3. Электрооборудование, электроустановки

Электричество.

Работа электрика по обслуживанию электрооборудования сводится к поддержанию работоспособного и безопасного состояния электрических машин, пуско-защитных аппаратов, устройств освещения, сигнализации и автоматики, что все и называется электрооборудованием, а также проводов, кабелей, разъемов, зажимов, электромонтажных изделий и т. д.

В состав устройств могут входить различные элементы, например, резисторы, конденсаторы, полупроводниковые приборы. Электрик должен быть знаком со всеми этими элементами, аппаратами и устройствами, но при работе он встречает много вопросов и затруднений, особенно в молодом возрасте, когда мало опыта. Полезно все эти вопросы и затруднения не спеша проанализировать с книгой, но таких книг пока недостаточно.

Целью данного раздела суперэнциклопедии является знакомство электрика с электрооборудованием и другими составляющими электроустановок в части их безопасности, безотказности, увеличения срока службы.

 

 

1. Раздел 1.

Раздел 1.

Электрическая энергия является неотъемлемым благом цивилизации. Обладая легкой делимостью, транспортабельностью, универсальностью, она проникла во все сферы нашей жизни и обеспечивает комфорт в жилище, приготовление пищи, такие блага цивилизации, как связь, телевидение, радио и т. д.

В быту, на даче, на подсобных участках нам приходится соприкасаться и пользоваться сотнями электрических помощников, облегчающих труд и создающих комфорт. Грамотная их эксплуатация, элементарные работы по включению и подключению, замене отдельных элементов, ремонту — вот основные задачи, с которыми приходится сталкиваться практически каждому человеку. Часто неспециалисту сложно объяснить, что же он хочет от электроустановки, какие могут быть последствия несанкционированного вмешательства в ее работу, как уберечься от поражения электрическим током. Авторы осознавали объемность задач и поэтому ограничились наиболее общими и прикладными вопросами применения электрической энергии дома и на даче. Для удобства читателя сведения сгруппированы по тематике, а информация представлена в виде вопросов и ответов, что позволяет ее конкретизировать.

1. Электричество - Друг и Враг

Электричество - Друг и Враг

Электричество является не только источником благ, но и основой для многочисленных забот по его рациональному и безопасному использованию. Ответом на эти общие вопросы и посвящена настоящая глава.

Каков порядок допуска в эксплуатацию производственных потребителей?

Сложившаяся монополия государственных энергосистем определяет единство требований к порядку допуска в эксплуатацию потребителей. Основным правовым документом, регулирующим взаимоотношения энергоснабжающей организации и потребителя (абонента), является договор. В договоре указываются количество, сроки и качество подлежащей отпуску электроэнергии; категория потребителей; порядок определения цены отпускаемой электроэнергии; способ и условия контроля потребления электроэнергии с указанием приборов, по которым он будет производиться; формы расчета; обязательство обеспечить установленный договором режим потребления; обязательство потребителя допускать представителей электроснабжающей организации и органов Государственного энергонадзора для проверки технических средств коммерческого учета электроэнергии, состояния электрооборудования и электроустановок потребителей. Договоры на снабжение электроэнергией заключаются в письменной форме по инициативе абонента не позднее чем за три месяца до начала потребления. Договор не реже чем через каждые три года подлежит обновлению и корректировке. При сдаче собственности в аренду потребитель письменно сообщает энергоснабжающей организации наименование арендатора, характер деятельности и сроки аренды, заключает договор о взаимоотношениях с организацией-арендатором и продолжает расчеты за потребленную электроэнергию с электроснабжающей организацией по установленным тарифам.

Обязательным условием заключения договора на снабжение электроэнергией является наличие у потребителя: технических условий на присоединение к электрическим сетям энергоснабжающей организации; акта границ балансовой принадлежности и ответственности сторон; установленных и готовых к эксплуатации технических средств учета потребления электроэнергии; согласованной с энергоснабжающей организацией годовой потребности в электроэнергии и мощности, подтвержденной соответствующими документами.

Подача напряжения на новые электроустановки производится при наличии акта допуска их в эксплуатацию, заключения органа Госэнергонадзора о соответствии объекта утвержденной проектно-сметной документации после заключения договора на пользование электроэнергией, проверки и установки приборов учета и при наличии наряда Энергонадзора на включение электроустановки.

До пуска электроустановок в эксплуатацию они должны пройти приемосдаточные испытания и быть приняты потребителем от монтажной или пусконаладочной организации по акту в соответствии с действующими правилами. Электроустановки с сезонным характером работы (дома, зоны отдыха и т. п.) должны ежегодно перед включением предъявляться для осмотра инспектору Госэнергонадзора. В договоре между абонентом и энергоснабжающей организацией указываются данные о присоединенных к сети абонента субабонентах (наименование, мощность, электропотребление, расчетные счетчики, тарифы и т. д.).

Абоненты рассчитываются за электрическую энергию, потребленную ими и субабонентами, по тарифам, установленным для соответствующих групп потребителей, к которым они относятся (жилой сектор, электроплиты, производственные потребители и т. д.).

Kак и кого получить разрешение на подключение жилого дома?

После завершения монтажа электроустановок потребитель (владелец дома) должен подготовить документацию:

• согласованный проект электроснабжения (или подробную схему);

• протокол измерения сопротивления тока заземляющего устройства и повторного заземления;

• протокол проверки цепи между заземлителями и заземляющими элементами токоприемников;

• акт на скрытые работы по монтажу кабелей проводок и заземляющих устройств;

• технические паспорта на силовое электрооборудование и приборы учета с отметкой торгового предприятия или справку о приобретении;

• технические условия и справку владельца электрических сетей, ведавших технические условия, об их выполнении.

При наличии указанной документации потребитель подает заявление на отпуск электроэнергии и вызов представителя предприятия Энергонадзор. Представитель должен:

• осмотреть выполненный монтаж электроустановок на соответствие проекту и Правилам устройства электроустановок;

• проверить соответствие результатов проведенных испытаний нормам;

• провести инструктаж владельца электроустановок по основным мерам безопасности при эксплуатации, о чем делается соответствующая запись в заявлении-обязательстве владельца.

Право пользования электроэнергией потребителю предоставляется после допуска электроустановок к эксплуатации и выдачи абонентской книжки или абонентской карточки. Присоединение электроустановок к электросети производится персоналом предприятия, выдавшего технические условия, по наряду предприятия Энергонадзор.

Что делать если вы хотите использовать электрическую энергию для нагрева?

Для получения разрешения на применение электроэнергии для нагрева потребитель представляет материалы, обосновывающие целесообразность данного решения: технико-экономическое обоснование выбора электронагрева; перечень видов электротермической технологии; перечень электронагревательных устройств, предполагаемых к установке, с указанием их паспортных данных; перечень мероприятий по снижению потребляемой мощности в часы максимума нагрузки энергосистемы; перечень приборов и устройств, контролирующих включение нагрузки.

К технологическим процессам с использованием в тепловых процессах электрической энергии относят местный обогрев животных и птицы (коврики, брудеры, электрообогреваемые полы и т. п.):

нагрев воды и получение пара для запаривания кормов, пропаривания молочной посуды, промывки молокопроводов, пастеризации молока:

подогрев воды для поения скота; поддержание необходимого температурного режима в хранилищах фруктов, овощей и семенного зерна.

При применении электроводонагревателей мощностью более 10 кВт они должны быть оборудованы аккумуляторами нагретой воды.

Применение электронагревательных устройств для целей отопления и горячего водоснабжения в организациях, в помещении контор, клубов и т. д., где имеются источники центрального или местного теплоснабжения, а также в помещениях гаражей для личного автотранспорта запрещается.

Надо ли получать разрешение на установку стационарных электроплит и каков его порядок ?

Не требуется разрешение на установку стационарных плит для приготовления пищи:

- при установке бытовых кухонных плит в жилых домах высотой 9 и более этажей независимо от места их строительства и ведомственной принадлежности;

- при установке бытовых кухонных электроплит и электротитанов в общежитиях независимо от этажности;

- при установке электротермического оборудования в детских яслях-садах, общеобразовательных школах, школах-интернатах, техникумах, институтах, профтехучилищах, больницах и поликлиниках, в буфетах и кафе театров и кинотеатров.

Во всех прочих случаях разрешение должно быть выдано в соответствии с общими правилами получения разрешений на подключение электроэнергии для нагрева.

Как организуется учет электроэнергии?

Для коммерческого учета используют только технические средства, включенные в реестр Госстандарта. При питании от одного источника электроснабжения нескольких потребителей различных тарификационных групп приборы учета должны быть установлены для каждой тарификационной группы. Это требование касается как абонентов, так и субабонентов. В жилых домах расчетные электросчетчики устанавливают на каждую квартиру (абонента), а также для учета электроэнергии, расходуемой для общедомовых нужд (освещение подъездов, работа лифтов и т. п.).

Технические средства коммерческого учета (электросчетчики, сумматоры и т. п.) после согласования проекта с электроснабжающей организацией приобретаются и устанавливаются потребителями (абонентами) или организациями-застройщиками. Техническое обслуживание данных средств учета производит энергоснабжающая организация, она же проводит проверку и плановую их замену.

Технические средства коммерческого учета должны иметь на креплении кожухов пломбы Госстандарта, а также пломбы энергоснабжающей организации на крышках других средств, защищающих схемы учета от вмешательства извне.

При применении электрической энергии для нагрева должны предусматриваться электрические счетчики для расчета за потребленную электроэнергию по двум зонам суток (дневной, ночной). Данные приборы приобретаются, устанавливаются и эксплуатируются потребителем. Планируемые к установке приборы учета и устройства управления должны быть согласованы с электроснабжающей организацией на стадии проектирования.

При электроснабжении индивидуальных жилых домов и строений число и тип счетчиков определяются проектом и зависят от вида тарифа на потребляемую электроэнергию. Проект обязательно должен быть согласован с энергоснабжающей организацией и предприятиями Энергонадзора. Перед трехфазным счетчиком обязательно устанавливают отключающий аппарат (рубильник, автоматический или пакетный выключатель и т. п.). Счетчики должны быть непосредственного включения и иметь пломбу с клеймом госповерителя давностью на момент установки не более: трехфазные — 12 месяцев; однофазные — 2 года.

Приборы учета, отключающие аппараты и при необходимости другие устройства должны быть опломбированы. После счетчика, включенного непосредственно в питающую сеть, должен быть установлен аппарат защиты. Он должен устанавливаться возможно ближе к счетчику, но не далее чем на 10 м по длине электропроводки. Если после счетчика каждая линия снабжена аппаратами защиты, установка общего аппарата защиты не требуется.

Перед счетчиком должно быть установлено отключающее устройство в виде рубильника или двухполюсного выключателя для безопасной замены счетчика с приспособлением для пломбирования.

Кто имеет право обслуживать и эксплуатировать электрооборудование?

Эксплуатация электрооборудования бывает производственная и техническая. Производственная эксплуатация предполагает использование оборудования с целью получения технологического эффекта и производится технологическим персоналом или пользователем (электросоковыжималка — для получения сока, электроплита — для приготовления пищи и т. п.). В условиях производства этот персонал относится к 1-й группе по технике безопасности и периодически инструктируется.

Техническая эксплуатация направлена на обеспечение надежной и безопасной работы оборудования или восстановление его работоспособности и должна осуществляться квалифицированным электротехническим персоналом. Квалифицированным электротехническим персоналом считаются специально подготовленные лица, прошедшие проверку знаний в объеме, обязательном для данной работы, и имеющие квалификационную группу по технике безопасности. Групп по технике безопасности 5. Чем выше квалификационная группа, тем больше возможности электротехнического персонала. Лица со второй квалификационной группой могут выполнять работы в недействующих электроустановках, с третьей и выше — в действующих электроустановках.

В зависимости от вида помещений, условий окружающей среды, наличия или отсутствия токопроводящих предметов предъявляются различные требования по эксплуатации и устройству электрооборудования. Несоблюдение этих требований может привести к нарушениям в работе электроустановок, электротравмам, пожарам или взрывам.

Что такое категория по надежности электоснабжения и она обеспечивается?

Все потребители электрической энергии при питании от государственной энергосистемы различаются по надежности электроснабжения, иначе — по категориям.

Электроприемники I категории — это такие электроприемники, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Электроприемники II категории — электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники III категории — все остальные электроприемники, не подходящие под определения I и II категории.

Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения может быть допущен лишь на время автоматического восстановления питания. Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания. В качестве такого источника могут использоваться местные электростанции, аккумуляторные батареи и т. п. Примеры потребителей I категории — аварийнее освещение зрелищных предприятий, охранная сигнализация, инкубатории, предприятия канализации, варочные, операционные отделения и т. п.

Электроприемники II категории допускают перерыв в электроснабжении до одних суток, их электроснабжение может осуществляться по одной воздушной линии или по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату. К потребителям II категории относятся мастерские, молочно-товарные фермы, теплицы и т. п.

Потребители III категории могут питаться от одного источника электроснабжения, при условии, что время ремонта или замены поврежденного элемента не превышает одних суток. К потребителям III категории относят индивидуальные жилые дома, дачи и т. п.

Kак классифицируют электроустановки и помещения по условиям окружающей среды?

Электроустановкой называется совокупность машин, аппаратов, линий и вспомогательного оборудования вместе с сооружениями и помещениями, в которых они установлены.

Открытыми, или наружными, электроустановками называются электроустановки, не защищенные зданием от атмосферных воздействий. Электроустановки, защищенные только навесами, сетчатыми ограждениями и т. п., рассматриваются как наружные.

Закрытыми, или внутренними, электроустановками называются электроустановки, размещенные внутри здания, защищающего их от атмосферных воздействий.

Электропомещениями называются помещения или отгороженные, например сетками, части помещения, доступные только для квалифицированного обслуживающего персонала, в которых расположены электроустановки.

Сухими помещениями называются помещения, в которых относительная влажность воздуха не превышает 60%.

Влажными помещениями называются помещения, в которых пары или конденсирующая влага выделяются лишь кратковременно в небольших количествах, а относительная влажность воздуха более 60%, но не превышает 75%.

Сырыми помещениями называются помещения, в которых относительная влажность воздуха длительно превышает 75%.

Особо сырыми помещениями называются помещения, в которых относительная влажность воздуха близка к 100% (потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой).

Жаркими помещениями называются помещения, в которых под воздействием различных тепловых излучений температура превышает постоянно или периодически (более 1 сут)+ 35°С (например, помещения с сушилками, сушильными и обжигательными печами, котельные и т. п.).

Пыльными помещениями называются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин, аппаратов и т. п.

Пыльные помещения разделяются на помещения с токопроводящей пылью и помещения с токонепроводящей пылью.

Помещениями с химически активной или органической средой называются помещения, в которых постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образуются отложения или плесень, разрушающие изоляцию и токоведущие части электрооборудования. По опасности взрыва или пожара помещения бывают взрывоопасными (шесть классов — B-I, В-Iа,в, г, B-II и В-IIа) и пожароопасными (четыре класса - П-1, П-II, П-IIIa, П-III).

Kак классифицируют электроустановки и помещения по опастности поражения электрическим током?

Электроустановки по условиям электробезопасности делят на установки до 1000 В и установки выше 1000В, действующие и недействующие.

В отношении опасности поражения людей электрическим током различаются:

1. Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность.

2. Помещения с повышенной опасностью, характеризующиеся наличием в них одного из следующих условий, создающих повышенную опасность:

а) сырости или токопроводящей пыли;

б) токопроводящих полов (металлические, земляные, железобетонные, кирпичные и т. п.);

в) высокой температуры;

г) возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования, — с другой.

3. Особо опасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность:

а) особой сырости;

б) химически активной или органической среды;

в) одновременно двух или более условий повышенной опасности.

4. Территории размещения наружных электроустановок. В отношении опасности поражения людей электрическим током эти территории приравниваются к особо опасным помещениям.

От чего зависит напряжение , применяемое в электроустановках?

Напряжение в электроустановках принимают стандартным с учетом класса помещений по условиям окружающей среды и опасности поражения электрическим током.

При питании от государственной энергосистемы номинальное напряжение питающей однофазной сети — 220 В, трехфазной — 380/ 220 В.

В помещениях без повышенной опасности это напряжение применяют без ограничений, в том числе и для электрифицированного инструмента.

В помещениях с повышенной опасностью и особо опасных при выполнении открытых проводок их высота должна быть не менее 2, 5 м за исключением спусков к розеткам, выключателям аппаратов и т. д. При невозможности соблюсти это требование должно применяться пониженное (42 В и ниже) напряжение и выполняться проводки в трубах (например, проводки в подвалах на даче или в смотровой яме гаража и т. п.). Переносной электрифицированный инструмент применяют в этих помещениях на напряжение 36 В, а в особо опасных и на металлических полах или емкостях — при использовании дополнительных защитных средств (диэлектрических бот, перчаток, ковриков и т. п.).

Аналогичные требования предъявляются и к переносным осветительным приборам.

Какие различают виды поражения электрическим током?

Различают два вида поражения электрическим током: электрические травмы и электрический

удар.

Электрические травмы представляют собой местные поражения тканей электрическим током в виде ожогов, электрических знаков и металлизации кожи.

Ожоги возникают при прохождении через тело человека тока более 1 А, в результате чего в тканях выделяется тепло. При нагреве тканей до температуры 60 — 70°С свертывается белок и возникает ожог.

Электрические знаки появляются в месте контакта с токоведущими частями. Они выделяются в виде овальной или круглой припухлости с затвердевшей кожей желтоватого цвета, очерченной белой или серой каймой. Их появление связано с глубоким поражением живой ткани.

Электрометаллизация кожи — пропитывание поверхности кожи частицами металла при его разбрызгивании и испарении под действием тока при горении дуги.

Электрический удар (шок) наблюдается при воздействии тока до нескольких сотен миллиампер. Такой ток не вызывает ожогов, но, действуя на нервную систему и мышцы, может привести к параличу дыхательных мышц, а также мышц сердца, в отдельных случаях - к смертельному исходу.

Что называется напряжением прикосновения?

Если к заземленной установке, в которой возникло напряжение на корпус, прикоснется человек, он окажется под действием напряжения прикосновения.

Напряжением прикосновения называется разность потенциалов между опорными точками под ногами человека и руками, которыми он касается корпуса электроустановки, находящейся под напряжением.

Различают однофазное прикосновение, т. е. прикосновение к одной фазе сети, и двухфазное — прикосновение к двум фазам сети.

Однофазное прикосновение происходит и при одновременном прикосновении к фазному и нулевому проводам, но в этом случае возможность поражения током увеличивается ввиду уменьшения сопротивления, которое в данном случае состоит из сопротивления человеческого тела от руки к руке.

Двухфазное прикосновение более опасно - в этом случае человек попадает под полное линейное напряжение.

Напряжение прикосновения может достигнуть опасной величины в случае большого сопротивления заземлителя или обрыва заземления.

Как защитить себя и окружающих от поражения электрическим током?

Безопасность обслуживающего персонала и прочих потребителей электрической энергии от поражения электрическим током обеспечивается:

• применением изоляции, которая может быть повышенной, а в отдельных случаях — двойной;

• соблюдением расстояния до токоведущих частей или путем закрытия, ограждения токоведущих частей;

• применением блокировки аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям;

• надежным и быстродействующим автоматическим отключением частей электрооборудования, случайно оказавшихся под напряжением, поврежденных участков сети, в том числе защитного отключения;

• заземлением и заземлением корпусов оборудования и элементов электроустановок, которые могут оказаться под напряжением вследствие повреждения изоляции;

• выравниванием потенциалов;

• применением разделительных трансформаторов;

• применением напряжений42 В и ниже переменного тока частотой 50 Гц и 110 В и ниже постоянного тока;

• применением предупреждающей сигнализации, надписей и плакатов;

• применением устройств, снижающих напряженность электрических полей;

• использованием средств защиты и приспособлений, в том числе для защиты от воздействия электрического поля в электроустановках, в кото

рых его напряженность превышает допустимые нормы.

В жилых, общественных и тому подобных помещениях устройства, служащие для ограждения и закрытия токоведущих частей, должны быть сплошные; в производственных помещениях и электропомещениях допускаются сплошные, сетчатые или дырчатые устройства.

Ограждающие и закрывающие устройства должны быть выполнены так, чтобы снимать или открывать их было можно лишь при помощи ключей или инструментов.

Какие защитные средства применяют в электроустановках?

Защитными средствами называют приборы, аппараты и переносные приспособления, предназначенные для защиты персонала, работающего в электротехнических установках, от поражения электрическим током. Изолирующие защитные средства делятся на основные и дополнительные.

В установках низкого напряжения основными защитными изолирующими средствами являются резиновые диэлектрические перчатки и галоши, инструмент с изолирующими рукоятками, указатели напряжения.

К дополнительным защитным средствам в установках низкого напряжения относятся резиновые коврики и изолирующие подставки.

Техническое состояние всех защитных средств, принятых в эксплуатацию, надо систематически проверять.

Перед вводом в эксплуатацию защитного средства необходимо проверить его исправность и соответствие защитного средства напряжению установки (табл.1).

Таблица 1. Периодичность и нормы электрических испытаний защитных средств

Наименование защитных средств

Напряжение электроустановки, кВ

Испытательное напряжение, кВ

Продолжительность испытания, мин

Ток утечки (не более), мА

Сроки периодических испытаний, мес

Перчатки резиновые диэлектрические

До 1

2,5

1

2,5

6

Тоже

Выше 1

6,0

1

6,0

6

Боты резиновые диэлектрические

Любое

15

1

7,5

36

Галоши резиновые диэлектрические

До 1

3,5

1

2,0

12

Коврики резиновые

До1

3,0

Протягиванием их между цилиндрическими электродами со скоростью 2-3 см/с

3,0

24

Тоже

Выше 1

15

Тоже

15

24

Инструмент с изолирующими рукоятками

До 1.0

2,0

1

-

12

Токоизмерительные клещи

До 0,04

0,5

5

-

12

Тоже

0,04-0,65

2,0

5

-

12

—— » ——

0,65-1

3,0

5

-

12

Изолирующие подставки

Любое

40

1

-

24



Какие выпускаются устройства защитного отключения?

Защитно-отключающие устройства предназначены для защиты от поражения током людей, работающих с электроустановками переменного тока. В настоящее время разработано большое количество схем защитного отключения. Технические характеристики некоторых устройств, применяемых в сетях с заземленной нейтралью, приведены в таблице 2.

Таблица 2. Технические характеристики защитно-отключающих устройств для передвижных и переносных токоприемников

Тип

Отключаемая мощность, кВт

Напряжение, В

Уставка защиты, мЛ

Время отключения, с

Масса, кг

ИЭ-9801

2,2/1,1

220/380

10

0,05

2,5

ИЭ-9802

4,0/2,2

220/380

10

0,05

4,0

ИЭ-9811

1,1/0,6

220/380

10

0,05

3,0

ИЭ-9812

4,0/2,2

220/380

10

0,05

3,0


В сетях с заземленной и изолированной нейтралью можно применять защитно-отключающие устройства типа ЗОУП-25. Они рассчитаны на ток потребителя до 25 А при напряжении 380 В; уставка защиты —10 мА, время отключения — 0,05 с, масса — 4,5 кг. При работе с электроинструментами однофазного тока общей мощностью 0,6 кВт при 220 В применяют защитно-отключающие устройства ЗОУ-1. Для электросварочных установок по своим параметрам, электрической схеме и конструктивному выполнению из серийно выпускаемых защитно-отключающих устройств наиболее перспективно устройство типа УСНТ-4. Оно может применяться для укомплектования сварочных установок переменного тока с током сварки от 60 до 500 А. Устройство УСНТ-4 обеспечивает снижение напряжения холостого хода при ручной сварке и не снижает качества сварки.

Kак проверить наличие напряжения в сети?

Проверяют наличие напряжения в сети или на оборудовании указателями («пробниками»), измерительными приборами. Запрещено использовать лампочки («контрольки»).

11.jpg

Рис. 1. Пробники и индикаторы с разнообразным питанием для проверки целости обесточенной электроцепи: а, б, в — от батарейки для карманного фонарика; г —от электросети с напряжением 127 или 220 В; а — оформление транзисторного пробника со световой индикацией; е — искровой пробник типа «Тест» с пьезогенератором; 1 — проволочный патрон; 2батарейка; 3 — наушник; 4 — резистор; 5 — измерительный электроприбор; 6 — розетка; 7 — корпус цангового карандаша; 8 -щуп; 9 — глазок над светодиодом; 10 — проводящая часть корпуса; 11 — зажим типа «крокодил»; 12 — курок

Указатели низкого напряжения до 1000 В бывают однополюсные и двухполюсные (рис. 1).

Однополюсные указатели напряжения предназначены для проверки наличия напряжения и определения фазных проводов в электроустановках временного тока при подключении счетчиков, выключателей, патронов электроламп, предохранителей и т. п. Они работают по принципу протекания емкостного тока.

Однополюсный указатель напряжения состоит из сигнальной неоновой лампы типа ИН-3 или МН-3 и резистора типа МЛТ на 1 — 3 МОм, помещенных в корпус из изоляционного ударопрочного материала. Однополюсные указатели напряжения имеют специальную маркировку: УНН-1м, УНН-lx, УНН-90, ИН-90, ИН-91 и др.

Рабочее напряжение указателя типа УНН-1м -90 — 660 В переменного тока частотой 50 Гц; напряжение зажигания — 70 В. Ток, протекающий через указатель при напряжении 660 В, — не более 0, 6 мА. Масса указателя — 0, 1 кг.

Двухполюсные указатели напряжения предназначены для проверки наличия и отсутствия напряжения в электроустановках переменного тока и работают по принципу протекания активного тока.

Двухполюсные указатели напряжения МИН-1 и УНН-10 состоят из сигнальной лампы типа ИН-3, МН-3 или МТХ-90 и двух резисторов МЛТ-2 — ограничивающего и шунтирующего. Элементы указателя напряжения помещены в два корпуса из изоляционного материала, соединенных между собой гибким проводом с изоляцией повышенной надежности.

Рабочее напряжение указателя типа УНН-10 — 70 - 660 В переменного тока и 100 - 700 В

постоянного тока. Напряжение зажигания - 60 -65 В. Масса указателя - 0, 15 кг.

Кроме того, выпускаются двухполюсные пробники напряжения ПН-1, позволяющие по величине светящегося столба и сигнальной лампы определить величину измеренного напряжения, фазные и нулевой провода.

Какие требования техники безопасности предъявляются при эксплуатации переносных

электрофицированных инструментов?

Для обеспечения безопасности корпус переносного электроинструмента должен быть занулен. Штепсельные соединения выполняются таким образом, чтобы фазные выводы нельзя было спутать с зануляющими. Так, в трехфазном штепсельном соединении три фазных вывода расположены рядом, а зануляющий на некотором расстоянии от них. Если электроинструмент однофазный, то зануляющий вывод расположен между рабочими выводами. Зануляющий штырек должен быть длиннее остальных, чтобы включить зануление раньше включения рабочих жил.

В месте ввода провода в корпус электроинструмента на провод надевают гибкие рукава или манжеты, предохраняющие изоляцию провода от перетирания о край корпуса.

Напряжение инструмента не должно превышать 380/220 В при использовании его в помещениях без повышенной опасности и 36 В в остальных помещениях или вне их.

В особо опасных помещениях, а также внутри котлов и резервуаров даже инструмент на 36 В нужно использовать с применением изолирующих защитных средств.

К работе с электроинструментом допускаются лица, обученные безопасному обращению с ним. Каждый электроинструмент закрепляют за конкретным лицом. При неисправностях нельзя самостоятельно на рабочем месте ремонтировать электроинструмент или его провод и штепсельные соединения; такой ремонт обычно бывает низкого качества. Не реже одного раза в месяц надо проверять мегаомметром изоляцию ручного электрифицируемого инструмента, понижающих трансформаторов и преобразовательной частоты, а также отсутствие обрыва заземляющей (зануляющей) жилы в питающем проводе. При каждой выдаче электроинструмент необходимо проверить при помощи специального стенда или прибора (нормо-метра).

Какие требования техники безопасности предъявляются к переносным светильникам?

Рукоятка переносного светильника должна быть выполнена из изоляционного материала, а патрон и лампа закрыты предохранительной металлической сеткой. Для подвода напряжения используют гибкий шланговый шнур.

Переносные светильники, подключенные к сети напряжением 110 — 220 В, могут представлять значительную опасность при повреждении изоляции провода. В помещениях с повышенной опасностью и особо опасных переносные светильники применяют на напряжение не выше 36 В. В случае, если рабочий может соприкасаться с металлическими (хорошо заземленными) поверхностями или находится в особо сырых помещениях (в баках, колодцах, котлах), для питания переносных светильников применяют напряжение не выше 12 В.

Переносные светильники присоединяют к сети напряжением 12 - 36 В или к сети 110 - 220 В через понижающие трансформаторы. Длина проводов от штепсельной розетки на 127 — 220 В до переносного трансформатора должна быть не более 2 м. У понижающих трансформаторов корпус и обмотки низшего напряжения заземляют, открытые незащищенные токоведущие части ограждают.

При работе внутри металлических баков и котлов понижающий трансформатор располагают снаружи. Изоляцию переносных проводов, а также понижающих трансформаторов проверяют мегаомметром не реже одного раза в месяц.

Какие требования предъявляются к лестицам и стремянкам?

Для изготовления лестниц и стремянок необходимо использовать сухое дерево, желательно без сучков. Ступени (перекладины) врезают в тетивы и через каждые 2 м скрепляют стяжными болтами. Запрещается работать на лестницах и стремянках, у которых перекладины прибиты гвоздями. Разрешается использовать приставные деревянные лестницы длиной не более 5 м и шириной не менее 0,5 м. Нижние концы лестниц и стремянок должны быть снабжены шипами или резиновыми наконечниками. Если пол деревянный крашеный, паркетный, асфальтовый, бетонный и т.д., используются резиновые наконечники; если же пол земляной или деревянный торцовый, применяются металлические шипы. Нельзя устанавливать лестницы и стремянки на дополнительные промежуточные сооружения из ящиков, бочек и др.

Как освободить человека от воздействия электрического тока?

При соприкосновении человека с токоведущими частями надо немедленно освободить его от действия тока, быстро отключив ту часть установки, к которой прикоснулся пострадавший. В том случае, когда с отключением электроустановки одновременно отключается и электрическое освещение, необходимо обеспечить освещение от других источников. Если выключатель находится далеко и установку нельзя отключить достаточно быстро, надо принять меры к отделению пострадавшего от токоведущих частей.

Оказывающий помощь должен принять необходимые меры-предосторожности: надеть диэлектрические перчатки, галоши или обернуть руки сухой тканью и подложить под ноги сухую одежду или сухую доску.

Если поблизости окажется топор, можно, подсунув под провода доску, перерубить их. Рубить каждый провод надо в отдельности. Топорище должно быть совершенно сухим.

Можно также перекусить каждый провод в отдельности кусачками или пассатижами с изолированными ручками.

При отделении пострадавшего от токоведущих частей или проводов нельзя прикасаться к его телу незащищенными руками.

Как оказать доврачебныю помощь пострадавшему?

Сразу же после освобождения человека от действия электрического тока необходимо определить характер оказания первой помощи и вызвать врача. Если пострадавший находится в сознании, его следует уложить в удобное положение, освободить от стесняющей дыхание одежды, обеспечить доступ свежего воздуха и обязательно накрыть. До прихода врача необходимо наблюдать за дыханием и пульсом.

Когда человек находится в бессознательном состоянии, но сохраняется устойчивое дыхание и пульс, пострадавшему следует дать понюхать нашатырный спирт и обрызгать лицо водой.

Если пострадавший не дышит или дышит очень редко и судорожно, ему следует немедленно начать делать искусственное дыхание. Для этого пострадавшего кладут на спину. Оказывающий помощь одну руку подкладывает под шею пострадавшего, а другой старается как можно больше запрокинуть его голову назад. При таком положении головы восстанавливается проходимость дыхательных путей — запавший язык отходит от задней стенки гортани.

Следует проверить, нет ли во рту посторонних предметов и при помощи носового платка освободить рот от слизи; под лопатки надо подложить валик из свернутой одежды.

Сделав глубокий вдох, надо через марлю или платок вдувать воздух в рот пострадавшего. Выдох будет происходить самопроизвольно. Вдувание воздуха производят через каждые 5 — 6 с.

Если челюсти у пострадавшего плотно стиснуты и их нельзя быстро разжать, необходимо производить искусственное дыхание методом «рот в нос», т. е. вдувать воздух в нос пострадавшего.

Когда воздух вдувается в рот, рукой зажимают нос пострадавшего, а если вдувание производится в нос, зажимают рот. Маленьким детям воздух вдувают одновременно в рот и нос.

Для искусственного дыхания по способу «рот в рот» наша промышленность выпускает ручные портативные аппараты РПА-1 и РПА-2. Этими аппаратами осуществляется ритмичное вдувание в легкие пострадавшего атмосферного воздуха в одном из заданных объемов: 0, 25; 0, 5; 1; 1, 5 л.

Помимо искусственного дыхания рекомендуется производить также наружный массаж сердца. Для этого грудную клетку пострадавшего освобождают от одежды, а спину его укладывают на твердое основание. Ноги пострадавшего следует приподнять примерно на 0, 5 м.

При нахождении потерпевшего в состоянии мнимой смерти рекомендуется производить комплексное оживление — искусственное дыхание совместно с массажем сердца. Наиболее целесообразно проводить оживление вдвоем, в этом случае можно поочередно проводить искусственное дыхание и массаж сердца.

Если первую помощь оказывает один человек, он делает пострадавшему 2—3 глубоких вдувания, после чего в течение 15—20 с проводит массаж сердца, затем снова искусственное дыхание, опять. массаж и т. д.

О восстановлении сердечной деятельности свидетельствует появление пульса, который сохраняется, если на несколько секунд прекратить массаж.

Как проверить эффективность оказываемой помощи?

При правильном проведении искусственного дыхания каждое вдувание вызывает расширение грудной клетки, прекращение вдувания вызывает ее спадание, сопровождаемое характерным шумом при выходе воздуха из легких пострадавшего через рот и нос. При затруднении вдувания надо проверить, свободны ли дыхательные пути пострадавшего.

Эффект наружного массажа сердца проявляется в первую очередь в том, что каждое надавливание на грудину вызывает появление пульса — на лучевой артерии у запястья или на сонной артерии на шее.

При правильном проведении искусственного дыхания и массажа сердца у пострадавшего появляются следующие признаки оживления: улучшается цвет лица — оно приобретает розовый оттенок вместо серо-землистого цвета с синеватым оттенком, который был до оказания помощи; появляются самостоятельные дыхательные движения, которые становятся все более и более равномерными по мере продолжения мероприятий по оживлению; сужаются зрачки.

Степень сужения зрачков может служить наиболее точным показателем эффективности оказываемой помощи. Узкие зрачки указывают на достаточное снабжение мозга кислородом. Начинающееся расширение зрачков указывает на ухудшение кровообращения мозга.

Следует помнить, что даже кратковременное прекращение искусственного дыхания или массажа сердца может привести к непоправимым последствиям.

При поражении электрическим током ни в коем случае нельзя зарывать пострадавшего в землю, так как это принесет ему только вред.

Kак погасить огонь в действующих электоустановках?

При тушении пожара в электроустановках, находящихся под напряжением, надо применять ручные огнетушители типа ОУ-2 и ОУ-5.

Для приведения в действие этих огнетушителей необходимо левой рукой взяться за ручку, а правой повернуть маховичок вентиля в направлении против часовой стрелки до отказа.

После этого из раструба огнетушителя начнет выбрасываться струя углекислоты длиной около 2 м. Действие огнетушителя ОУ-2 - 30 с, а ОУ-5 - 50 с.

Во время тушения пожара необходимо отключить электроустановку. После ликвидации очагов пожара включать электроустановку можно только после очистки, проверки и восстановления нормального состояния всех питающих ее линий.

Применять пенные огнетушители нельзя, так как пена является хорошим электропроводником.

Рис. 1. Пробники и индикаторы с разнообразным питанием для проверки целости обесточенной электроцепи:

Изображение: 

2. Электрические помощники в доме,на даче и в хозяйстве.

Электрические помощники в доме,на даче и в хозяйстве.

Многообразие электрических помощников и особенности их устройства, подключения и автоматизации не позволяют в ограниченном объеме изложить достаточно полно все особенности их устройства, тем более что их парк постоянно расширяется и совершенствуется.

Нами рассмотрены некоторые общие элементы устройств (электродвигатели, нагреватели, пускозащитная аппаратура), их выбор, подключение, а также некоторые из устройств в комплексе, позволяющие непрофессионалу сориентироваться в объектах воздействия и при необходимости выполнить замену или ремонт.

1. Какие бывают электрические двигатели и где они применяются?

Какие бывают электрические двигатели и где они применяются?

Электрические двигатели бывают постоянного и переменного тока (рис. 2). Наиболее распространены электрические двигатели переменного тока. Они просты по устройству, неприхотливы в эксплуатации. Основной недостаток — практически не регулируемая частота вращения.

Электрические двигатели переменного тока изготавливают одно- и многофазными. Основные элементы таких двигателей — статор (неподвижная часть) и ротор (вращающаяся часть). Выпускаются электродвигатели с коротко замкнутыми обмотками ротора (типа беличьей клетки) и обмотками, выведенными на коллектор (систему контактных колец) и замыкающимися через регулируемые резисторы. Такие роторы называют фазными, а электродвигатели — электродвигателями с фазным ротором.

Электрические двигатели переменного тока применяют для привода рабочих машин различного назначения (насосы, деревообрабатывающие станки, дробилки и т. д.), не требующих регулирования частоты вращения. Выпускаются на мощности от 0, 2 до 200 и более киловатт.

Электродвигатели постоянного тока состоят из подвижной части (якоря) и неподвижной части (статора). Они выпускаются с параллельным, последовательным и смешанным соединением обмоток якоря и статора. Достоинством двигателей постоянного тока является способность регулировать частоту вращения, но они требуют значительных усилий при эксплуатации.

2-11.jpg

Рис. 2. Электрические двигатели: а постоянного тока; б — синхронные; в ~ асинхронные с фазным ротором; г — асинхронные трехфазные с коротко замкнутым ротором серии 4А. 1 — вал, 2 ~ шпонка, 3 —подшипник, 4 — статор, 5 — обмотка статора, 6 — ротор (якорь); 7 — вентилятор; 8 — коробка выводов; 9 — лапа, 10 — коллектор; 11 — щетки; l1, l2 — продольное и поперечное расстояния в лапах; l3 — длина выступающего конца вала; l4. — размер выступающей крышки; hвысота оси вращения; d1, d2 — диаметры вала и отверстий в лапах.

Универсальные коллекторные двигатели применяются в промышленных и бытовых электроустановках (электрифицированный инструмент, вентиляторы, холодильники, соковыжималки, мясорубки, пылесосы и др.). Они рассчитаны для работы как от сети постоянного тока (110 и 220 В), так и от сети переменного тока частотой 50 Гц (127 и 220 В). Эти двигатели имеют большой пусковой момент и сравнительно малые размеры.

По своему устройству универсальные коллекторные двигатели принципиально не отличаются от двухполюсных двигателей постоянного тока с последовательным возбуждением.

В универсальных коллекторных двигателях не только якорь набирается из листовой электротехнической стали, но и неподвижная часть магнитопровода (полюса и ярмо).

Обмотка возбуждения этих двигателей включается с обеих сторон якоря. Такое включение (симметрирование) обмотки позволяет уменьшить радиопомехи, создаваемые двигателем.

Для получения примерно одинаковых частот вращения при номинальной нагрузке как на постоянном, так и на переменном токе обмотку возбуждения выполняют с ответвлениями: при работе двигателя от сети постоянного тока обмотку возбуждения используют полностью, а при работе от сети переменного тока — лишь частично.

Вращающий момент создается за счет взаимодействия тока в обмотке якоря (ротора) с магнитным потоком возбуждения.

Эти двигатели выпускаются на сравнительно небольшие мощности — от 5 до 600 Вт (для электроинструмента — до 800 Вт) и частоты вращения — 2770 — 8000 об/мин. Пусковые токи таких двигателей невелики, поэтому их в сеть включают непосредственно без пусковьк сопротивлений. Универсальные коллекторные двигатели имеют минимум четыре вывода: два для подключения к сети переменного тока и два для подключения к сети постоянного тока. КПД универсального двигателя на переменном токе ниже, чем на постоянном. Это вызвано повышенными магнитными и электрическими потерями. Величина тока, потребляемого универсальным двигателем при работе на переменном токе, больше, чем при работе этого же двигателя на постоянном токе, так как переменный ток помимо активной составляющей имеет еще и реактивную составляющую.

Частоту вращения таких двигателей регулируют, изменяя подводимое от сети напряжение, например, автотрансформатором, а у двигателей небольшой мощности — реостатом.

Однофазный коллекторный двигатель нельзя пускать в ход при малой нагрузке, потому что он может пойти «вразнос».

Отечественная промышленность выпускает универсальные коллекторные двигатели серий УЛ, МУН, УМТ, ДТА-4, УВ, М-1Д, ЭП, УД, Д2-03, ЭПП-1 и др.

Рис. 2. Электрические двигатели

Изображение: 

2. Какие паспортные данные указываются на щитке асинхронного электродвигателя?

Какие паспортные данные указываются на щитке асинхронного электродвигателя?

Каждый двигатель снабжается техническим паспортом в виде приклепанной металлической таблички, на которой приведены основные характеристики двигателя. В паспорте указан тип двигателя. В нашем случае это двигатель типа 4А100S2УЗ (рис.3): асинхронный электродвигатель серии 4А закрытого исполнения с высотой оси вращения 100 мм, с короткой длиной корпуса, двухполюсный, климатического исполнения У, категории 3.

Заводской N 100592 дает возможность отличить электрическую машину среди однотипных.

Далее приведены цифры и символы, которые расшифровываются следующим образом:

3 ~ — двигатель трехфазного переменного тока;

50 Hz — частота переменного тока (50 Гц), при которой двигатель должен работать;

4, 0 KW — номинальная полезная мощность на валу электродвигателя; cosф=0,89 — коэффициент мощности; A/Y — обмотка статора может соединяться в треугольник или в звезду;

. 220/380V, 13, 6/7, 8А — при соединении обмотки статора в треугольник она должна включаться на напряжение 220 В, а при соединении в звезду — на напряжение 380 В. При этом машина, работающая с номинальной нагрузкой, потребляет 13, 6 А при включении на треугольник и 7, 8 А — при включении на звезду;

S1— двигатель предназначен для длительного режима работы;

2880 об/мин — частота вращения электродвигателя при номинальной нагрузке и частоте сети 50 Гц. Если двигатель работает вхолостую, частота вращения ротора приближается к частоте вращения магнитного поля статора;

КПД = 86, 5% — номинальный коэффициент полезного действия двигателя, соответствующий номинальной нагрузке на его валу;

IP44 — степень защиты. Двигатель изготовлен во влагоморозостойком исполнении. Может работать в среде с повышенной влажностью и на открытом воздухе.

В паспорте указан ГОСТ, класс изоляции обмотки (для класса В предельно допустимая температура 130°С), масса машины и год выпуска.

2-21.jpg

Рис. 3. Табличка с паспортными данными электродвигателя серии 4А.

Рис. 3. Табличка с паспортными данными электродвигателя серии 4А.

Изображение: 

3. Как обозначаются выводы обмоток электрических машин?

Как обозначаются выводы обмоток электрических машин?

При соединении обмоток статора трехфазных машин переменного тока звездой приняты следующие обозначения начала обмоток: первая фаза — С1, вторая фаза — С2, третья фаза — СЗ, нулевая точка — 0.

При шести выводах начало обмотки первой фазы

— С1, второй —С2, третьей — СЗ; конец обмотки первой фазы — С4, второй — С5, третьей — Сб.

При соединении обмоток в треугольник зажим первой фазы — С1, второй фазы — С2 и третьей фазы - СЗ.

У трехфазных асинхронных электродвигателей роторная обмотка первой фазы — Р1, второй фазы

— Р2, третьей фазы — РЗ, нулевая точка — 0.

У асинхронных многоскоростных электродвигателей выводы обмоток для 4 полюсов — 4С1, 4С2, 4СЗ; для 8 полюсов - 8С1, 8С2, 8СЗ и т. п.

У асинхронных однофазных двигателей начало главной обмотки —С1, конец — С2; начало пусковой обмотки — П1, конец — П2. В электродвигателях малой мощности, где буквенное обозначение выводных концов затруднено, их можно обозначать разноцветными проводами.

При соединении звездой начало первой фазы имеет желтый провод, второй фазы — зеленый, третьей фазы — красный, нулевая точка — черный.

При шести выводах начала фаз обмоток имеют такую же расцветку, как и при соединении звездой, а конец первой фазы — желтый с черным провод, второй фазы — зеленый с черным, третьей фазы — красный с черным.

У асинхронных однофазных электродвигателей начало вывода главной обмотки — красный провод, конец — красный с черным. У пусковой обмотки начало вывода — синий провод, конец — синий с черным.

В коллекторных машинах постоянного и переменного тока начало обмотки якоря обозначается белым цветом, конец - белым с черным; начало последовательной обмотки возбуждения - красным, конец - красным с черным, дополнительный вывод — красным с желтым; начало параллельной обмотки возбуждения — зеленым, конец - зеленым с черным. У синхронных машин (индукторов) начало обмотки возбудителя — И1, конец — И2.

У машин постоянного тока начало обмотки якоря - Я1, конец - Я2. Начало компенсационной обмотки - К1, конец - К2; начало обмотки добавочных полюсов - Д1, конец - Д2; начало обмотки возбуждения последовательной-С1, конец - С2; начало обмотки возбуждения параллельной (шунтовой) - Ш1, конец - Ш2; начало обмотки или провода уравнительного — У1, конец — У2.

4. Какие применяются формы исполнения электрических машин по способу крепления и монтажа?

Какие применяются формы исполнения электрических машин по способу крепления и

монтажа?

По расположению и конструкции подшипников, а также по способу крепления и монтажа электрические машины имеют несколько форм исполнения (рис. 4).

2-41.jpg

Рис. 4. Исполнение электрических двигателей по способу крепления

Наиболее употребительной формой исполнения являются электрические машины с горизонтальным расположением вала, с двумя щитовыми подшипниками и станиной на лапах для крепления установки на горизонтальном основании, стене и потолке.

У электрических машин с фланцевым креплением может и не быть лап. В этом случае фланец располагается на станине или на подшипниковом щите.

Машины с двумя щитовыми подшипниками могут работать и в вертикальном положении. Подшипники электродвигателей для вертикальной установки рассчитаны только на массу ротора и соединительной муфты и не допускают добавочной осевой нагрузки.

Наиболее распространенные формы исполнения электродвигателей серии 4А, Да,АОЛ2 приведены на рис. 4.

Рис. 4. Исполнение электрических двигателей по способу крепления

Изображение: 

5. Kак изменяются параметры трехфазного асинхронного двигателя при условиях, отличных от номинальных?

Kак изменяются параметры трехфазного асинхронного двигателя при условиях, отличных от номинальных?

Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается, коэффициент мощности увеличивается, скольжение возрастает, а КПД несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.

При повышении напряжения сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали. Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.

При уменьшении частоты и номинальном напряжении увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.

При повышении частоты сети и номинальном напряжении уменьшается ток холостого хода и вращающий момент.

6. Как высушить изоляцию обмоток?

Как высушить изоляцию обмоток?

Сопротивление изоляции обмотки статора между фазами и между фазами и корпусом, измеренное мегаомметром, должно быть не менее 0, 5 МОм. В случае значительного снижения сопротивления изоляции обмотки двигателя ее нужно подсушить внешним нагревом, методом потерь в стали или током короткого замыкания. Внешний нагрев применяют в том случае, если машина сильно отсырела. Для этого изоляцию обмоток обдувают горячим воздухом (рис. 5, а), используя воздуходувки с калориферами, лампы накаливания и нагревательные сопротивления. Мощность нагревательных элементов 3—10 кВт. Одновременно можно пропускать через обмотки ток. Величину тока при этом поддерживают в пределах 0, 4 — 0, 7 номинального тока электродвигателя. Для быстроходных двигателей (выше 1000 об/мин) берут нижние пределы тока, а для тихоходных (ниже 1000 об/мин) — более высокие значения тока.

Необходимое количество воздуха в минуту должно быть равно полуторному объему камеры, в которой сушат электродвигатель. Мощность нагревательного элемента в киловаттах должна быть численно равна объему камеры в кубических метрах. Если объем камеры для сушки двигателя равен 8м^3, то объем горячего воздуха, который надо пропускать в одну минуту через эту камеру, должен составлять 12 м^3, а мощность электронагревательного элемента — 8 кВт.

Для сушки изоляции обмоток током короткого замыкания (рис. 5, б) обмотки отдельных фаз замыкают накоротко и подают к ним пониженное

2-61.jpg

Рис. 5. Сушка изоляции электродвигателей: а —в камере с использованием воздуходувки; б —током короткого замыкания; в—при помощи специальной намагничивающей обмотки

напряжение. Источником напряжения при этом обычно служат сварочные трансформаторы.

Сверху электродвигатель покрывают теплоизолирующим материалом. Ток в обмотках статора доводят до 50% от номинального и поддерживают его на этом уровне 2 — 3 ч. В течение последующих 3 ч (с интервалами в 20 — 30 мин) ток доводят до 90% номинального. В первые 3 — 5 ч температура обмоток не должна превышать 40 —50°С, после 8 — 10 ч сушки — 60 — 70°С. При этом температура выходящего воздуха не должна быть выше 50°С, а температура изоляции обмотки не должна превышать 70°С. Через каждые 2 ч проверяют термометром температуру обмоток и измеряют мегаомметром сопротивление их изоляции.

Процесс сушки электродвигателя можно считать законченным, если при температуре горячего воздуха 50 — 60°С сопротивление изоляции будет оставаться неизменным в течение 3 — 5 ч.

Для сушки изоляции обмоток статора электродвигателя любой мощности можно использовать потери мощности на вихревые токи в активной стали. Эти токи образуются в результате создания в стали статора переменного магнитного поля с помощью специальной обмотки (рис. 5, в). Намагничивающий ток выбирают в пределах 60 — 200 А, а число витков обмотки от 6 до 28. Напряжение на один виток обмотки 3 — 4, 5 В. Источником энергии служат сварочные трансформаторы. В начале сушки надо ускорить подъем температуры, а потом снизить ее до такого уровня, который необходим лишь для того, чтобы потери в стали покрывали потери тепла. Для этого обычно снижают подводимое напряжение или увеличивают число витков намагничивающей обмотки.

Для сушки изоляции обмоток электродвигателя можно применять лампы инфракрасного излучения с зеркальными отражателями или обычные электрические лампы. Лампы монтируют в сушильном шкафу. Температуру воздуха в нем поддерживают в пределах 100 — 110°С.

Для сушки обмоток можно применять переменный ток пониженного напряжения (в 3 — 5 раз меньше номинального). Ток в обмотке статора регулируют так, чтобы температура ее не превосходила 60 — 75°С. Продолжительность сушки небольших электродвигателей 8 — 12 ч.

Рис. 5. Сушка изоляции электродвигателей:

Изображение: 

7. Как включить трехфазный электродвигатель в однофазную сеть?

Как включить трехфазный электродвигатель в однофазную сеть?

Наиболее распространенные схемы включения с использованием конденсаторов показаны на рис. 6.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из сетевых зажимов присоединяют рабочий конденсатор Ср и отключаемый (пусковой) Сп, применяемый для увеличения пускового момента.

Если пуск двигателя происходит без нагрузки, то конденсатор Сп не используется. После пуска двигателя пусковой конденсатор отключают.

Изменяют направление вращения (реверсирование) путем переключения сетевого провода с одного зажима конденсатора на другой.

Рабочая емкость пропорциональна мощности двигателя (номинальному току) и обратно пропорциональна напряжению.

Для схемы рис. 6, а

Ср = 2800*Iном/U

Для схемы рис. 6, б

Ср = 4800* Iном/U

где Ср — рабочая емкость для номинальной нагрузки, мкФ;

Iном — номинальный ток, А;

U — напряжение однофазной сети, В.

За номинальные ток и напряжение принимают

2-71.jpg

Рис. 6. Схемы включения трехфазного электродвигателя в однофазную сеть: а — при помощи конденсаторов при включении электродвигателя в звезду; б — при помощи конденсаторов при включении электродвигателя в треугольник; впри помощи активного сопротивления при включении электродвигателя в треугольник; г — при помощи активного сопротивления при включении электродвигателя в звезду; QS — включающее устройство (рубильник); FU — предохранители; SB — пусковая кнопка; Ср, Сп — соответственно рабочий и пусковой конденсаторы

фазные значения величин, указанных в паспорте электродвигателей.

В качестве рабочих могут применяться конденсаторы типов КБГ-МН (конденсатор бумажный, герметический, в металлическом корпусе, нормальный), БГТ (бумажный, герметический, термостойкий), МБГЧ (металлобумажный, герметический, частотный).

При определении пусковой емкости исходят из пускового момента. Если пуск двигателя происходит без нагрузки, пусковой емкости не требуется. Чтобы получить пусковой момент, близкий к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп = (2, 5 - 3) Ср.

Отключаемые (пусковые) конденсаторы работают несколько секунд при включении, поэтому используют более дешевые электролитические конденсаторы типа ЭП.

Напряжение конденсатора для приведенных схем

Uк = Uc,

где Uк — напряжение на конденсаторе при номинальной нагрузке, В; Uc — напряжение сети, В.

При работе двигателя с недогрузкой Uк= 1, 15 Uc.

Номинальное напряжение конденсаторов типов КБГ-МН и БГТ дается для работы на постоянном токе. При работе их на переменном токе величина допустимого напряжения не должна превышать значений, указанных в таблице 3.

При ремонте и после каждого отключения конденсатор разряжают с помощью какого-либо сопротивления. Разрядным сопротивлением могут служить несколько ламп накаливания, соединенных последовательно.

Для включения и защиты от перегрузок конденсаторного двигателя используют магнитные пускатели с тепловыми реле.

Таблица 3. Величины допустимых напряжений

Номинальное напряжение постоянного тока, В

Допустимое напряжение переменного тока В, при частоте 50 Гц и емкости конденсатора, мкФ

До 2

4-10

400

250

200

600

300

250

1000

400

350

1500

500

-


Наилучшие эксплуатационные показатели дают трехфазные двигатели, включенные в однофазную сеть, где в качестве пускового сопротивления используют емкость. Величина номинальной мощности достигает 65 — 85 % от мощности, указанной на щитке трехфазного электродвигателя. Однако конденсаторы с нужными параметрами не всегда бывают в хозяйствах. В этом случае можно воспользоваться способом включения трехфазного двигателя с помощью активных сопротивлений.

Перед пуском двигателя включают пусковое сопротивление. Затем двигатель подключают к однофазной сети. Когда двигатель достигнет частоты вращения, близкой к номинальной, пусковое сопротивление отключают. Двигатель продолжает работать, развивая мощность, равную 0, 5 — 0, 6 номинальной (в трехфазном режиме). Для изменения направления вращения ротора (реверсирования) меняют местами выводы пусковой ветви обмотки (С6 подсоединяют к С1 и рубильник В — к С2 или С6 — к сопротивлению Rп, а С5 — к С2). Перед реверсированием двигатель отключают от сети.

Если трехфазный электродвигатель включен в однофазную сеть по схеме, показанной на рис. 6, б, то пусковой момент будет почти вдвое меньше, чем при включении по схеме, показанной на рис. 6, а.

Для реверсирования электродвигателя, включенного по схеме на рис. 6,б, необходимо поменять местами выводы С2 и С5 пусковой обмотки.

Значение пусковых активных сопротивлений выбирают по таблице 4 в зависимости от мощности электродвигателя в трехфазном режиме.

Таблица 4. Величины пусковых сопротивлений

Мощность двигателя, кВт

Пусковое сопротивление, Ом, по схеме (рис. 6, а)

Мощность двигателя, кВт

Пусковое сопротивление, Ом, по схеме (рис. 6, 6)

0, 6

25-30

0, 6; 1, 0

8-15

1, 0

20-25

1, 7; 2, 8

3-4

1, 7

10-15

4, 5

1, 5-3

2, 8

5-10

7; 10

1-2

4, 5; 7, 0

3-5

.

-


Пусковые активные сопротивления можно легко изготовить в производственных условиях. В качестве проводников используют фехраль (табл. 5), нихром, константан и другие материалы, а в качестве изолятора — цилиндр из керамиковых материалов или асбоцемента.

При изготовлении пусковых активных сопротивлений следует иметь в виду, что во время пуска по сопротивлению будет кратковременно протекать ток, который в пять раз может превышать

Таблица 5. Величины пусковых сопротивлений из фехраля

Номинальная мощность двигателя в трехфазном режиме, кВт

Пусковое сопротивление, Ом

Размеры проводника

диаметр, мм

длина, м

0, 6

30

1, 3

28

1, 0

20

1, 5

28

1, 7

10

1, 7

19

2, 8

7

2, 0

18

4, 5

5

2, 5

24


номинальный ток в трехфазном режиме. Учитывая, что пусковое сопротивление обтекается током при пуске лишь в течение нескольких секунд, для указанных материалов допустимая плотность тока при пуске равна 10 А/мм^2 — для проволок диаметром 0, 1 — 0, 5 мм; 8 А/мм^2 — для проволок, диаметр которых более 1, 5 мм.

Рис. 6. Схемы включения трехфазного электродвигателя в однофазную сеть:

Изображение: 

8. Что представляют собой электродвигатели серии 4А,АИРP?

Что представляют собой электродвигатели серии 4А,АИРP?

С 1972 г. началось производство асинхронных коротко замкнутых электродвигателей серии 4А общепромышленного назначения. Мощность их от 0, 12 до 400 кВт при высоте оси вращения от 50 до 355 мм. Эти электродвигатели по сравнению с двигателями серии А2 и А02 имеют следующие преимущества: меньшую массу (в среднем на 18%), большую компактность, большие пусковые моменты, повышенную надежность, меньший уровень шума и вибраций.

По степени защиты от воздействия окружающей среды двигатели выпускаются в двух вариантах:

1) закрытые обдуваемые (обозначение IP44). Воздух для охлаждения корпуса двигателя подается вентилятором. Электродвигатели с высотой оси вращения 280 — 355 мм имеют дополнительную вентиляцию;

2) защищенные от капель, падающих под углом 60° к вертикали (обозначение IP23). Вовнутрь электродвигателя не могут попасть посторонние тела диаметром 12, 5 мм и более. Станина и щиты электродвигателей с высотами оси вращения 50 — 63 мм сделаны из алюминия; с высотами 71 — 100— станина из алюминия, а щиты из чугуна; с высотами 112 — 355 мм станина и щиты изготовлены из чугуна. Коробка выводов для двигателей с высотами оси вращения 56 — 250 мм располагается сверху станины, с высотами 280 — 355 мм — сбоку станины. Валы и подшипники рассчитаны на применение клиноременной и зубчатой передач.

Технические данные электродвигателей серии 4А общепромышленного назначения приведены в таблице 6.

Начат также серийный выпуск двигателей серии 4А сельскохозяйственного назначения мощностью от 7,5 до 30 кВт. Они имеют ту же шкалу мощности, что и электродвигатели общего применения. Синхронная частота вращения этих двигателей 3000, 1500 и 1000 об/мин.

Электродвигатели сельскохозяйственного назначения имеют повышенный пусковой момент, что

Таблица 6. Основные технические данные электродвигателей серии 4А общепромышленного назначения

Тип электродвигателя

Номинальная мощность, кВт

КПД,

%

Коэффициент мощности

Кратность пускового тока

Кратность пускового мо-мента

Перегрузочная способность

Кратность минимального момента

1

2

3

4

5

б

7

8

Закрытые обдуваемые Синхронная частота вращения 3000 об/мин

4М50А2УЗ

0,09

60,0

0,70

5,0

2,0

2,2

1,2

4АА50В2УЗ

0,12

63,0

0,70

5,0

2,0

2,2

1,2

4АА56А2УЗ

0,18

66,0

0,76

5,0

2,0

2,2

1,2

4АА56В2У5

0,25

68,0

0,77

5,0

2,0

2,2

1,2

4АА63А2УЗ

0,37

70,0

0,86

5,0

2,0

2,2

1,2

4АА63В2УЗ

0,55

73,0

0,86

5,0

2,0

2,2

1,2

4А71А2УЗ

0,75

77,0

0,87

5,5

2,0

2,2

1,2

4А71В2УЗ

1,1

77,5

0,87

5,5

2,0

2,2

1,2

4А80А2УЗ

1,5

81,0

0,85

6,5

2,0

2,2

1,2

4А80В2УЗ

2,2

83,0

0,87

6,5

2,0

2,2

1,2

4A90L2У3

3,0

84,5

0,88

6,5

2,0

2,2

1,2

4A100S2У3

4,0

86,5

0,89

7,5

2,0

2,2

1,2

4A100L2У3

5,5

87,5

0,91

7,5

2,0

2,2

1,2

4А112М2УЗ

7,5

87,5

0,88

7,5

2,0

2,2

1,0

Синхронная частота вращения 1500 об/мин

4АА50А4УЗ

0,06

50,0

0,60

5,0

2,0

2,2

1.2

4АА50В4УЗ

0,09

55,0

0,60

5,0

2,0

2,2

1,2

4АА56А4УЗ

0,12

63,0

0,66

5,0

2,0

2,2

1,2


1

2

3

4

5

6

7

8

4АА56В4УЗ

0,18

64,0

0,64

5,0

2,0

2,2

1,2

4АА63А4УЗ

0,25

68,0

0,65

5,0

2,0

2,2

1,2

4АА63В4УЗ

0,37

68,0

0,69

5,0

2,0

2,2

1,2

4А71А4УЗ

0,55

70,5

0,70

4,5

2,0

2,2

1,6

4А71В4УЗ

0,75

72,0

0,73

4,5

2,0

2,2

1,6

4А80А4УЗ

',1

75,0

0,81

5,0

2,0

2,2

1,6

4А80В4УЗ

1,5

77,0

0,83

5,0

2,0

2,2

1,6

4А90L4УЗ

2,2

80,0

0,83

6,0

2,0

2,2

1,6

4A100S4V3

3,0

82,0

0,83

6,5

2,0

2,2

1,6

4A100L4V3

4,0

84,0

0,84

6,5

2,0

2,2

1,6

4А112М4УЗ

5,5

85,5

0,85

7,0

2,0

2,2

1,6

4A132S4V3

7,5

87,5

0,86

7,5

2,0

2,2

1.6

Синхронная частота вращения 1000 об/мин

 

4АА63А6УЗ

0,18

56,0

0,62

4,0

2,0

2,2

1,2

4АА63В6УЗ

0,25

59,0

0,62

4,0

2,0

2,2

1,2

4А71А6УЗ

0,37

64,5

0,69

4,0

2,0

2,2

1,6

4А71В6УЗ

0,55

67,5

0,71

4,0

2,0

2,2

1,6

4А80А6УЗ

0,75

69,0

0,74

4,0

2,0

2,2

1,6

4А80В6УЗ

1,1

74,0

0,74

4,0

2,0

2,2

1,6

4А90L6УЗ

1,5

75,0

0,74

5,5

2,0

2,2

1,6

4B100L6У3

2,2

81,0

0,73

5,5

2,0

2,2

1,6

4А112МА6УЗ

3,0

81,0

0,76

6,0

2,0

2,2

1,6

4А112МВ6УЗ

4,0

82,0

0,81

6,0

2,0

2,2

1,6

4A132S6У3

5,5

85,0

0,80

7,0

2,0

2,2

1,6

4А132М6УЗ

7,5

85,5

0,81

7,0

2,0

2,2

1,6


обеспечивает их запуск и устойчивую работу при пониженном напряжении.

Коробки выводов двигателей двухштуцерные с клеммными колодцами. Электродвигатели серии 4А при высоте оси вращения 56-132 мм выполняют на номинальное напряжение 380 В с тремя выводами обмотки статора; при высоте оси вращения 160 и 180 мм - на напряжение 380/660 B* с шестью выводными концами.

9. Какие выпускаются машины постоянного тока?

Какие выпускаются машины постоянного тока?

Промышленность выпускает ряд серий машин постоянного тока. Основной является единая серия П, состоящая из трех групп машин: первая -мощностью от 0, 13 до 200 кВт; вторая - от 200 до 1400 кВт и третья - свыше 1400 кВт.

Первая группа охватывает 11 габаритов по наружному диаметру якоря. В каждом габарите имеется по две длины сердечника, т. е. серия имеет 22 типоразмера (табл. 7).

Основное исполнение машин серии П - брызгозащищенное. Выпускаются машины и с закрытым исполнением. Машины серии П бывают с одним или двумя свободными концами вала, каждый из которых может передавать номинальный вращающий момент. Машины серии П имеют несколько модификаций.

ПБ — машина закрытого исполнения с естественным охлаждением; ПВ, ПВА - возбудитель;

ПО - обдуваемая; ПР - радиаторная.

Все машины серии П изготовляются без компенсационной обмотки, двигатели имеют легкую последовательную стабилизирующую обмотку возбуждения. Номинальное напряжение двигателей 110 и 220 В, а по особому заказу могут быть изготовлены для сети напряжением 440 В.

По способу расположения вала эти машины могут быть горизонтальными и вертикальными.

При вертикальном варианте исполнения свободный конец вала направлен вниз.

Возбуждение у машин серии П шунтовое, независимое и компаундное. В последнее время разработана новая серия (2П) двигателей постоянно-

Таблица 7. Шкала мощностей машин серии П первой группы

Тип

Частота вращения, об/мин

Масса, кг

Диамер якоря,

мм

Длина якоря,

мм

600

750

1000

1500

3000

МОЩНОСТЬ, кВт

П11

-

-

0,13

0,3

0,7

18

83

50

П12

-

-

0,2

0,45

1,0

23

75

П21

-

0,2

0,3

0,7

1,5

35

106,0

55

П22

.

0,3

0,45

1,0

2,2

41

80

П31

.

0,45

0,7

1,5

3,2

53

120

75

П32

-

0,7

1,0

2,2

4,5

62

110

П41

-

1,0

1,5

3,2

6,0

72

138

85

П42

-

1,5

2,2

4,5

8,0

88

115

П51

-

2,2

3,2

6

11

105

162

100

П52

-

3,2

4,5

8

14

127

140

П61

-

4,5

6

11

19

163

195

105

П62

-

6

8

14

25

195

140

П71

-

8

11

19

32

250

210

125

П72

-

11

14

25

42

290

165

П81

-

14

19

32

-

330

245

135


Примечание. Буквы и цифры, обозначающие тип машин, расшифровываются следующим образом: П — машина постоянного тока; первое после буквы однозначное или двузначное число - порядковый номер габарита; последняя цифра - порядковый номер длины сердечника.

го тока. У двигателей этой серии мощность при одном и том же значении высоты оси вращения увеличена в 3 — 5 раз; диапазон регулирования частоты вращения увеличен в среднем в 1, 6 раза; механическая инерционность якоря уменьшена на 40 — 60 %; обеспечена устойчивая коммутация;

удвоен срок службы машин.

Двигатели серии 2П изготавливаются с номинальными частотами вращения 500, 600, 750,1000, 1500, 2200 и 3000 об/мин и номинальными напряжениями 110, 220 В при мощности до 7,5 кВт и 220, 440 В при мощности более 7,5 кВт. Генераторы изготовляются с номинальными частотами вращения 1000, 1500 и 3000 об/мин и номинальными напряжениями 115, 230 В при мощности до 7,5 кВт и 230, 460 В при мощности более 7,5 кВт.

Машины по ГОСТ 12080-66 изготовляются с одним концом вала. По заказу потребителя могут быть изготовлены без тахогенератора с двумя концами вала.

В зависимости от высоты оси вращения и способа охлаждения есть несколько разновидностей машин постоянного тока (табл.8).

Средний срок службы машин серии 2П — 12 лет, средний ресурс — 30 000 ч.

Таблица 8. Обозначение машин постоянного тока в зависимости от их исполнения

Высота оси вращения, мм

Исполнение в зависимости от способа зашиты и охлаждения

Обозначение исполнения

Степень защиты

От 90 до 315

Защищенное с самовентиляцией

Н

IP22

От 132 до 315

Защищенное с независимой вентиляцией от постороннего вентилятора

Ф

IP22

От 132 до 200

Закрытое обдуваемое от постороннего вентилятора

0

IP44

От 90 до 200

Закрытое с естественным охлаждением

Б

IP44


10. Как расшифровываются условные обозначения машин постоянного тока серии 2П?

Как расшифровываются условные обозначения машин постоянного тока серии 2П?

Первая цифра (2) указывает номер серии; буква (П) - вид машины, т. е. постоянного тока;

вторая буква — исполнение машины в зависимости от способа защиты и охлаждения (Н - защищенное с самовентиляцией, Ф - защищенное с независимой вентиляцией, О - закрытое, обдуваемое, Б - закрытое с естественным охлаждением); последующие две или три цифры (от 90 до 315) -высоту оси вращения в мм; буквы М и L — длину сердечника статора (М - первая длина, L -вторая длина); Г - наличие тахогенератора; У - климатическое исполнение; последняя цифра (4) — категорию размещения по ГОСТ 15150-69.

Например, двигатель 2ПН100МУ4 ГОСТ 20529-75 расшифровывается следующим образом: двигатель серии 2П, защищенного исполнения с самовентиляцией, с высотой оси вращения 100 мм, с первой длиной сердечника статора, климатического исполнения У, категории 4.

11. Kак осуществляется пуск двигателя постоянного тока?

Kак осуществляется пуск двигателя постоянного тока?

При включении двигателя возникает большой пусковой ток, превышающий номинальный в 10 — 20 раз. Для ограничения пускового тока двигателей мощностью более 0,5 кВт последовательно с цепью якоря включают пусковой реостат (рис. 7).

2-111.jpg

Рис. 7. Схема включения электрических двигателей постоянного тока: а - с помощью пускового реостата; б - схема электродвигателя со смешанным возбуждением; в - схема универсального коллекторного электродвигателя. Л - зажим, соединенный с сетью; Я - зажим, соединенный с якорем; М -зажим, соединенный с цепью возбуждения; 0 - холостой контакт; 1 - дуга; 2 - рычаг; 3 - рабочий контакт.

Величину сопротивления пускового реостата можно определить по выражению

Rn =U/(1,8 - 2,5)Iном-Rя

где U — напряжение сети,В;

Iном — номинальный ток двигателя. А;

Rя — сопротивление обмотки якоря, Ом.

Перед включением двигателя необходимо убедиться в том, что рычаг 2 пускового реостата (рис.7) находится на холостом контакте 0. Затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rn. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т.д., пока он не окажется на рабочем контакте.

Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах: в этом случае сопротивления реостата перегреваются и могут перегореть.

. Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения.

Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием только двух зажимов — Л и Я.

Kак производится маркировка выводных концов машин постоянного тока?

В качестве примера рассмотрим маркировку выводных концов машины постоянного тока со смешанным возбуждением (рис. 7).

Для определения выводных концов отдельных обмоток (последовательной C1, C2; параллельной ЦП, Ш2 и якорной Я1, Я2 с дополнительными полюсами Д1, Д2) необходимо иметь контрольную лампу или вольтметр и источник переменного тока. Та из трех обмоток, при касании которой лампа горит тускло, будет параллельной (шунтовой) обмоткой. Лампа не будет гореть при касании ее одним концом к коллектору машины, а другим — к выводам последовательной обмотки и будет гореть при касании к выводам обмотки дополнительных полюсов, соединенной с якорем.

Рис. 7. Схема включения электрических двигателей постоянного тока:

Изображение: 

12. Как определить допустимую степень искрения на коллекторе в электродвигателе постоянного тока?

Как определить допустимую степень искрения на коллекторе в электродвигателе постоянного тока?

Повышенное искрение может происходить из-за неправильной установки щеток (не по заводским меткам), плохого прилегания щеток к коллектору, загрязнения или частичного выгорания коллектора, повышенной вибрации щеточного устройства и др.

Полностью устранить искрение практически не удается, поэтому необходимо уметь правильно определить допустимую степень искрения.

В соответствии с нормами искрение на коллекторе оценивается по степени искрения под сбегающим краем щетки и по шкале (классам коммутации), приведенной в таблице 9.

Допустимую степень искрения можно определить и по цвету образующихся искр. Небольшое искрение голубовато-белого цвета, почти всегда имеющееся на сбегающем крае щетки, не представляет собой никакой опасности. Удлиненные искры желтоватого оттенка свидетельствуют о неправильной коммутации. Зеленая окраска искр и присутствие частичек меди на рабочей части щеток указывают на механические повреждения коллектора.

Таблица 9. Степень и характеристика искрения

Степень искрения (класс коммутации)

Характеристика степени искрения

Состояние коллектора и щеток

1

Отсутствие искрения (темная коммутация)

Отсутствие почернения на коллекторе и нагара на щетках

1.25

Слабое точечное искрение под небольшой частью щетки

1.5

Слабое искрение под большей частью щетки

Появление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках

2

Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузки

Появление следов почернения на коллекторе, не устраняемых протиранием поверхности бензином, а также следов нагара на щетках

3

Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейших работ

Значительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и разрушение щеток



Kак определить положение геометрической нейтрали машины постоянного тока?

Для правильной установки щеток машин постоянного тока необходимо определить положение геометрической нейтрали.

Определение геометрической нейтрали может быть произведено методом наибольшего напряжения, индуктивным методом и методом двигателя.

При определении нейтрали методом наибольшего напряжения генератор с независимым возбуждением вращают вхолостую с постоянной частотой вращения и током возбуждения. Щетки передвигают по коллектору до тех пор, пока вольтметр, присоединенный к зажимам якоря, не даст максимального отклонения. Такое положение щеток соответствует геометрической нейтрали.

При индуктивном методе машина остается неподвижной и возбуждение подается от постороннего источника постоянного тока. К зажимам якоря подключают чувствительный вольтметр. Щетки передвигают до тех пор, пока внезапное замыкание или размыкание цепи возбуждения не перестает вызывать отклонения стрелки вольтметра. Это положение щеток будет соответствовать положению геометрической нейтрали.

При размыкании обмотки возбуждения в ней могут возникнуть большие перенапряжения. Поэтому ток в обмотке возбуждения необходимо устанавливать небольшим или зашунтировать обмотку возбуждения сопротивлением.

При определении нейтрали методом двигателя находят такое положение щеток, при котором частота вращения двигателя в обе стороны будет одинаковой. Опыт проводят под нагрузкой, при которой ток якоря равен половине номинального. Изменение направления вращения производят изменением полярности зажимов обмотки якоря.

Какие бывают электрические нагреватели?

Косвенный электронагрев сопротивлением применяют для нагрева и термообработки проводящих, непроводящих, твердых, жидких материалов в области температур до 1500°С. Основным элементом электротермической установки сопротивления служит электрический нагреватель — тепловыделяющий источник, преобразующий электрическую энергию в тепловую. Нагреватель представляет собой высокоомное сопротивление — нагревательный элемент, оборудованный вспомогательными устройствами для подвода тока, электроизоляции, защиты от механических повреждений, крепления. Нагревательные элементы выполняют из металлических и неметаллических материалов в виде проволочных спиралей, ленточных зигзагов, стержней, трубок, пленок на изолирующих подложках.

Электронагреватели сопротивления классифицируются по исполнению (открытые, закрытые, герметические); материалу нагревательных элементов (металлические, полупроводниковые, неметаллические); конструктивному исполнению (проволочные, ленточные, стержневые, пленочные);

рабочей температуре (низкотемпературные, средне температурные, высокотемпературные) и другим признакам.

Открытые нагреватели (рис. 8, а, б) просты по устройству, имеют хорошие условия для теплопередачи, ремонтоспособны. Их недостаток — повышенная электрическая опасность, низкий срок службы. Они применяются главным образом в высокотемпературных установках с теплоотдачей преимущественно излучением (термоизлучатели, электрические печи).

Закрытые нагреватели (рис. 8, в) размещают в корпусе, предохраняющем их от механических воздействий и нагреваемой среды. Герметические нагреватели защищены от внешних воздействий, в том числе от доступа воздуха.

2-121.jpg

Рис. 8. Электрические нагреватели:

а — спираль; б — лента; в — нагреватель в корпусе; 1 — металлический кожух; 2 — нагревательный провод; 3 — изолятор; d — диаметр провода; h — шаг спирали; D — диаметр спирали; а — толщина ленты, bширина ленты

Kак устроены трубчатые электрические нагреватели? Kак их выбрать?

Трубчатые электронагреватели (ТЭНы) по исполнению являются герметическими. Это наиболее распространенные электротермические устройства установок низко- и среднетемпературного нагрева.

2-122.jpg

Рис. 9. Трубчатый электронагреватель (ТЭН): 1 — оболочка (трубка); 2 — спираль; 3 — контактный стержень; 4 — изолятор (периклаз или кварцевый песок); 5мастика; 6фарфоровая втулка; 7 — контактная гайка. L — общая длина ТЭНа; Lакт — активная (рабочая) длина t; tкдлина контактного стержня; hшаг спирали; d — диаметр провода; dcn — диаметр спирали; dcn.наp — диаметр спирали наружный;

dmp. вн — диаметр трубки внутренний; dmp.нар— диаметр трубки наружный

Устройство типового ТЭНа показано на рис.9,а. Он состоит из тонкостенной (0,8—1,2 мм) металлической трубки (оболочки) 7, в которой размещена спираль 2 из проволоки высокого удельного электрического сопротивления. Концы спирали соединены с контактным стержнем 3, наружные выводы 7 которого служат для подключения нагревателя к питающей сети. Материалом трубки может быть углеродистая сталь марок 10 или 20, если температура поверхности ТЭНа в рабочем режиме не превышает 450°С, и нержавеющая сталь 12Х18Н10Т при более высоких температурах или при работе в агрессивных средах (табл.10). Спираль изолируют от трубки наполнителем 4, имеющим высокие электроизолирующие свойства и хорошо проводящим теплоту. В качестве наполнителя используют периклаз (кристаллическая окись магния). После заполнения наполнителя трубку опрессовывают. Под большим давлением периклаз превращается в монолит, надежно фиксирующий спираль по оси трубки. Спрессованный нагреватель может быть изогнут для придания необходимой формы. Контактные стержни 3 изолируют от трубки изолятором 6, торцы герметизируют влагозащищающим кремнийорганическим лаком (герметиком) 5.

Преимущество ТЭНов — универсальность, надежность и безопасность обслуживания. Их можно использовать при контакте с газообразными и жидкими средами при давлении до 9, 8 • 105 Па. Они не боятся ударов и вибраций, но не являются взрывобезопасными. Рабочая температура поверхности ТЭНов может достигать 800°С, что удовлетворяет большинству бытовых и сельскохозяйственных тепловых процессов и позволяет использовать их в качестве тепловыделяющих источников не только в установках кондуктивного и конвективного нагрева, но и в качестве излучателей в установках лучистого (инфракрасного) нагрева. Вследствие герметизации спиралей срок службы ТЭНов достигает 10 тыс. ч. ТЭНы изготовляют по ГОСТ 13268. Единичная мощность их (15—12)*103 Вт, а в блоке (из двух или трех нагревателей) достигает 24-103 Вт, развернутая длина 185—5280 мм, наружный диаметр трубки 6, 5—8, 0—10—12, 5—16 мм, номинальное напряжение 12, 36, 48, 55, 127, 220 и 380 В, климатическое исполнение УХЛ4 или УХЛЗ по ГОСТ 15150.

Структура условного обозначения ТЭНа: ТЭН -1 23/4567, где 1 — развернутая длина ТЭНа по оболочке L, см (рис. 9); 2 — длина контактного стержня в заделке (изменяется от 40 до 630 мм); 3-номинальный диаметр трубки, мм; 4 — номинальная мощность, кВт; 5 — обозначение нагреваемой среды и материала трубки (табл. 10); 6 — номинальное напряжение. В; 7 — вид климатического исполнения по ГОСТ 15150. Пример: трубчатый электронагреватель ТЭН-120Г13/1Т220УХЛ4 имеет развернутую длину 120 см, длина контактного стержня в заделке (индекс Г) равна 125 мм, диаметр трубки 13 мм, номинальная мощность 1 кВт, предназначен для нагрева воздушной среды со скоростью движения до 1,5 м/с; трубка из стали 12Х18Н10Т, температура поверхности трубки от 450 до 650°С (индекс Т); номинальное напряжение 220 В; вид климатического исполнения УХЛ4 по ГОСТ 15150.

•ТЭНы выпускают разнообразной конструкции, что позволяет встраивать их в самые разные установки, начиная от промышленных печей и до бытовых электронагревательных приборов. Помимо обычного исполнения выпускают одноконцевые ТЭНы патронного типа диаметром от 6,5 до 20 мм, отличающиеся высокой удельной поверхностной мощностью (до 38 • 10^4 Вт/м^2), а также плоские ТЭНы (сечением 5х11 и 6х17 мм) с развитой теплоотдающей поверхностью. К недостаткам ТЭНов следует отнести высокую металлоемкость и стоимость из-за использования дорогостоящих материалов (нихром, нержавеющая сталь), невысокий срок службы, невозможность ремонта при перегорании спирали.

Таблица 10. Нагреваемые среды, характер нагрева, предельная (удельная) поверхностная мощность, материал оболочки ТЭНа и ее температура

2-123.jpg

2-124.jpg

Рис. 8. Электрические нагреватели

Изображение: 

Рис. 9. Трубчатый электронагреватель (ТЭН):

Изображение: 

Таблица 10. Нагреваемые среды, характер нагрева, предельная (удельная) поверхностная мощность, материал оболочки ТЭНа и ее темпе

Изображение: 

Таблица 10. Нагреваемые среды, характер нагрева, предельная (удельная) поверхностная мощность, материал оболочки ТЭНа и ее темпе

Изображение: 

13. Kакие применяют нагревательные провода и кабели?

Kакие применяют нагревательные провода и кабели?

Нагревательные провода, кабели, ленты относят к протяженным нагревательным устройствам. Их применяют в рассредоточенных тепловых процессах, непосредственно связанных с содержанием животных, птицы, выращиванием растений в защищенном грунте, хранением сельскохозяйственной продукции. Такие процессы относят к низкотемпературным (5-40°С), с низкой плотностью тепловых нагрузок (100-1000 Вт/м^2), выполняемым на значительных площадях в соответствии с пространственной сосредоточенностью предметов труда. Примерами подобных процессов и установок служат обогрев почвы в сооружениях защищенного грунта, электрообогреваемые полы в животноводческих и других помещениях, обогрев трубопроводов (воды, жидких кормов), воздуховодов, технологических емкостей (в процессах кормоприготовления, биотехнологии) и др. Применение для этих целей ТЭНов, отличающихся концентрированным тепловыделением и высокой металлоемкостью, или промежуточных теплоносителей (пара, горячей воды, воздуха) не всегда целесообразно по техническим, экономическим и иным причинам.

Протяженные нагреватели имеют токопроводящие жилы из материалов повышенного или высокого сопротивления и теплостойкую изоляцию. Нагревательные провода марок ПОСХВТ и ПНВСВ имеют по одной токоведущей жиле из стальной оцинкованной проволоки. Изоляция провода ПОСХВТ выполнена из поливинилхлоридного пластиката. Провод ПНВСВ имеет многослойную

изоляцию (рис. 10) и защищен от механических повреждений. Основными техническими характеристиками протяженных нагревателей служат: допустимая температура tж нагрева жилы,°С, линейное сопротивление r1, жилы, Ом/м, и допустимая линейная мощность Р1, Вт/м. Для названных проводов эти данные приведены в таблице 11.

2-131.jpg

Рис. 10. Конструкция нагревательного провода ПНВСВ (а) и нагревательных кабелей (б, в): 1 - наружная оболочка из поливинилхлоридного пластика толщиной 1 мм; 2 — экран из стальных оцинкованных проволок диаметром 0, 3 мм; 3 — оболочка из фторопластовой пленки; 4 — оболочка из поливинилхлоридного пластика; 5 — токоведущая жила

Таблица 11. Технические данные нагревательных проводов а кабелей

Параметр

посхвт

ПНВСВ

ПСО

Кабели,

КМНС,

КМЖ

Диаметр жилы, мм

1,4

1,2

4-7

3х1

Допустимая температура

105

120

300

250

нагрева жилы, °С

Линейное сопротивление

0,12

0,16

0,007-0,016

0,11

жилы при допустимой

температуре нагрева,

Ом/м

Допустимая линейная

11

20

20-40

До 109

мощность, Вт/м

Рабочее напряжение, В

220

220

60

220


Иногда, если габаритные размеры нагревательных устройств не являются ограничивающим фактором и они питаются пониженным напряжением, нагревательные элементы изготовляют из дешевого стального оцинкованного провода типа ПСО. Примерами таких устройств служат устройства энергообогрева полов в животноводческих помещениях, почвы в парниках и теплицах.

Нагревательные кабели типа КМЖ, КМНС, КНРПВ, КНРПЭВ имеют 1 - 4 нагревательные жилы из стальной оцинкованной проволоки или сплавов сопротивления, изоляцию из поливинил -хлоридного пластиката, фторопласта, кремний органической резины. Снаружи кабелей предусмотрена металлическая оболочка из свинца, меди, алюминия или мягкой нержавеющей стали, предохраняющая от воздействия агрессивных сред и механических повреждений.

Гибкие ленточные электронагреватели марок ЭНГЛ-80, ЭНГЛ-180 (рис. 11) допускают температуру соответственно 85 и 180°С, имеют по восемь нагревательных жил, расположенных в одной плоскости в изолирующей стекло волокнистой ленте. Лента с жилами заключена в пластиковую оболочку. Жилы могут соединяться параллельно, последовательно и т. д. Линейная мощность 40-100 Вт/м, линейное сопротивление 0, 5—1 Ом/м. Там, где требуется высокая интенсивность нагрева, используют теплостойкие ленточные нагреватели типа НТЛ, допускающие температуру 400-600 °С и линейную нагрузку 150-360 Вт/м, напряжение до 380 В.

2-132.jpg

Рис. 11. Нагреватель ЭНГЛ-180: а - общий вид; б - сечение; 1 — вывод; 2 — концевая заделка; 3 — токоведущий провод; 4 — герметизирующее покрытие; 5 — скобка; 6 — жилы

Рис. 10. Конструкция нагревательного провода ПНВСВ (а) и нагревательных кабелей (б,в)

Изображение: 

Рис. 11. Нагреватель ЭНГЛ-180

Изображение: 

14. Как устроить электрообогреваемый пол?

Как устроить электрообогреваемый пол?

Электрообогреваемые полы состоят из нагревательных проводов, уложенных зигзагообразно с требуемым шагом в слое бетона (рис. 12, а). Экранирующую сетку присоединяют к контуру выравнивания потенциала не менее чем в двух местах.

2-141.jpg

Рис. 12. Электрообогреваемый пол:

а — схематический разрез; б, в — способы укладки нагревательного провода; 1 — утрамбованный грунт; 2 ~щебень; 3, 6бетон, 4, 5гидро- и теплоизоляция, 7нагревательный провод; 8 — экранирующая сетка

Выходные концы нагревательного элемента протягивают в трубы и подключают к распределительным коробкам. Напряжение питания изолированных нагревательных элементов 220 В; к неизолированным проводам подводят пониженное напряжение через трансформатор.

При применении нагревательного провода ПНВСВ упрощается конструктивная схема бетонного пола, так как не нужна экранирующая сетка. Начиная рассчитывать нагревательные элементы, определяют конфигурацию и площадь обогреваемого участка пола. Если температура поверхности пола должна быть равномерной, провода укладывают с постоянным шагом (рис. 12, б). При необходимости дифференцировать температуру (например, в свиноматочнике) в зависимости от возраста животных принимают переменный шаг укладки (рис. 12, в): больший на площадке для свиноматки, меньший в месте размещения поросят. Рекомендуемые параметры для расчета электрообогреваемых полов приведены в таблице 12.

Таблица 12. Рекомендуемые параметры для расчета электрообогреваемых полов

Вид животных

Рекомендуемая температура пола,°С

Поверхностный тепловой поток, Вт/м^2

Удельная обогреваемая площадь пола, м^2 /гол.

Рекомендуемый шаг укладки нагревательного провода,м

Цыплята

35-40

150-300

0,015-0,08

0,05-0,1

Поросята

25-30

100-200

1-1,5*

0,1-0,15

Свиньи на откорме

18-20

80-150

2, 25

0,15-0,2

Телята

20-24

100-150

1. 5

0,1-0,15

Коровы, больные маститом или артритом)

26-29

150-200

0,15-0,2


* На приплод

Рис. 12. Электрообогреваемый пол.

Изображение: 

15. Kак устроить электрообогреваемый парник или теплицу?

Kак устроить электрообогреваемый парник или теплицу?

Устройства элементного обогрева почвы и воздуха различают по конструктивному выполнению нагревательных элементов, их размещению, значению питающего напряжения и пр. Нагревательными элементами служат нагревательные провода и кабели, а также стальной неизолированный провод.

При почвенном обогреве нагревательные элементы располагают следующими способами: в асбоцементных или гончарных трубах диаметром 50— 150 мм, уложенных в песке под питательным слоем почвы (рис. 13, а); непосредственно в слое песка под почвой; в асфальтобетонных монолите или блоках под почвой.

Для обогрева воздуха нагревательные элементы подвешивают на строительных конструкциях сооружений защищенного грунта (непосредственно или в асбоцементных трубах диаметром 50—75 мм (рис. 13, а). К нагревательным элементам подводят напряжение 380/220 В или пониженное 24—17 В.

Нагревательные элементы, проложенные в трубах, защищены от влаги и механических повреждений, их легко ремонтировать и безопасно обслуживать; кроме того, при таком расположении выравнивается температура почвы. Основной недостаток — большой расход труб.

Обогреватели, выполненные в виде асфальтобетонного монолита или асфальтобетонньк либо асфальтокерамзитобетонных плит, имеют большую аккумуляционную способность, равномерно нагревают почву, электробезопасны. Устройство

2-151.jpg

Рис. 13. Устройство электрообогреваемого парника:

а - ТЭНами; б -с помощью асфальтобетонного монолита; 1 - патрубки; 2 - рама; 3, 4 - элементы воздушного и почвенного обогрева; 5 - почва; 6 - песок; 7 - шлак; 8 - коробка выводов; 9 - асфальтобетонный монолит; 10 - нагревательный элемент; 11 - защитная сетка-экран; 12 - гравий; 13 - грунт

парника со сплошным асфальтобетонным покрытием нагревательного элемента показано на рисунке 13, 6. На грунт насыпают слой шлака, затем песка, на который укладывают асфальтобетон (88% песка, 12% битума). Нагревательный провод или стальную неизолированную проволоку укладывают зигзагообразно и заливают асфальтобетоном, что обеспечивает хорошую электрическую изоляцию. Для питания нагревателя используют напряжение 380/220 В или пониженное.

Рис. 13. Устройство электрообогреваемого парника

Изображение: 

16. Какие электрические приборы применяют для приготовления пищи?

Какие электрические приборы применяют для приготовления пищи?

При использовании электронагревательных приборов для приготовления пищи значительно улучшаются санитарно-гигиенические условия в помещении. Такие устройства менее взрыво- и пожароопасны, чем плиты на твердом, газообразном и жидком топливе. Установленная мощность в квартире увеличивается в 1, 5—2 раза, расчетная мощность ввода составляет 5—5, 5 кВт, потребление электроэнергии доходит в среднем до 1500 кВт-ч на семью в год.

К электронагревательным устройствам для приготовления пищи относят микроволновые печи СВЧ-нагрева, напольные и настольные электроплиты, жарочные шкафы и специализированные приборы.

Микроволновые печи предназначены для приготовления, разогревания, размораживания, термостатирования продуктов. Магнетрон генерирует электромагнитное излучение с частотой 2300—2500 МГц, которое передается по волноводу в рабочую камеру печи и там поглощается нагреваемым продуктом. При прямом объемном нагреве токами СВЧ сокращается продолжительность приготовления блюд, повышается их качество и сохранность, снижается угар жиров.

Выпускают печи нескольких типов, в том числе «Электроника-СП23» и «Электроника-ЗС». Потребляемая мощность 1320 Вт. Мощность СВЧ-колебаний 550 кВт.

2-161.jpg

Рис. 14. Микроволновая печь «Электроника-3С»: 1 - волновод; 2 - магнетрон; 3 - вентилятор; 4 - трансформатор; 5 - панель с электроаппаратурой; 6 - блок управления; 7 - тарелка; 8 - дверь; 9 - камера

Kак устроены электрические плиты?

Напольные и настольные электроплиты различают по типу, числу конфорок и номинальной мощности.

Наиболее распространены штампованные конфорки (КПД 0, 5-0, 6; срок службы 3 тыс. ч), представляющие собой корпус из листовой стали, заполненный электроизоляционным материалом, в который впрессованы две нагревательные спирали мощностью 400 Вт каждая.

Чугунные конфорки (КПД 0, 65—0, 7; срок службы 4 тыс. ч) — это отливки, имеющие пазы с электроизоляционной массой, в которую впрессованы две или три спирали из нихрома Х20Н80. Общая мощность 1000 или 1200 Вт.

Трубчатые конфорки (КПД 0, 72—0, 74; срок службы 5 тыс. ч) выполняют из согнутых трубчатых нагревателей (в виде одного или нескольких витков спирали Архимеда). Работают при температуре нержавеющей оболочки ТЭНа 650—750 С. Большинство конфорок содержит два двухконцевых ТЭНа мощностью 480 и 550 Вт.

Мощность электроплит регулируют четырех-пяти- или семипозиционными переключателями.

Несущей конструкцией электроплиты является рама (рис. 15), состоящая из передней и задней стенок, корпуса жарочного электрошкафа и основания, сваренных точечной сваркой. Боковые стенки крепятся к раме при помощи винтов. Панель управления крепится к раме с помощью самонарезных винтов. Цветной эмалью на панели управления нанесены цифровые обозначения положений семипозиционных переключателей, числа — указатели температуры жарочного электрошкафа,

2-162.jpg

Рис. 15. Электрическая плита: а — конструктивная схема; б — электрическая схема: 1 — сигнальные лампы; 2 — ручки переключателей мощности; 3, 5, 9, 10 — электроконфорки; 4 —рабочий стол; б— розетка; 7 — переключатель клавишный; 8 — дверка жарочного шкафа; 11 — вспомогательный шкаф; 12 — основание рамы; Э1, Э2, ЭЗ, Э4 — электроконфорки; П1—П5 — переключатели; HL1—HL6 — сигнальные лампы; HL0 — осветительная лампа (подсветка); ТЭН1-ТЭНЗ -нагреватели духовки; Т° - датчик температуры

обозначение гриля, мнемознаки, обозначающие расположение электроконфорок на рабочем столе, обозначение вертела и лампы освещения жарочного электрошкафа. Рабочий стол, с установленными на нем четырьмя чугунными электроконфорками, смонтирован на раме при помощи шарниров, что позволяет приподнимать его для осмотра, монтажа, демонтажа электроконфорок и переключателей. В приподнятом положении рабочий стол удерживается штоком, закрепленным с правой стороны рамы. Углубление рабочего стола предназначено для сбора небольшого количества пролитой жидкости. Специальные отводы предупреждают попадание пролитой жидкости внутрь электроплиты. После окончания пользования электроплитой рабочий стол закрывается крышкой. В открытом положении крышка предохраняет стенку кухни от забрызгивания.

Электроконфорки излучающего типа выполнены из чугуна и имеют по три спирали, что позволяет регулировать мощность в больших пределах. Крепление электроконфорок производится с обратной стороны рабочего стола при помощи скоб. Регулирование мощности электроконфорок производится при помощи семипозиционных переключателей. Ручки переключателей расположены на панели управления. Расположение ручек переключателей показано на рис. 15. Семипозиционные переключатели мощности электроконфорок имеют круговое вращение. Трехпозиционный переключатель жарочного электрошкафа имеют три положения: «О» — отключено; включены нагревательные элементы жарочного электрошкафа; включен гриль. Ручка трехпозиционного переключателя жарочного электрошкафа не имеет кругового вращения. Трехпозиционный клавишный переключатель имеет три положения: нейтральное;

включен моторедуктор; включена лампа освещения жарочного электрошкафа.

Внутренняя поверхность жарочного электрошкафа покрыта черной эмалью. Четыре направляющих паза внутри жарочного электрошкафа предназначены для установки на желаемом уровне противней или решетки. С наружной стороны жарочный электрошкаф имеет тепловую изоляцию. Дверка жарочного электрошкафа застеклена термостойким стеклом, что позволяет визуально контролировать готовность приготовляемой пищи. Крепление дверки жарочного электрошкафа к корпусу электроплиты выполнено с помощью специальных петель, которые позволяют фиксировать ее в трех положениях: закрыто, открыто, промежуточное.

В жарочном электрошкафу установлены три трубчатых электронагревателя. Два из них, верхний и высокотемпературный (гриль), установлены в верхней части жарочного электрошкафа, а нижний — под днищем. Крепление ТЭНа к задней стенке корпуса электроплиты производится с помощью специальных пластин. Включение нагревательных элементов жарочного электрошкафа или гриля производится ручкой трехпозиционного переключателя, расположенной с левой стороны панели управления, при этом ручка переключателя вращается по часовой стрелке до нужного значения температуры жарочного электрошкафа или до обозначения гриля. Одновременное включение нагревательных элементов жарочного электрошкафа и гриля невозможно. Выключение нагревательных элементов жарочного электрошкафа, а также гриля производится вращением ручки трехпозиционного переключателя против часовой стрелки до положения «О».

Моторедуктор смонтирован с наружной стороны задней стенки электроплиты и предназначен для вращения вертела с частотой 2 об/мин при приготовлении на нем пищи. Включение и выключение моторедуктора производится клавишным переключателем, расположенным с правой стороны панели. В процессе приготовления пищи вертел заостренным концом вставляется в воронку, жестко насаженную на вал моторедуктора и выведенную в жарочный электрошкаф. Второй конец вертела опирается на рамку.

Розетка расположена на панели управления и крепится к ней с обратной стороны при помощи пружинной пластины. Розетка предназначена для включения бытовых электроприборов мощностью до 1 кВт, при этом максимальный ток при всех включенных нагревателях составит 41 А.

Специализированные приборы с инфракрасными нагревателями — это электрошашлычницы, электрогрили, ростеры и тостеры. В качестве ИК-излучателя применяют высокотемпературные ТЭНы или кварцевые излучатели, представляющие собой трубку из кварцевого стекла диаметром 20 мм с толщиной стенки 1 мм. В трубку помещен керамический стержень диаметром 19 мм с укрепленной в пазах нагревательной спиралью из нихромовой проволоки. Температура поверхности такого излучателя 850°С.

Рис. 14. Микроволновая печь «Электроника-3С»

Изображение: 

Рис. 15. Электрическая плита

Изображение: 

17. Какие применяют электрические устройства для отопления и нагрева воды?

Какие применяют электрические устройства для отопления и нагрева воды?

Электроотопление имеет ряд преимуществ перед традиционными видами отопления: удобство эксплуатации, постоянная готовность приборов к работе, надежность, возможность индивидуального терморегулирования. Кроме того, не требуется заготавливать и хранить топливо, уменьшаются расходы на обслуживание. В то же время электроотопление — это самый энергоемкий и дорогой вид электрификации быта. Для обогрева 1 м^2 площади необходима установленная мощность 100— 200 Вт при годовом расходе энергии 5—15 тыс. кВт • ч. Расход электроэнергии для горячего водоснабжения на семью из трех-четырех человек составляет около 2 тыс. кВт • ч в год.

Наиболее распространены переносные электроотопительные приборы мощностью 0, 5—1, 25 кВт. По способу теплопередачи их классифицируют на приборы со свободной (электроконвекторы) и вынужденной (электротепловентиляторы) конвекцией, излучением (электрокамины и ИК-обогреватели), конвекцией и излучением (электрорадиаторы).

Электроконвекторы (рис. 16) предназначены для общего обогрева помещения. В качестве нагревателей используют: спирали из нихрома, закрепленные в несколько рядов на изоляторах; тканые элементы, состоящие из проволоки, вплетенной в нагревостойкую ткань; трубчатые плоские и ребренные нагреватели.

Электрокамины служат для местного обогрева; их делят на функциональные и декоративные.

2-171.jpg

Рис. 16. Электроконвектор:

1 - корпус; 2 - нагревательный элемент; 3 -ручка; 4 -выключатель; 5 — индикаторная лампа

В декоративные камины входят устройство, имитирующее горение дров, и нагревательный блок. Имитация пламени создается при вращении вертушек различной формы с прорезями, установленных в потоке света, излучаемого на полупрозрачный экран. Нагреватели — ТЭНы или спирали из нихрома, размещенные в трубках из кварцевого стекла.

Электрорадиаторы применяют для общего отопления помещения. Они бывают панельными и секционными. Теплота от трубчатого нагревательного элемента передается корпусу промежуточным теплоносителем — минеральным маслом. Температуру изменяют с помощью встроенного биметаллического регулятора. Предусмотрено автоматическое отключение нагревателя при температуре корпуса 130°С.

Бытовые электроводонагреватели делят на три основные группы: переносные приборы (электрические чайники, самовары; -кипятильники), проточные и аккумуляционные водонагреватели.

Аккумуляционные водонагреватели низкого давления типа ЭВАН (рис. 17) с трубчатым нагревательным элементом мощностью 1, 24 кВт устанавливают в ванной комнате. При вместимости устройства 10, 40 и 100 л вода нагревается до максимальной температуры в течение 1; 3, 2 и 7, 8 ч. Диапазон ее регулирования 35—85°С. Прибор присоединяют к водопроводной сети с помощью стандартного смесителя, что позволяет подавать воду наружной температуры через кран или душ.

2-172.jpg

Рис. 17. Электроводонагреватель ЭВАН - 100/1. 25: а —устройство; б — электрическая схема; 1 — бак; 2 — кожух с теплоизоляцией; 3 — трубка смесителя; 4 -терморегулятор; 5 — смеситель; 6 — патрубок для ввода холодной воды; 7 — сигнальная лампа; 8 — шнур электропитания; 9—лимб регулятора температуры; 10 — нагреватель

Быстродействующий водонагреватель ЭВБО-10/ 1, 00 мощностью 1 кВт и вместимостью 10л размещают на кухне. Время нагревания воды до температуры 85°С не более 60 мин; температуру воды изменяют терморегулятором.

Рис. 16. Электроконвектор

Изображение: 

Рис. 17. Электроводонагреватель ЭВАН - 100/1.25

Изображение: 

18. Какие применяют электрические санитарно-гигиенические приборы?

Какие применяют электрические санитарно-гигиенические приборы?

Электрические утюги выпускают следующих типов: УТ — с терморегулятором; УТП — с терморегулятором и пароувлажнителем; УТПР — с терморегулятором, пароувлажнителем и разбрызгивателем; УТУ — с терморегулятором, утяжеленный. Их различают по массе (0, 68—2, 5 кг) и мощности (0, 4 и 1 кВт). Температуру нагрева утюга устанавливают лимбом биметаллического терморегулятора.

Электроутюг состоит из подошвы 7 (рис. 18) из алюминиевого сплава с залитым в него трубчатым электронагревателем 2, кожуха 9 из жаростойкой пластмассы, защищенного от нагрева подошвы теплоизолирующей прокладкой 4, ручки 7 и крышки б, изготовленных из ударопрочной пластмассы, соединительного шнура 5 с подвижным вво-

2-181.jpg

Рис. 18. Электроутюг

дом и сигнальной лампы, информирующей о работе терморегулятора 3. Терморегулятор автоматически поддерживает заданную температуру подошвы.

Приборы мягкой теплоты — это электрические грелки, одеяла, бинты, пледы и др. Они одинаковы по конструкции и отличаются лишь внешним оформлением. На тканой основе располагают зигзагообразный гибкий нагревательный элемент, в цепи питания которого предусмотрен аварийный термовыключатель. Это устройство помещают сначала в изолирующий полиэтиленовый, а затем в декоративный чехол. Большая часть изделий оснащена переключателями для изменения температуры нагрева.

В качестве нагревательных элементов применяют нихромовую проволоку, навитую на асбестовую нить, вплетенную в тканевую основу или расположенную в кремний органической изоляции, а также углеграфитовое волокно, покрытое фторопластовой оболочкой. Рабочая температура нагревательного элемента не превышает 70°С;

Фены предназначены для сушки волос. Состоят из пластмассового корпуса, в котором находятся спираль, натянутая на каркас из фарфора или слюдопласта, вентилятор с электродвигателем, переключатель мощности и аварийный термовыключатель. В ручных фенах теплый воздух направляют непосредственно на волосы, в настольных подают по соединительному шлангу в пластиковый колпак.

Рис. 18. Электроутюг

Изображение: 

19. Какой применяют электрический нагревательный инструмент?

Какой применяют электрический нагревательный инструмент?

Электропаяльники разделяют на бытовые (напряжение питания преимущественно 220 В) и промышленные (напряжение питания не выше 42 В), непрерывного и периодического нагрева.

Электропаяльник непрерывного нагрева имеет массивный паяльный стержень, аккумулирующий теплоту и отдающий ее в процессе пайки деталям. Нагревательная спираль намотана на металлическую трубку, изолированную слоем слюдопласта.

Электропаяльник периодического нагрева (рис. 19) благодаря малой массе паяльного стержня нагревается до рабочей температуры за несколько секунд. Паяльный стержень выполнен в виде петли из толстой проволоки, которую включают в разрыв короткозамкнутой обмотки трансформатора, размещенного в корпусе паяльника.

2-191.jpg

Рис. 19.

Электропаяльник:

1трансформатор;

2 - корпус; 3 - шина;

4 — паяльный стержень; 5 — сигнальная лампа; 6 — выключатель; 7 — соединительный шнур

По конструкции корпуса различают пистолетные, торцевые и молотковые электропаяльники. Молотковый предназначен для пайки массивных деталей, масса его стержня 1 кг.

По назначению и мощности паяльники подразделяют на радиомонтажные маломощные (10—26 кВт), электротехнические средней мощности (40— 65 кВт) и медницкие мощные (100 Вт и выше). Электроприборы для сваривания полиэтиленовой пленки бывают периодического и непрерывного действия.

Прибор «Молния-1» периодического действия состоит из понижающего трансформатора, к вторичной цепи которого подключена нагревающая нихромовая лента, и ручки-рычага с подушкой из губчатой резины. Оба элемента защищены фторопластовой пленкой. Между ними зажимают свариваемую пленку.

Прибор «Молния-2» непрерывного действия представляет собой ручку с размещенной на ней спиралью. На конце шарнирно закреплен полозок, нагревающийся от спирали и сваривающий пленку.

Рис. 19. Какой применяют электрический нагревательный инструмент?

Изображение: 

20. Какие типов выпускают электрические холодильники?

Какие типов выпускают электрические холодильники?

Промышленность выпускает домашние холодильники двух типов: компрессионные и абсорбционные. Наиболее распространены компрессионные холодильники с автоматическим регулированием, расходующие почти в 3 раза меньше электроэнергии, чем абсорбционные. В зависимости от вместимости эти холодильники за год потребляют 250—450 кВт•ч, а абсорбционные 500— 1400 кВт • ч электроэнергии.

Холодильный агрегат компрессионного действия (рис.20,в) состоит из компрессора 32, испарителя 26, конденсатора 27 и регулировочного вентиля, которые соединены между собой трубопроводами и образуют замкнутую герметизированную систему, заполненную хладагентом. Компрессор агрегата приводится в действие электродвигателем и служит для отсасывания паров хладагента из испарителя, благодаря чему в испарителе поддерживается низкое давление. Кроме того, в компрессоре происходит сжатие этих паров до давления, при котором они в конденсаторе превращаются в жидкость после охлаждения. Испаритель и конденсатор являются теплообменными частями холодильного агрегата. Через их поверхности осуществляется теплообмен между охлажденным объектом и хладагентом, с одной стороны, и между хладагентом и окружающей средой — с другой. Испаритель и конденсатор соединены регулирующим вентилем с малым проходным сечением, благодаря чему при работе компрессора в ис-

2-201.jpg

Рис. 20. Электрический холодильник М-130: а — вид спереди; б — вид сзади; в — схема холодильника компрессионного действия. А — холодильная камера; В — морозильная камера; 1 — лампа освещения; 2 — приборы управления и сигнализации; 3 — полка;

4 - обрамление; 5 — емкость с крышкой; 6 — вкладыш для яиц; 7 — барьер -полка; 8 — панель внутренняя; 9 — барьер для фиксации бутылок; 10 — пиктограмма; 11 — полка; 12корзина; 13 — указатель; 14 — кронштейн петли нижней; 15 — кронштейн; 16 — шторка; 17 — опора с гайкой; 18 — болт; 19 — ролик; 20 — лопатка; 21 — форма для льда; 22 — аккумулятор холода; 23 — пруток; 24 — сосуд; 25 — полка-стекло; 26 — испаритель; В.датчик-реле температуры; Вдатчик-реле температуры; R1 нагреватель; С — конденсатор; Н1 —лампа

2-202.jpg

парителе всегда создается разрежение, а в конденсаторе — повышенное давление. Электрическая энергия, затрачиваемая на получение холода, расходуется электродвигателем для привода компрессора.

У абсорбционных холодильников диффузионного действия два рабочих вещества: абсорбент (вода) и хладагент (аммиак). Температуры кипения абсорбента и хладагента при атмосферном давлении разные (100 и-35°С). Хладагент хорошо растворяется в абсорбенте (при нормальном давлении и температуре 20°С в 100 г воды растворяется 72 г аммиака). При включении холодильника в сеть концентрированный раствор аммиака нагревается и испаряется, потребляя теплоту холодильной камеры.

Абсорбционные холодильники «Иней» (114 дм^3) и «Кристалл-9» (170 дм^3) бесшумны в работе, надежны в эксплуатации, сравнительно несложны в изготовлении и ремонте.

Рис. 20. Электрический холодильник М-130: а — вид спереди

Изображение: 

Рис. 20. Электрический холодильник М-130: б — вид сзади; в — схема холодильника компрессионного действия

Изображение: 

21. Kак устроена стиральная машина?

Kак устроена стиральная машина?

Промышленность выпускает стиральные машины следующих трех основных типов: СМР — с ручным отжимом; стирка и полоскание механизированы, отжим при помощи двух покрытых резиной валиков; СМП — полуавтоматические, с автоматическим устройством для регулирования времени стирки; стирка, полоскание, отжим, откачка и перекачка жидкости механизированы; СМА — автоматические, у которых стирка, полоскание, отжим, откачка и перекачка жидкости механизированы и автоматизированы.

Как устроены стиральные машины типа СМР? Общий вид и разрез стиральной типа СМР показаны на рисунке 21. На дне стирального бака 2 размещен дисковый активатор 21. На одном валу с активатором внутри корпуса 7 расположен центробежный насос, откачивающий жидкость из бака. Жидкость через сливное отверстие в дне бака, закрытое съемной решеткой 13, поступает по шлангу 10 в насос и через сливной шланг 9,. выведенный из корпуса машины, сливается при стирке снова в бак, обеспечивая тем самым циркуляцию стирающей жидкости. После окончания стирки жидкость по сливному шлангу выводится из машины.

Активатор и насос приводятся в движение асинхронным электродвигателем 19 посредством клиноременной передачи. Электродвигатель установлен на наклонной раме 18, продольные пазы которой позволяют перемещать двигатель и тем самым регулировать натяжение приводного ремня.

Отжимное устройство с двумя валиками 5 и 6, покрытыми резиной, монтируют в кронштейнах

2-211.jpg

Рис. 21. Стиральная машина типа СМР: а - общий вид; б -разрез; 1 — корпус; 2 — стиральный бак; 3 — отметка уровня заполнения бака; 4 — ручка для переноса машины; 5 и 6 — валики отжимного устройства; 7 —регулировочный винт; 8 — пружина; 9 и 10 — сливной и соединительный шланги; 11 — скоба для намотки электрошнура; 12 — рукоятка отжимного устройства; 13 — решетка; 14 — шнур; 15 — реле; 16 — ролик; 17 — скоба для удержания машины при отжиме; 18 — рама; 19 — электродвигатель; 20 — насос; 21 — активатор

корпуса машины и закрепляют стопорными винтами. Плоская пружина 8 прижимает верхний валик к нижнему. Усилие пружины изменяют регулировочным винтом 7. Валики вращают съемной рукояткой 12, которую вставляют в ось нижнего валика. Машину включают поворотом ручки реле времени 15.

Переносят машину, приподнимая ее за пластмассовые ручки 4. Скоба 17 служит опорой машины и одновременно помогает удерживать ее при отжиме белья. Машину можно перевозить на двух роликах 16. На поверхности бака выдавлено продолговатое углубление 3, указывающее допустимый уровень жидкости. Соединительный шнур 14 после прекращения работы машины наматывают на скобу 11.

К числу стиральных машин с ручным отжимом относятся «Волга-8Р» и «Таврия». Они рассчитаны на стирку 1, 5 кг сухого белья. Мощность, потребляемая ими, 350 Вт. У них два режима работы. Габариты машины «Волга-8Р» - 445х498х722 мм, а «Таврии» - 450х470х470 мм.

К типу стиральных полуавтоматических машин относятся стиральные машины «Рига-15» с вкладной центрифугой, «Сибирь-6», «Аурика-78», «Золушка-2П», «Сибирь-7Б», «Эврика-3». Их стиральный бак вмещает от 1, 5 до 3 кг сухого белья. Мощность, потребляемая машинами, 500— 600 Вт. У них два режима работы (кроме «Рига-15»). Габариты машин примерно одинаковы и равны 700х400х700 мм.

Стиральные машины «Эврика-автомат» (2 кВт), «Кишинев-2» (2, 4 кВт), «Вятка-автомат» (2, 2 кВт) имеют до 12 программ, благодаря которым автоматически заливается, сливается, нагревается вода, замачивается белье, вводится нужное количество моющих средств, полощутся и отжимаются вещи. Для подключения машины требуется разрешение электроснабжающих и коммунальных служб.

Рис. 21. Стиральная машина типа СМР

Изображение: 

22. Какие электрифицированные машины используют в кормоприготовлении для подсобного хозяйства?

Какие электрифицированные машины используют в кормоприготовлении для подсобного хозяйства?

Универсальный измельчитель кормов КУ-4 с помощью набора сменных рабочих органов позволяет дробить зерно, перерабатывать солому и Корнеплоды, лущить початки кукурузы. Мощность электропривода установки 600 Вт. Производительность измельчителя на резке соломы 90 кг/ч, зерна 20 кг/ч.

Бытовой измельчитель кормов ИБК-1 имеет электродвигатель мощностью 600 Вт. Его производительность на резке соломы 90 кг/ч и зерна 20 кг/ч.

Зернодробилки ДЗТ-Т-1 и ДЗ-Т-1 снабжены электродвигателями мощностью по 600 Вт. Их производительность соответственно 75 и 40 кг/ч зерна.

Электродробилки пищевых отходов ЭД-Т-1 также приводит в действие электродвигатель мощностью 600 Вт. Производительность 50 кг/ч.

Электрокорнеплодорезка ЭКР-1 измельчает корнеплоды на ломтики. Мощность электропривода 280 Вт. Производительность машины 150—300 кг/ч.

Универсальная бытовая машина Э-270 предназначена для приготовления кормов и выполнения деревообрабатывающих работ. Используя ее, можно измельчать солому и сено, резать корнеплоды, дробить зерно, лущить початки кукурузы, распиливать, строгать и фрезеровать древесину. Базовая машина имеет электродвигатель мощностью 1, 1 кВт. Частота вращения вала электродвигателя 1450 об/мин.

Все перечисленные машины включают в однофазную сеть напряжением 220 В.

Какие электрифицированные аппараты применяют для дойки коров?

Для дойки коров используют индивидуальный доильный агрегат АИД-1, который входит в комплект оборудования ОК-1. Чтобы доильный агрегат работал, необходима вакуумная установка, состоящая из вакуум-насоса и электродвигателя мощностью 0, 6 кВт и напряжением 220 В.

Агрегат в работу можно включать только при надежном заземлении электрооборудования и установке аппарата защитного отключения.

Какие инкубаторы применяют в личных подсобных хозяйствах?

Практически используют инкубаторы двух типов: «Наседка» и ИПХ-5. Бытовой инкубатор «Наседка» рассчитан на инкубацию 48 куриных яиц. Потребляемая мощность 190 Вт, напряжение сети 220 В. Расход электроэнергии за один цикл инкубации 60 кВт*ч.

В малогабаритном настольном инкубаторе ИПХ-5 можно одновременно выводить цыплят из 50 яиц. Потребляемая мощность 85—100 Вт, напряжение сети 220 В.

Какие электрические насосы применяют в подсобном хозяйстве?

Электрический насос состоит из двух основных частей: электродвигателя и лопастного центробежного насоса. Рабочее колесо вместе с лопастями центробежного насоса заключено в корпус и соединено с валом электродвигателя.

При вращении рабочего колеса вода, заполняющая насос, под действием центробежной силы выбрасывается из корпуса, выполненного в виде улитки, в напорный трубопровод и подается в резервуар или на раздачу. Во время вращения рабочего колеса во всасывающем патрубке насоса создается вакуум, за счет которого вода непрерывно поступает во всасывающий трубопровод. Насосы центробежного типа могут работать только в том случае, если рабочее колесо, а следовательно, и всасывающий трубопровод заполнены водой. Поэтому, чтобы удержать воду внутри насоса при его остановке, на конце всасывающего трубопровода смонтировано приемное устройство с обратным клапаном. Если насос запускается в работу впервые или после ремонта, то в корпус насоса предварительно заливают воду.

У сельского населения наиболее распространены малогабаритные центробежные насосы «Кама», «Агидель», «Урал», ЦМВБ-1, 6-15, БЦНМ-3, 5/17, БЦНМ-4/17, 1СЦВ-1, 5 и ВС-0, 5/18М.

Помимо центробежных насосов, сельское население применяет насосы вибрационного типа. Принцип их действия основан на использовании электромагнитных колебаний, передаваемых клапану-плавнику. При сравнительно небольшой потребляемой мощности (250 Вт) и малой массе подача такого насоса достигает 1, 5 м^3/ч при полном напоре 20 м.

Электронасос «Кама» (рис. 22) объединяет электродвигатель и лопастный центробежный насос. Электрический двигатель типа УЛ-06 коллекторный, универсальный, снабжен специальным помехоподавляющим устройством. Его мощность 330 Вт, частота вращения 5000 мин^-1. Включать насос без нагрузки нельзя, так как частота вращения двигателя может возрасти до недопустимого значения. Основные части центробежного лопастного насоса — корпус и рабочее колесо. В комплект входит приемное устройство с обратным клапаном. Корпус насоса разъемный. При разборке насоса для осмотра или ремонта рабочего колеса всасывающий трубопровод демонтировать не нужно. Электродвигатель к насосу крепят болтами с пружинными шайбами. Вал, выходящий из насоса, уплотнен сальником, состоящим из двух резиновых манжет, вставки между ними, двух шайб и стягивающей гайки. Для гидравлического уплотнения в сальник подается вода из напорной полости через специальный канал в крышке насоса. Кожух защищает двигатель от попадания воды сверху.

Рабочее колесо насоса состоит из двух склепанных между собой дисков — верхнего и нижнего. Верхний диск снабжен лопатками, нижний придает рабочему колесу требуемую жесткость. Рабочее колесо закреплено на валу электродвигателя.

Чтобы удержать воду в насосе и во всасывающем трубопроводе, предусмотрено приемное устройство с фильтром и обратным клапаном, соединенное резьбой с концом всасывающей трубы. Приемное устройство устанавливают вертикально, так как обратный клапан закрывается под действи-

2-221.jpg

Рис. 22. Электронасос «Кама»:

1 - подставка; 2 - основание корпуса; 3 - прокладка; 4 - помеха- подавляющее устройство; 5 - электродвигатель; 6 - крышка насоса; 7 - сальник; 8 - рабочее колесо; 9 - приемное устройство

ем собственного веса. При работе насоса вода выбрасывается рабочим колесом через нагнетательное отверстие в напорный трубопровод. Часть воды перетекает обратно во всасывающий патрубок через зазоры между выступами рабочего колеса и расточками в крышке и корпусе насоса. Эти зазоры не должны быть больше 0,15 мм.

Сельские жители используют два типа этих насосов: «Кама-3» и «Кама-5». У них одинаковые габариты (диаметр 200 и высота 300 м) и масса (5,3 кг). Насосы рассчитаны на напор 17 м. У насоса «Кама-3» максимальная высота всасывания 6 м и подача 1,5 м^3/ч, у насоса «Кама-5» высота всасывания 7 м и подача 1,3—1,5 м^3/ч.

Принцип действия объемно-инерционных насосов с электромагнитным вибрационным приводом основан на использовании электромагнитных колебаний, передаваемых клапану-плавнику. При максимальном напоре до 40 м подача насосов составляет 1,5 м^3/ч. Их мощность до 250 Вт.

Электромагнитный бытовой насос «Малыш» (рис.23) предназначен для подъема воды из трубчатых скважин диаметром 100 мм. При работе насос должен быть полностью погружен в воду. Однотипный насос НЭБ-1/20 предназначен для скважин диаметром не менее 200 мм. Эти насосы питаются от однофазной сети напряжением 220 В. Время непрерывной работы до 2 ч с последующим отключением на 15—20 мин.

Вибрационный электронасос «Родничок» поднимает воду с глубины до 20 м, а «Струмок» — с глубины до 40 м. Насос «Струмок» по своим параметрам не отличается от насоса «Малыш». Мощность насоса «Родничок» 300 Вт, подача 0,5 м^3/ч.

2-222.jpg

Рис. 23. Установка электронасоса «Малыш»: а - в колодце;

б - в обсадной трубе; 1 - насос; 2 - связка провода со шлангом; 3 - капроновая подвеска; 4 - пружинная подвеска из резины; 5 - провод; 6 - шланг; 7 - перекладина; 8 - вилка; 9 - кольцо; 10 - обсадная труба

Рис. 22. Электронасос «Кама»

Изображение: 

Рис. 23. Установка электронасоса «Малыш»

Изображение: 

23. Какой источник света выбрать для освещения помещений?

Какой источник света выбрать для освещения помещений?

2-231.jpg

Рис. 24. Лампа накаливания:

1 — стеклянная колба; 2вольфрамовая нить; 3крючки;

4— электроды; 5 — центральная часть цоколя; 6 — резьба цоколя

Лампы накаливания — самые массовые источники оптического излучения. Это объясняется сравнительной простотой их устройства и надежностью в эксплуатации, возможностью непосредственного включения в сеть, отработанностью технологии и дешевизной. Несмотря на многообразие типоразмеров ламп накаливания, отличающихся номинальным напряжением, мощностью и родом тока, все они объединены единым физическим принципом получения видимого излучения (нагрев электрическим током вольфрамовой нити до температуры 2200-2800°С) и сходством применяемых во всех конструкциях основных составляющих элементов (рис. 24).

Лампы накаливания отличаются между собой электрическими, светотехническими и эксплуатационными характеристиками. Номинальный срок службы ламп накаливания (средняя продолжительность горения) достигает 1000 часов.

2-232.jpg

Рис.25. Люминесцентная трубчатая лампа низкого давления: 1 — стеклянная трубка; 2слой люминофора;

3 — электроды с вольфрамовой биспиральной нитью; 4 — стеклянные ножки; 5 — цоколь;

6 — контактные штыри

Обозначение ламп накаливания общего назначения состоит из букв (от 1 до 4): В — вакуумная, Г — газонаполненная (аргон 86% и азот 14% ); Б — биспиральная; БК — биспиральная с криптоновым ( криптон 86% и азот 14% ) наполнителем, МТ — с матированной колбой, МЛ — в колбе молочного цвета, О—с опаловой колбой и т.д. После буквенного обозначения следуют цифры, показывающие диапазон напряжения питания лампы в вольтах, на который рассчитана лампа, через дефис - номинальная мощность лампы в ваттах и далее порядковый номер разработки. Пример условного обозначения: Г 220-230-100 — газонаполненная на диапазон напряжений 220—230 В, номинальной мощностью 100 Вт.

Люминесцентные лампы низкого давления имеют более высокую, чем у ламп накаливания, световую отдачу, улучшенный спектральный состав излучения, значительно больший срок службы.

Люминесцентная лампа (рис.25) — это длинная стеклянная трубка (колба), внутренняя поверхность которой покрыта слоем люминофора. Люминофор преобразует ультрафиолетовое излучение газового разряда в видимое.

Люминесцентные лампы различают пo форме и размерам колбы, мощности и спектральному составу или цветности излучения. Выпускаемые промышленностью люминесцентные лампы типов ЛБ, ЛД, ЛТБ и ЛХБ, ЛЕ, ЛБЕ, ЛХЕ и др. отличаются только составом люминофора, а следовательно, и спектральным составом излучения. Буквы, входящие в наименование этих типов ламп, означают: Л—люминесцентная, Б—белая, Д—дневная, ТБ—тепло-белая, ХБ—холодно-белая, Е—естественная, БЕ— белая естественная, ХЕ—холодно-естественная, УФ—ультрафиолетовая, Ф—фотосинтетическая, Р—рефлекторная, У-И-образная, К— кольцевая, А—амальгамная. Среди ламп указанных цветностей различают еще лампы с улучшенным спектральным составом излучения, обеспечивающим хорошую цветопередачу освещаемых предметов. В обозначении этих ламп после букв, характеризующих цветность излучения, добавляют букву Ц (ЛДЦ, ЛХБЦ, ЛЕЦ и т.д.). Сразу после буквенного обозначения следуют цифры, указывающие номинальную мощность лампы в ваттах и через тире — порядковый номер разработки.

Люминесцентные лампы выпускают на мощности: 6, 9, 11, 15, 18, 20, 30, 36, 40, 58, 65, 80, 125 и 150 Вт. Средняя продолжительность горения люминесцентных ламп не менее 12000 ч. Оптимальными условиями работы ламп являются t= 18—25°С и относительная влажность воздуха не более 70 %. В условиях низкой температуры и влажности они плохо «загораются» и выходят из строя.

Как включить электрические лампы в электрическую сеть?

Лампы накаливания включают в сеть между фазным и нулевым проводами. К верхнему контакту патрона подсоединяют фазный провод, а к боковой резьбе — нулевой. Выключатель устанавливают в рассечку фазного провода.

2-233.jpg

Рис. 26. Схемы включения электрических ламп накаливания: а — выключателем однополюсным; б — выключателем однополюсным на две цепи; вуправление из двух мест при помощи переключателей; EL1, EL2 — лампы накаливания; QS — выключатель; QS1 — выключатель сдвоенный; SA1, SA2 — переключатели

В зависимости от конструкции переключателя можно различным образом управлять работой ламп:

включать и выключать их одновременно или поочередно и т. п., для включения и отключения группы ламп из двух разных мест можно использовать переключатель (рис.26).

Kак включить простейший светильник с люминесцентной лампой?

Включение люминесцентных ламп более сложно, так как требуется пробить газовый промежуток между электродами и зажечь лампу. Возникающий газовый разряд необходимо стабилизировать, иначе ток в лампе возрастет выше допустимого и перегорят электроды.

Для зажигания люминесцентной лампы и ее нормальной работы требуется стартер (зажигатель), дроссель (ПРА — пускорегулирующий аппарат), конденсаторы. Стартер служит для автоматического включения и выключения предварительного накала электродов. Дроссель, представляющий собой

2-234.jpg

Рис.27. Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; Сконденсатор; LL — дроссель; EL2 — лампа накаливания

обмотку, намотанную на сердечник из листовой электротехнической стали, облегчает зажигание лампы, а также ограничивает ток и обеспечивает ее устойчивую работу. На рис. 27, а приведена простейшая схема стартерного зажигания люминесцентной лампы, включенной в сеть 127—220 В. При этом следует помнить, что стартеры включаются параллельно лампе, а дроссели — последовательно с лампой.

Обозначение стартера включает: С — стартер;

20 или 80 — предельные значения мощности люминесцентных ламп, для которых предназначен стартер; 65 — мощность лампы, для которой предназначен стартер; 127 или 220 — номинальное напряжение стартера. Например, 20С-127 - стартер для люминесцентных ламп предельной мощностью 20 Вт включительно, то есть 4, 6, 8, 15, 18 и 20 Вт; 65С-220 — стартер для люминесцентных ламп мощностью 65 Вт; 80С-220 — стартер для люминесцентных ламп предельной мощностью 80 Вт включительно, за исключением ламп мощностью 65 Вт, то есть 13, 30, 36, 58 и 80 Вт.

Каждому ПРА присваивается шифр условного обозначения, который характеризует его назначение, устройство, исполнение и параметры. Например, 2УБИ-40/220-АВПП-900 ГОСТ 16809-71. Двухламповый индукционный стартерный аппарат с предварительным подогревом электродов к лампам мощностью 40 Вт для включения в однофазную сеть 220 В, со сдвигом фаз между токами ламп встроенного исполнения, с особо пониженным уровнем шума, номер разработки — 900.

Зажигание и горение люминесцентной лампы возможно только в том случае, если мощность лампы соответствует мощности ПРА.

Вместо дросселя можно использовать лампу накаливания, включив ее по схеме, показанной на рис. 27, б.

Для надежного зажигания люминесцентной лампы к ее штырю присоединяют металлический проводник в виде достаточно широкой металлической полосы (фольги), расположенной по поверхности лампы. Полосу присоединяют к одному из выводов электродов.

Можно также заземлять полосу (в этом случае ее нельзя соединять с выводами лампы) или проложить вдоль самой лампы один из монтажных токоведущих проводов и закрепить его по концам колбы проволочными хомутиками.

После сборки схемы в светильник устанавливают лампу и стартер. Штырьки обоих цоколей лампы одновременно вставляют до отказа в прорези, находящиеся в верхней части патрона, и поворачивают лампу на 90°. Эту операцию следует проводить осторожно во избежание отрыва колбы от цоколя.

Стартер вставляют в предназначенное для него гнездо стартеродержателя и поворачивают по часовой стрелке до упора.

Какие лампы применяют для освещения открытых площадок?

2-235.jpg

Рис.28. Лампа ДРЛ: 1—колба; 2—слой люминофора; 3— кварцевая трубка (горелка);

4—два основных вольфрамовых электрода; 5—два дополнительных (поджигающих) электрода; 6—резистор; 7— цоколь

Лампы типа ДРЛ (рис.28) — ртутные люминесцентные лампы высокого давления — широко распространены для освещения производственных территорий, строительных площадок, проезжих частей дорог, а также промышленных предприятий, не требующего высокого качества цветопередачи.

Промышленность выпускает восемь типоразмеров ламп ДРЛ мощностью 50, 80, 125, 250, 400, 700, 1000, 2000 Вт для включения в сеть переменного тока номинальным напряжением 220 и 380 В. На рис.29 приведена схема зажигания лампы ДРЛ.

Металлогалогенные лампы типа ДРИ по конструкции в общих чертах подобны двухэлектродным лампам типа ДРЛ. В обозначении ламп ДРИ буквы

обозначают: Д—дуговая, Р—ртутная, И—с излучающими добавками, 3—зеркальная. Первое чис-

2-236.jpg

Рис. 29. Схема включения ламп ДРЛ: FU — предохранитель;

С — конденсатор; ELлампа ДРЛ; LL — дроссель

ло после буквенного обозначения указывает номинальную мощность в ваттах, а второе после дефиса — номер разработки или модификации. Промышленность изготавливает лампы типа ДРИ шести типоразмеров: на 250, 400, 700, 1000, 2000, 3500 Вт. Средняя продолжительность горения 0,6 — 10 тыс. часов.

Рис. 24. Лампа накаливания

Изображение: 

Рис. 25. Люминесцентная трубчатая лампа низкого давления

Изображение: 

Рис. 26. Схемы включения электрических ламп накаливания

Изображение: 

Рис. 27. Схемы включения люминесцентных ламп

Изображение: 

Рис. 28. Лампа ДРЛ

Изображение: 

Рис. 29. Схема включения ламп ДРЛ

Изображение: 

24. Как обеззаразить помещение, воду или получить «Загар» зимой?

Как обеззаразить помещение, воду или получить «Загар» зимой?

Решение этих задач возможно при использовании ультрафиолетового излучения. Излучения этой области при определенных дозах облучения оказывают благотворное действие на живые организмы, они способны превращать провитамин D в активно действующий витамин D, который управляет процессами отложения солей кальция в костных тканях животных. Излучения этой области обладают сильным бактерицидным действием. Они используются для стерилизации воздуха, воды, посуды и т. д.

Источником ультрафиолетового излучения в основном являются лампы ДБ, ЛЭ, ЛЭР и ДРТ. Лампы ДРТ используют в сети переменного тока напряжением 127 или 220 В. Нормальное положение ламп при работе — горизонтальное. Режим работы устанавливается через 8—15 мин после включения. Лампы ДРТ дают мощный поток ультрафиолетовых лучей с длинами волн от 240 нм до границ видимого спектра. Они применяются с профилактической и лечебной целью в медицине, а также для бактерицидного и эритемного облучения в животноводческих помещениях — в первую очередь молодняка. Срок службы ламп ДРТ не менее 800 ч.

Эритемные люминесцентные лампы типов ЛЭ-30, ЛЭР-30, ЛЭР-40 устроены подобно обычным люминесцентным лампам типов ЛБ или ЛД, но отличаются от них составом люминофора и сортом стекла трубки. Состав люминофора подбирают так, чтобы длина волны излучения находилась в пределах 280—380 нм, что способствует недостающему зимой ультрафиолетовому излучению солнца. Максимум излучения лежит в пределах 310-320 нм. Излучение этой лампы богато не только эритемным действием, но и антирахитньм так как относительные эритемная и антирахитная эффективности в значительной мере совпадают.

Обозначение лампы ЛЭР-40 расшифровывается так: лампа эритемная рефлекторная (с отражающим слоем), мощностью 40 Вт. При работе лампа дает слабое голубое свечение, что вызывается излучением паров ртути в видимой области спектра, проходящим через слой люминофора. Схема включения лампы аналогична схеме включения люминесцентных ламп дневного или белого света.

Эритемные люминесцентные лампы можно применять совместно с люминесцентными лампами, а также с лампами накаливания. Их можно использовать с искусственным освещением, в основном в темные часы суток. В связи с тем, что осветительные и Эритемные лампы, возможно, будут действовать в разное время, необходимо предусматривать раздельное включение и выключение зритемных и осветительных ламп.

Для защиты зрения применяют либо светильники с системой плоских пластинок, либо светильники отраженного света.

Бактерицидные лампы типа ДБ представляют собой газоразрядные ртутные лампы низкого давления, устроенные подобно лампам ЛБ, ЛД и ЛЭ.

Бактерицидные лампы изготовляют мощностью 60 Вт (лампа ДБ-60) и мощностью 30 Вт (ДБ-30).

Схемы включения бактерицидных ламп аналогичны схемам включения эритемных и люминесцентных ламп.

Бактерицидные лампы можно применять для обеззараживания воздуха помещений, предметов обихода, питьевой и минеральной воды, для обез-

замораживания и предохранения от микробного загрязнения пищевых продуктов, оборудования и тары на пищевых предприятиях.

Обеззараживать воздух помещений ультрафиолетовым облучением можно как в присутствии, так и в отсутствие людей. В первом случае необходимо применять меры к максимальному сокращению бактерицидной облученности на уровне до 2 м от пола. Применять неэкранированные («голые») лампы, которые могут оказываться в поле зрения, категорически запрещается, так как их излучение может вызвать конъюктивит.

Как обогреть молодняк птицы и животных или увеличить скорость высыхания автомобиля после покраски?

Решение этих задач возможно при использовании инфракрасного излучения. Излучение этой области производит нагрев поверхностей, находящихся под лампами-термоизлучателями. Источником ИК-излучения служит биспираль из вольфрамовой проволоки, нагреваемая в рабочем режиме до температуры 1800—2300°С. Конструкция ламп-термоизлучателей в общих чертах схожа с конструкцией осветительных ламп накаливания. Для снижения интенсивности видимого излучения нижнюю часть колбы некоторых инфракрасных ламп покрывают красным (лампы ИКЗК) или синим (лампы ИКЗС) термостойким лаком. С внутренней стороны в верхней части колбы нанесено зеркальное покрытие. Лампа вкручивается в обычный патрон Ц27, работает на напряжении 220 В без дополнительной пускорегулирующей аппаратуры. Срок службы ламп 2—10 тыс. ч.

Обозначение ламп: ИК— инфракрасная; 3 — зеркальная; К или С — цвет окрашенной колбы; напряжение сети в вольтах и мощность лампы в ваттах, например - ИКЗК220-250.

25. Как подключить патрон?

Как подключить патрон?

2-251.jpg

В светильниках применяют патроны различной конструкции. Для ламп накаливания и ламп ДКЛ предназначены резьбовые патроны: для ламп мощностью до 60 Вт — патроны с диаметром резьбы 14 и 27 мм (или с резьбой Ц14 — малый цоколь и Ц27 — средний цоколь), для ламп мощностью до 200 Вт — патроны с резьбой Ц27, а для ламп мощностью от 300 до 1500 Вт -патроны с резьбой Ц40 (большой цоколь).

По конструктивному исполнению различают патроны подвесные с ниппелем, с ушком для подвешивания, потолочные и настенные. Наиболее распространены патроны в пластмассовом и фарфоровом корпусах. Контакты и контактные зажимы для присоединения проводов смонтированы на фарфоровых вкладышах.

К контактным зажимам патронов можно присоединить медные провода сечением 0, 5; 0, 75; 1;

1, 5; 2, 5 мм^2 и алюминиевые 2, 5 мм^2.

При зарядке патрона нулевой провод прикрепляют к винтовой гильзе патрона, а фазный - к верхнему контакту патрона (рис. 30).

Патроны для люминесцентных ламп выпускают стоечные, круглые и накидные с корпусами из пластмассы. К контактным зажимам патронов можно присоединять медные провода сечением до 1, 5мм^2.

Рис. 30 Патрон после зарядки (в разрезе)

Изображение: 

26. Что представляет собой светильник?

Что представляет собой светильник?

Основными конструктивными элементами светильников являются: устройство крепления светильника, источник света, устройство подведения электрического напряжения (патрон), отражатель, рассеиватель.

Промышленностью выпускаются светильники для различных источников света: ламп накаливания, газоразрядных ламп, люминесцентных трубчатых ламп и др. Светильники для газоразрядных ламп (низкого и высокого давления) комплектуются пускорегулирующей аппаратурой (ПРА).

По способу крепления светильники подразделяются на подвесные, потолочные, встроенные в потолок, настенные, напольные (торшеры), настольные и др.

Установка светильников в помещении производится в зависимости от условий окружающей среды. Для предохранения источника света от воздействий окружающей среды светильники выполняются различного исполнения по степени защиты.

По степени защиты от взрыва светильники бывают взрывобезопасные (В) и повышенной надежности против взрыва (Н).

По назначению светильники различают: для производственных помещений, для общественных зданий, для наружного освещения, для бытовых помещений.

В соответствии с ГОСТ 13677-82 каждому светильнику присваивается шифр (условное обозначение). Структура обозначения следующая:

2-261.jpg

где 1—буква, обозначающая источник света (Н— лампа накаливания общего назначения. И—кварцевые галогенные лампы накаливания, Л—прямые трубчатые люминесцентные лампы, Ф—фигурные люминесцентные лампы, Р—ртутные лампы типа ДРЛ, Г—ртутные лампы типа ДРИ, Ж—натриевые лампы. Б—бактерицидные лампы, К—ксеноновые трубчатые лампы и т. д.); 2—буква, обозначающая способ установки светильника (С—подвесные, П—потолочные, Б—настенные, Т—напольные и венчающие, В—встраиваемые, К—консольные, Р—ручные сетевые, Ф—ручные аккумуляторные и т. д.); 3—буква, обозначающая основные назначения светильников (П—для промышленных предприятий, Р—для рудников и шахт, О—для общественных зданий. Б—для жилых (бытовых) помещений. У—для наружного освещения); 4—двухзначное число (01—99), обозначающее номер серии; 5—цифра (цифры), обозначающая количество ламп в светильнике; б—цифры, обозначающие мощность ламп, Вт; 7—цифры (000— 999), обозначающие номер модификации; 8—буква и цифра, обозначающие климатическое исполнение (У—для районов с умеренным климатом,Т—для районов с тропическим климатом и т.д.) и категорию размещения светильников (1—на открытом воздухе, 2—под навесом и другими полуоткрытыми сооружениями, 3—в закрытых неотапливаемых помещениях, 4—в закрытых отапливаемых помещениях).

Каждая серия объединяет светильники, имеющие конструктивные особенности, определяемые примененным материалом и формой рассеивающих и экранирующих элементов, характером обслуживания, способом подвески (на трубу, на крюк, на трос и т.д), способом присоединения к питающей сети (через штепсельный разъем, клеммник или непосредственно к проводке). Конструкции большинства светильников предусматривают встроенный штепсельный разъем.

Как выбрать светильник?

При выборе светильника учитывают: условия окружающей среды, требования к характеру светораспределения, электробезопасность и экономическую целесообразность.

В квартирах и комнатах с низкими потолками рекомендуется применять светильники, люстры с короткими и регулирующимися штангами, шнурами; подвесы с плоскими рассеивателями, подобранными по декоративной расцветке, соответствующей цвету стен жилого помещения. Можно применять потолочные светильники и плафоны с декоративной отделкой.

Для комнат и квартир с высокими потолками, просторных помещений подойдут многорожковые люстры, декоративные подвесные светильники с большим количеством (3, 4, 5) рассеивателей.

Для создания уюта и обстановки, способствующей отдыху человека после трудового дня, учебы, чтению художественной литературы, применяют светильники для местного освещения. Вариантов исполнения светильников местного освещения очень много. Они бывают настольными, потолочными, настенными, напольными.

В целях экономии электроэнергии, создания мягкого светораспределения, однородной освещенности и яркости применяют светильники с люминесцентными лампами. Промышленность выпускает много модификаций люминесцентных светильников разной конфигурации и декоративных рисунков рассеивателя.

Спальня кроме общего освещения может иметь светильник возле туалетного столика. Лучше всего устроить двустороннее освещение. Источник света располагают на уровне головы человека, сидящего у столика, чтобы был мягкий, рассеянный свет белого или чуть розового оттенка. Свет, падающий сверху, дает глубокие тени на лице.

Прихожая должна быть ярко освещена: висячий светильник или плафон под потолком, а также бра, лучше всего с обеих сторон зеркала и примерно на уровне головы.

Детская комната рекомендуется общее освещение, специальное (над рабочим столом и местом для игр) и ночник. В комнатах для детей дошкольного возраста светильники, выключатели и штепсельные розетки ставятся в местах, не доступных для детей. Проводка лучше всего скрытая. В детских комнатах не следует ставить настольных ламп, падение их может вызвать несчастный случай. Над рабочим местом ребенка желательно иметь настенную лампу на шарнирных кронштейнах, прикрепленную с левой стороны стола. Абажур висячей лампы должен быть сделан из материала, рассеивающего свет. Абажур настенной лампы из непрозрачного материала должен давать узкую полоску света, сосредоточенного на рабочем месте. Освещение комнаты достаточно яркое, но без резкого перехода от света к тени.

Кухня может иметь общее освещение и местное — над рабочим столом хозяйки, над плитой. Для освещения кухонного стола, мойки, плиты очень удобны лампы дневного света: они более прочны, а энергии расходуют в четыре раза меньше, чем обычные лампы. Над обеденным столом люминесцентные лампы устанавливать не рекомендуется, они придают продуктам бледный, неаппетитный вид.

Ванная — рекомендуется ставить вверху плафон, освещающий всю комнату. Здесь можно применять лампы накаливания и люминесцентные.

В подсобных помещениях светильники выбирают по назначению и условиям окружающей среды.

Сухие складские помещения следует применять светильники со стеклянным отражателем, предотвращающим выпадание колбы лампы при эксплуатации (ПСХ-60, НСП-03, НСП-01).

Погреба, коридоры, сени, веранды освещаются светильниками, изготовленными для помещений с повышенной влажностью, или подвесными патронами, изготовленными из фарфора (НБО-60, ПСХ-60, ПСХ-75).

Подсобные помещения для содержания скота, птицы, а также сараи освещаются светильниками, рассчитанными для помещений с химически активной средой. К ним относятся «Астра-1», «Астра-2», «Астра-11», «Астра-12» и т. д.

Мощность ламп для жилых комнат выбирают исходя из удельной мощности, т. е. около 10 Вт на один квадратный метр площади. Для нежилых помещений квартиры предусматривается удельная мощность 6 Вт/м^2.

Светильники с люминесцентными и ртутными лампами типа ДРЛ применяют для освещения помещений, где выполняют работу большой и средней точности, а также в производственных помещениях с недостаточным или отсутствующим естественным освещением, во вспомогательных помещениях с постоянным пребыванием людей при нормируемой освещенности выше 100 лк. Светильники с этими типами ламп и прожекторы с лампой ДРЛ рекомендуются для освещения дворовых территорий и открытых пространств, требующих повышенной освещенности. Кроме того, светильники с люминесцентными лампами ЛДЦ применяют в помещениях, где выполняются работы, требующие распознавания цветовых оттенков.

Светильники с ртутными лампами ДРЛ целесообразно применять при высоте помещения более б м, где не требуется правильного различия цветов в наружных установках.

Как закрепить и подключить светильник (люстру)?

Во время подготовительных работ намечают место установки светильника, пробивают отверстия, сквозные проходы, гнезда для установки крепежных деталей. При этом, если потолок сплошной, сквозь него пробивают отверстие, через которое пропускают крюк и закрепляют гайкой с верхней стороны. Если перекрытие полое, то крюк укрепляют в полости панели с помощью проволочной защелки, после чего отверстие заделывают цементным раствором.

Подвесные светильники прикрепляют к перекрытиям на крюках. Заводы изготовляют несколько видов крюков и других приспособлений для крепления светильников к перекрытиям, выполненным как из многопустотных плит, так и из монолитной конструкции (рис. 31).

Крюки У623Б применяют для подвески светильников массой до 15 кг к многопустотным плитам

2-262.jpg

Рис. 31. Арматура для крепления светильников: а — крюк У623; б - крюк У625; в - шпилька У632; 1 - ось; 2 - крюк с изолирующим колпаком; 3 — опорная планка

перекрытий. В зависимости от размера этих плит опорные планки 3 крюков могут переставляться на оси 1. Концы крюков обязательно изолируют колпачком 2.

Крюки У625, У629 размером соответственно 155 и 215 мм, изготовляемые из стали с металлическим покрытием, используют для подвески светильников массой до 7 кг к сплошным плитам перекрытий.

Крюки и шпильки с поворотными планками позволяют завести их в отверстие в перекрытии и закрепить в нем снизу, что значительно облегчает их установку. В соответствии с требованиями к подвеске светильников с металлическими корпусами в жилых и общественных зданиях конец крюков должен быть покрыт изоляцией.

Соединение проводов сети и светильника в этих случаях выполняют с применением колодок-зажимов.

Для зарядки осветительной арматуры общего освещения должны применяться провода с медными жилами сечением не менее 0, 5 мм^2 внутри зданий и 1 мм^2 вне зданий.

Металлические корпуса светильников общего освещения с лампами ДРЛ, ДРИ, ДНаТ и люминесцентными необходимо занулять при помощи перемычки между нулевым проводом и заземляющим винтом светильника.

Рис. 31. Арматура для крепления светильников:

Изображение: 

Структура обозначения светильников в соответствии с ГОСТ 13677-82

Изображение: 

27. Какие розетки применяют для электропроводок и как осуществить их установку?

Какие розетки применяют для электропроводок и как осуществить их установку?

Штепсельные соединения применяют для включения однофазных и трехфазных электрических приемников с номинальными токами до 10 А в сеть напряжением 220 В и до 25 А в сеть 380 В.

Двухполюсные штепсельные соединения выпускают с цилиндрическими или плоскими контактами, трехполюсные — только с плоскими контактами. Штепсельные соединения с плоскими контактами имеют меньшие размеры и больший срок службы.

Штепсельные соединители состоят из розеточной 1 и штепсельной 2 частей с цилиндрическими 3, плоскими 4 или комбинированными штифтовыми контактами. Между зазорами контактов должно быть определенное расстояние (19 мм для цилиндрических и 12,7 мм для плоских).

Розеточная часть комбинированных штепсельных соединителей (штепсельных розеток) позволяет подсоединять вилочную часть (вилки) как с цилиндрическими, так и плоскими контактами. Вилки, как правило, имеют неразборную. конструкцию и запрессовываются на конце шнура, который входит в комплекты бытовых приборов и аппаратов. Для повышения безопасности цилиндрические контактные шнуры неразъемных вилок спрессовывают у основания пластиком на длине 10 мм. Разборные вилки чаще всего используют для комплектации приборов небытового назначения, а также для замены неразъемных вилок, вышедших из строя.

2-271.jpg

Рис. 32. Штепсельные электрические соединения: а — розетка для открытой установки и штепсельная часть с цилиндрическими контактами; б —розетка и штепсельная часть с плоскими контактами; в ~ розетка с комбинированными штифтовыми контактами; г — трехполюсные штепсельные соединители с тремя питающими и одним заземляющим плоскими контактами; д — штепсельные соединители для открытой установки с двумя цилиндрическими питающими и одним плоским заземляющим контактом; е — штепсельные над плинтусные розетки; ж — штепсельные розетки для подключения двух вилок;

1 — розетка; 2 — штепсельная часть (вилка); 3 — цилиндрические контакты; 4 — плоские контакты; 5 — заземляющий плоский контакт; б — заземляющий контакт

Кроме двухконтактных применяют штепсельные соединители с двумя питающими и одним заземляющим 5 плоскими контактами, изготовляемыми как для открытой, так и для скрытой установки, с двумя цилиндрическими питающими и одним плоским заземляющим контактом 6 (рис. 32, д), расположенным в корпусе соединителя, трехполюсные с тремя питающими и одним заземляющим плоскими контактами (рис. 32, г).

Выпускаются штепсельные розетки (рис. 32, е) для установки над плинтусами (надплинтусные), которые в целях безопасности снабжены поворотной шайбой для подключения вилки только после ее поворота на определенный угол, что повышает их безопасность. Нижняя часть этих розеток выполняет функции ответвительной коробки. Для установки на электротехническом плинтусе применяют специальные штепсельные розетки с плоскими контактами (рис. 32, ж), рассчитанные на одновременное подключение двух вилок.

Установка штепсельных розеток в помещениях запираемых складов, содержащих горючие материалы или материалы в сгораемой упаковке, не допускается. В пожароопасных помещениях классов П-I и П-II допускается установка розеток пыленепроницаемого, а в помещениях класса П-IIа и в наружных установках классаП-III — закрытого исполнения. Во взрывоопасных помещениях розетки устанавливают вне этих помещений.

Розетки, имеющие пластмассовые корпуса и предназначенные для открытой установки, в помещениях с нормальной средой устанавливают путем крепления их шурупами к деревянным розеткам толщиной 10 мм.

Розетки для скрытой установки размещают в стальных или пластмассовых коробках, оставляя в них запас провода 5-6 см. Розетки крепят в коробках распорными лапками, закрутив до упора винты.

Розетки ставят на высоте 0,3—0,8 м от пола в жилых помещениях, надплинтусные розетки — у плинтуса.

Какие выключатели применяют для электропроводок и как осуществляется их установка?

Выключатели и переключатели служат для коммутации электрических цепей освещения и бытовых приборов. Они бывают различной конструкции: поворотные, перекидные, одно- и двухклавишные, с тяговым шнурком. Их изготовляют защищенного исполнения для открытой (рис. 33) и скрытой (рис. 34) установок и в брызгозащищенном исполнении для открытой установки. Наибольший нормальный ток выключателей 6 А (для металлокерамических контактов 10 А).

Место установки выключателей зависит от их конструкции и характера помещения.

Выключатели и переключатели для общего освещения устанавливают в доступных местах, обычно на стенах помещений, сбоку от дверных проемов со стороны дверной ручки на высоте 1, 5 м.

Выключатели для светильников, установленных в сырых и особо сырых помещениях (в том числе и санузлах), рекомендуется выносить в смежные помещения с лучшими условиями среды. Выключатели для светильников, установленных в кладовых, вентиляционных камерах и других нормально запираемых помещениях, как правило, устанавливают перед входом в эти помещения.

В пожароопасных помещениях классов П-I и П-II допускается установка выключателей, переключателей пыленепроницаемого, а в помещениях класса П-IIа и в наружных установках класса П-III — закрытого исполнения. Во взрывоопасных помещениях выключатели устанавливают вне этих помещений.

Выключатели, имеющие пластмассовые корпуса и предназначенные для открытой установки, в помещениях с нормальной средой устанавливают путем крепления их шурупами к деревянным розеткам толщиной 10 мм.

Выключатели для скрытой установки размещают в стальных или пластмассовых коробках, оставляя в них запас провода 5—6 см. Выключатели крепят в коробках распорными лапками, закрутив до упора винты.

Одноклавишные выключатели устанавливают таким образом, чтобы контакты для подключения проводов находились снизу.

Выключатели герметического исполнения при открытой установке крепят на стене или на стальных скобах.

2-272.jpg

2-273.jpg

Рис. 34. Выключатели для скрытой установки:

а, б, в, д - клавишные сдвоенные; г - одинарный; е - строенный

Какие коробки применяют для электропроводок?

Коробки применяют для изоляции мест соединений, ответвлений проводов, кабелей осветительных и силовых сетей, а также для встраивания и крепления внутри них выключателей, переключателей и штепсельных розеток при скрытой проводке. Для открытых проводок применяют коробки защищенного, пыленепроницаемого и брызгозащищенного исполнения, а для скрытых проводок — защищенного исполнения.

Для ответвлений и соединений проложенных открыто проводов марок АПН, ППВ, АППВ, АТПРФ сечением до 2, 5 мм^2 применяют пластмассовые коробки У419, У420 защищенного исполнения. Соединение и ответвление кабелей марок ВРГ, АВРГ, СРГ, АСРГ, АНРГ и др. сечением до 2х4 мм^2, прокладываемых открыто (без труб) во взрывоопасных помещениях и наружных установках, производят в пластмассовых коробках У409 пыленепроницаемого исполнения. Для проводок, выполненных в сырых и пыльных помещениях кабелем с резиновой или пластмассовой изоляцией, и проводок в открыто проложенных неметаллических трубах с жилами сечением до 6 мм^2 используют пластмассовые коробки КОР-73, КОР-74 в брызгозащищенном исполнении. Ответвления от силовой и осветительной магистрали, выполненной кабелем или проводами, закрепленными на проволоке диаметром до 8 мм, а также специальными тросовыми проводами сечением до 10 мм^2, производят в металлических коробках У245, до 35 мм^2 - У246.

Ответвления и соединения проводов марок АППВ, АППВС, ППВ, ППВС, АПН, АПВ и ПВ, проложенных скрыто, выполняют в пластмассовых коробках У191, У194 и У197, У198, КСТ-15, имеющих стальной корпус и пластмассовую крышку. Для установки выключателей и штепсельных розеток применяют стальные коробки У196 цилиндрической и КП-4 - прямоугольной формы.

Для выполнения соединения жил проводов и кабелей, для подключения установочной аппаратуры в коробках оставляют концы длиной 5—6 см.

Рис. 32. Штепсельные электрические соединения:

Изображение: 

Рис. 33. Выключатели для открытой установки

Изображение: 

Рис. 34. Выключатели для скрытой установки

Изображение: 

28. Как выполнить соединение, оконцевание жил провода (кабеля) и подключение к зажимам аппаратов?

Как выполнить соединение, оконцевание жил провода (кабеля) и подключение к зажимам аппаратов?

Соединение алюминиевых жил должно быть выполнено опрессовкой или сваркой, допускается соединение проводников пайкой. Провода сечением более 10мм^2 запрещается соединять скруткой.

Опрессовку алюминиевых проводов производят следующим образом. Концы проводов освобождают от изоляции, зачищают металлической щеткой или ножом до блеска и вводят в алюминиевую гильзу, наполненную цинковазелиновой или кварцевазелиновой пастой. Гильзу с проводами опрессовывают клещами. Опрессовку предварительно скрученных однопроволочных жил сечением 2, 5 — 10 мм^2 можно производить специальными клещами типа КСП без применения гильзы и пасты.

Сварку алюминиевых проводов и кабелей сечением 4—10 мм^2 производят специальными клещами. Напряжение 6—12 В подводят от трансформатора мощностью 0, 5—1 кВА. Ток сварки (до 100 А) регулируют переключением отпаек трансформатора. Сварку производят с применением флюса АФ-44 угольным электродом при помощи обжимки и плоскогубцев (рис. 35, а) или скруткой с последующей сваркой угольным электродом (рис. 35, б).

Многопроволочные алюминиевые провода сечением 16—25 мм^2 соединяют сваркой при помощи специальной разъемной формы, угольного электрода, паяльной лампы или горелки и присадочного алюминиевого прутка.

Припайке проводов сечением 4—10мм^2 снимают изоляцию с концов жил, зачищают их ножом, стальной щеткой или наждачной бумагой до блеска и скручивают. Место соединения нагревают пламенем горелки или паяльной лампы и облуживают специальными припоями типа А, Б и кадмиевым. Флюс при этом не нужен. При применении мягких припоев типа АВИА-1 и АВИА-2 (температура плавления 200°С) применяют флюс АФ-44. Места пайки обязательно очищают от остатков флюса, протирают бензином, покрывают влагонепроницаемым (асфальтовым) лаком, а затем изоляционной лентой, которую также покрывают лаком.

Медные однопроволочные и многопроволочные провода сечением до 10 мм2 соединяют скруткой (рис. 35, в, г) с последующей пропайкой места соединения припоями ПОС-30 (30% олова и 70% свинца), ПОС-40 и канифолью в качестве флюса. Применять кислоту или нашатырь при пайке нельзя. Места соединения скруткой должны быть длиной не менее 10—15 наружных диаметров соединяемых жил.

Опрессовку медных проводов производят следующим образом. Провода зачищают от изоляции на длину 25—30 мм и укладывают параллельно внахлестку. Сложенные концы туго обертывают двумя слоями медной фольги толщиной 0, 2—0, 3 мм и спрессовывают. При качественно выполненной опрессовке провода и фольга не имеют обрывов.

Оконцевание проводов под винтовой зажим осуществляют в виде кольца, а под плоский зажим — в виде стержня (рис. 36, а).

При сечении провода до 4 мм^2 включительно оконцевание в виде кольца выполняют следующим образом. С конца провода снимают изоляцию на

2-281.jpg

2-282.jpg

Рис. 35. Соединение проводов: асваркой алюминиевых проводов при помощи обжимки и плоскогубцев; б — сваркой предварительно скрученных медных или алюминиевых жил при помощи угольного электрода; в — скруткой и облуживанием медных или алюминиевых жил; г ~ скруткой и пропайкой медных, многопроволочных жил; 1— держатели электродов; 2 — угольные электроды

длине, достаточной для выполнения кольца. Жилу жесткого провода закручивают в кольцо по часовой стрелке, а гибкого провода — в стержень, а затем в кольцо и облуживают (рис. 36, б, в).

Оконцевание провода в виде стержня производят следующим образом: с конца провода удаляют изоляцию; для гибкого провода стержень скручивают и облуживают. При сечении жил 6 мм^2 и больше оконцевание. Производят кабельными наконечниками.

Лучшим способом оконцевания является оконцевание наконечниками типа Т (трубчатый), ТА (трубчатый алюминиевый) и ТАМ (трубчатый медно-алюминиевый) способом местного вдавливания пресс-клещами ПК-1 для жил сечением до 50 мм^2.

2-283.jpg

Рис. 36. Оконцевание жил проводов под винтовой и плоский зажимы: а — жесткий провод; б, в — гибкий провод

Особенность опрессования. оконцеваний и соединений алюминиевых жил в отличие от медных заключается в применении кварцевазелиновой пасты, а также в выполнении наконечников и соединительных гильз из чистого алюминия с увеличенными в длину и толщину стенками трубчатой части и большей площадью опрессования.

Переход между трубчатой частью кабельного наконечника и изоляцией провода изолируют полихлорвиниловой трубкой или лентой.

Присоединению проводов к зажимам аппаратов должно предшествовать оконцевание провода (в виде кольца или стержня).

Присоединение к одному контактному зажиму более 2 проводов запрещается. Зажимы должны соответствовать величине номинального напряжения и тока. Зажимные винты рассчитаны на присоединение проводов следующих сечений: в зажимах до 10 А — двух проводов сечением до 4 мм^2 без наконечников; в зажимах до 25 А — двух проводов сечением до 6 мм^2 без наконечников; в зажимах до 60 А - двух проводов сечением до 6 мм^2 без наконечников и одного провода сечением 10 или 16 мм^2 с наконечником.

Винтовой зажим, к которому присоединяются алюминиевые жилы, должен иметь устройство, ограничивающее возможность раскручивания колечка и не допускающее ослабления контактного давления вследствие текучести алюминия.

Колечко алюминиевого однопроволочного провода перед вводом под контакт зачищают и смазывают кварцевазелиновой или цинковазелиновой пастой. На присоединяемые провода надевают хлорвиниловые трубки, на которые дихлорэтановыми чернилами наносят маркировку провода.

Присоединение проводов к аппаратам, имеющим контактные лепестки, производят пайкой. Спаянные монтажные соединения должны обеспечивать надежность электрического контакта и необходимую механическую прочность. Основным материалом для пайки является припой ПОС-40, а для ответственной аппаратуры — ПОС-61. Припой рекомендуется применять в виде трубок с канифольным наполнением или проволоки диаметром 1—3 мм. Флюсом служит раствор канифоли в спирте, а также канифоль сосновая высшего или первого сорта.

Рис. 35. Соединение проводов: а — сваркