (кроме букв А-В), КТ209Г (Д-Ж, И-М), КТ3107А (Б-Д, И, К).

Аноды люминесцентного индикатора можно подключать непосредственно к выходам микросхемы К176ИЕ4, как показано на рис. 117,г, однако при этом яркость их свечения ухудшится. Способ подключения люминесцентного индикатора к дешифратору К514ИД1 показан на рис. 128,д. При этом напряжение 10 В на анодах индикатора получается в результате соединения одного из выходов накала (он одновременно служит и катодом) с источником питания -5 В. На рис. 128,е приведен пример использования в

качестве высоковольтных ключей инверторов микросхемы К155ЛНЗ, рассчитанных на переключение напряжений до 30 В.

На рис. 129 показаны схемы вариантов счетчиков с индикацией состояния светодиодными индикаторами. Дешифратор К514ИД1 (рис. 129,а) предназначен для работы с индикаторами, имеющими общий катод; дешифратор К514ИД2 (рис. 129,6) управляет индикаторами с общим анодом. В первом случае максимально допустимый выходной ток микросхемы равен 7,5 мА, во втором - 22 мА.

Варианты использования микросхемы К176ИЕ4 для совместной работы со светодиодными индикаторами показаны на рис. 129, в-д. К выходам микросхемы К176ИЕ4 счетчика по схеме рис. 129, д можно подключить индикаторы с током потребления на каждый сегмент не более 2...3 мА.

 

6.2 Счетчик импульсов с динамической индикацией.

6.2 Счетчик импульсов с динамической индикацией

Цифровые счетчики импульсов получили широкое распространение при конструировании цифровых измерительных приборов, дисплеев, электронных часов, электронных игр и т. д.

Предлагаемое устройство представляет собой 4-разрядный счетчик импульсов, работающий по методу динамической индикации, когда один и тот же дешифратор с транзисторными ключами используется для дешифрации состояний четырех декадных счетчиков и для управления четырьмя газоразрядными индикаторами.

Использование метода динамической индикации позволяет применять один и тот же узел счетчика (как правило - дешифратор) для работы в нескольких разрядах счетчика. Это дает возможность уменьшить число используемых элементов. Метод динамической индикации удобен и тогда, когда индикаторные лампы должны находиться на удалении от самого устройства: в этом случае за счет использования динамической индикации сократится число жил в соединительном кабеле. На рис. 130 показана принципиальная схема счетчика, а на рис. 131 - схема включения индикаторов, входных цепей и цепей питания.

На микросхемах DD1-DD4 собраны декадные счетчики, соединенные последовательно друг с другом. Напомним, что микросхема К155ИЕ2 состоит из триггера со счетным входом С1 и счетчика с коэффициентом пересчета 5 со входом С2. Если выход триггера соединить со входом счетчика (т. е. соединить выводы 12 и 1 микросхемы), получится последовательный двоично-десятичный счетчик, работающий в коде 1-2-4-8. Временные эпюры напряжений такого счетчика показаны на рис. 132. Триггеры счетчиков устанавливают в состояние 0, одновременно подавая напряжение высокого

6-21.jpg

6-22.jpg

6-23.jpg

уровня на входы &R0. Полярность входных счетных импульсов, подаваемых на входы С1 и С2, положительная. Триггеры переключаются спадом входных импульсов. Максимальная частота импульсов, подаваемых на вход счетчика, составляет 10 МГц. Выходное сопротивление устройства, к которому может быть подключен вход 4-разрядного счетчика, должно быть не более 2 кОм. Напряжение высокого уровня в импульсе должно быть не менее 2,4 В, логического 0 - не более 0,4 В. Импульсы должны иметь крутые фронты.

На микросхеме DD10 собран генератор тактовых импульсов, частота следования которых составляет 2...3 кГц. Эти импульсы поступают на счетчик с коэффициентом пересчета 4, собранный на двух D-триггерах микросхемы DD1.1. D-триггер работает следующим образом: после прихода синхронизирующего импульса на вход С на выходе триггера устанавливается такой логический уровень, который был на входе D до прихода импульса. Если вход D соединить с инверсным выходом этого же триггера, то состояние триггера будет изменяться на противоположное после прихода каждого очередного импульса на вход С, т. е. триггер будет работать в счетном режиме. Соединив два таких счетных триггера

6-24.jpg

последовательно, получим счетчик с коэффициентом пересчета 4. Дешифратор состояний этого счетчика выполнен на микросхемах DD12, DD13. Во время работы генератора тактовых импульсов на выходах логических элементов DD12.2, DD12.4, DD13.2, DD13.4 появляется последовательно напряжение высокого уровня. Работа генератора на микросхеме DD10, счетчика на микросхеме DD11 и дешифратора на микросхемах DD12, DD13 поясняется рис. 133.

6-25.jpg

Микросхемы DD5-DD8 представляют собой логические элементы 2-2-2-3И-4ИЛИ-НЕ. Это означает, что если напряжение высокого уровня имеется на всех входах хотя бы одного из элементов И (например, на выводах 9, 10), то на выходе микросхемы будет напряжение низкого уровня. Подключением к выходам микросхем инверторов DD9.1-DD9.4 и объединением выводов 5, 6 в каждой из микросхем DD5-DD8 логическая операция 2-2-2-2И-4ИЛИ-НЕ

6-26.jpg

сведена к операции 2-2-2-2И-4ИЛИ, т. е. если хотя бы на одной паре входов одного из четырех элементов И есть напряжение высокого уровня, то на выходах микросхемы DD9 также будет напряжение высокого уровня.

Выходы инверторов DD9.1-DD9.4 подключены ко входам микросхемы DD14. Она представляет собой дешифратор, преобразующий двоичный код в десятичный, и высоковольтные транзисторные ключи, управляющие зажиганием цифр газоразрядных индикаторов HG1-HG4.

Выход логического элемента DD12.2 соединен со входами логических элементов И (выводы 10) каждой из микросхемDD5-DD8. Ко вторым входам этих логических элементов (выводы 9) подключены выходы микросхемы DD1. Когда на выходе DD12.2 имеется напряжение высокого уровня, уровни напряжения на

6-27.jpg

выходах элементов DD9.1, DD9.2, DD9.3, DD9.4 повторяют соответственно уровни на выходах 1, 2, 4, 8 микросхемы DD1, т. е. происходит считывание информации, записанной в счетчике DD1. Когда напряжение высокого уровня имеется на выходе элемента DD12.4, информация считывается из счетчика DD2 и т. д. Таким образом, за время выработки генератором четырех тактовых импульсов на входы дешифратора DD14 поочередно поступает информация о состоянии счетчиков DD1, DD2, DD3, DD4.

Когда напряжение высокого уровня имеется на выходе логического элемента DD12.2, то транзистор, подключенный к выводам 2, 13, 14 микросхемы DA1, закрыт, а остальные транзисторы открыты, на анодах ламп HG2-HG4 напряжение низкого уровня и они не светятся; светится только одна из цифр лампы HG1. При поступлении следующего импульса с генератора тактовых импульсов оказывается закрытым следующий транзистор микросхемы DA1, поэтому под напряжением находится только лампа HG2, и так далее при поступлении следующих импульсов. Таким образом, лампа HG1 индицирует состояние счетчика DD1, HG2- DD2, HG3 - DD3 и HG4 -DD4. Так как частота тактовых импульсов достаточно велика, создается впечатление непрерывной работы каждой газоразрядной лампы.

Устройство собрано на плате из гетинакса размерами 112 х 95 мм. Здесь расположены только те элементы, которые обозначены на рис. 130. Все соединения выполнены проводами. Конденсаторы Cl, C2 -типов КМ-6, КЛС, МБМ и др. В счетчике могут быть использованы аналогичные микросхемы серии К 133, имеющие такую же нумерацию всех выводов. Вместо микросхем DD5-DD10, DD12, DD13 могут быть использованы также аналоги из серий К 131, К 158, имеющие такую же нумерацию выводов. Вместо микросборки транзисторов DA1 можно применить транзисторы типа КТ605А или КТ940А. В качестве ламп HG1-HG4 можно использовать индикаторы ИН-1, ИН-8, ИН-12Б и ИН-18.

Если все детали исправны и монтаж выполнен без ошибок, устройство начинает работать сразу. В этом случае настройка его сводится к подбору резисторов R4-R7 таким образом, чтобы ток через анод каждой из ламп составлял 1...1,5 мА.

Для надежной работы необходимо, чтобы длина проводника, через который поступают импульсы на вход счетчика, не превышала 0,2...0,3 м.

 

Рис. 128а Схема счетных декад работающих на люминесцентные индикаторы (с дешифратором)

Изображение: 

Рис. 128б Схема счетных декад работающих на люминесцентные индикаторы (К514ИД1, К514ИД2)

Изображение: 

Рис. 129 Схемы счетных декад работающих на светодиодные индикаторы

Изображение: 

Рис. 130а Принципиальная схема счетчика

Изображение: 

Рис. 130б Принципиальная схема счетчика

Изображение: 

Рис. 131 Съема включения индикатора, входных цепей и цепей питания

Изображение: 

Рис. 132 Временные диаграммы напряжения двоично-десятичного счетчика

Изображение: 

6.3 Электронный пускатель.

6.3 Электронный пускатель

Как известно, электромеханические пускатели широко применяют в электроаппаратуре для исключения повторного включения устройства после пропадания напряжения в сети. В таких пускателях коммутация нагрузки производится контактами реле. Значительно уменьшить обгорание контактов реле можно использованием тринисторов или симисторов, в этом случае контакты реле используются для управления слаботочной цепью тринистора.

Схема электронного пускателя представлена на рис. 134. Первичная обмотка трансформатора питания Т1 подключена к питаю-

6-31.jpg

щей сети через симистор VS1. Нормально замкнутые контакты реле К1 шунтируют катод и управляющий электрод симистора, что обеспечивает закрытое состояние последнего. При нажатии кнопки SB1 "Пуск" через ее замыкающие контакты напряжение поступает на обмотку I трансформатора. Срабатывает реле К1 и своими контактами соединяет управляющий электрод симистора с его анодом. При этом симистор открывается в начале каждого полупериода, подавая напряжение на трансформатор и в нагрузку и после отпускания кнопки.

Данные трансформатора Т1, диодного моста VD1, реле К1 и конденсатора С1 определяются параметрами нагрузки. Такой электронный пускатель можно использовать, например, в зарядном устройстве (см. рис. 76).

6-32.jpg

выходах элементов DD9.1, DD9.2, DD9.3, DD9.4 повторяют соответственно уровни на выходах 1, 2, 4, 8 микросхемы DD1, т. е. происходит считывание информации, записанной в счетчике DD1. Когда напряжение высокого уровня имеется на выходе элемента DD12.4, информация считывается из счетчика DD2 и т. д. Таким образом, за время выработки генератором четырех тактовых импульсов на входы дешифратора DD14 поочередно поступает информация о состоянии счетчиков DD1, DD2, DD3, DD4.

Когда напряжение высокого уровня имеется на выходе логического элемента DD12.2, то транзистор, подключенный к выводам 2, 13, 14 микросхемы DA1, закрыт, а остальные транзисторы открыты, на анодах ламп HG2-HG4 напряжение низкого уровня и они не светятся; светится только одна из цифр лампы HG1. При поступлении следующего импульса с генератора тактовых импульсов оказывается закрытым следующий транзистор микросхемы DA1, поэтому под напряжением находится только лампа HG2, и так далее 'при поступлении следующих импульсов. Таким образом, лампа HG1 индицирует состояние счетчика DD1, HG2- DD2, HG3 - DD3 и HG4 -DD4. Так как частота тактовых импульсов достаточно велика, создается впечатление непрерывной работы каждой газоразрядной лампы.

Устройство собрано на плате из гетинакса размерами 112 х 95 мм. Здесь расположены только те элементы, которые обозначены на рис. 130. Все соединения выполнены проводами. Конденсаторы С 1, С2 -типов КМ-6, КЛС, МБМ и др. В счетчике могут быть использованы аналогичные микросхемы серии К 133, имеющие такую же нумерацию всех выводов. Вместо микросхем DD5-DD10, DD12, DD13 могут быть использованы также аналоги из серий К 131, К 158, имеющие такую же нумерацию выводов. Вместо микросборки транзисторов DA1 можно применить транзисторы типа КТ605А или КТ940А. В качестве ламп HG1-HG4 можно использовать индикаторы ИН-1, ИН-8, ИН-12Б и ИН-18.

 

Рис. 132 Временные эпюры напряжений одного двоично-десятичного счетчика

Изображение: 

Рис. 134 Принципиальная схема электронного пускателя

Изображение: 

6.4 Узел выключения прибора.

6.4 Узел выключения прибора

Применение этого узла в различных электронных приборах с батарейным питанием позволяет избавиться от выключателя питания, заменив его пусковой кнопкой. Выключатель питания неудобен тем, что по окончании пользования прибором его необходимо выключать. Если же забыть это сделать, то батарея питания будет разряжаться. Особенно это относится к электронным играм, которыми пользуются дети. Данный узел позволяет включать прибор нажатием .кнопки, выключение его осуществляется автоматически.

Схема узла выключения прибора представлена на рис. 135.

6-41.jpg

При замыкании контактов кнопки SB 1 "Пуск" питание от батареи GB1 поступает к цепям питания прибора и микросхемы DD1, на двух логических элементах которой выполнен RS-триггер. Поскольку конденсатор С1 в первый момент разряжен, на выводе 5 микросхемы DD1 действует напряжение низкого уровня, и триггер устанавливается в состояние, соответствующее напряжению низкого уровня на выходе логического элемента DD1.1. Открывается транзистор VT1 и в этом состоянии остается и после отпускания кнопки SB1.

Выключение прибора осуществляется подачей напряжения низкого уровня на вывод 1 микросхемы DD1. Это может быть сигнал реле времени или сигнал с какого-либо счетчика, используемого в приборе.

Если питание прибора осуществляется от батареи напряжением 9 В, то в качестве микросхемы DD1 целесообразно использовать микросхемы серий К176, К561 (например, К176ЛА7).

 

Рис. 135 Схема узла выключения прибора

Изображение: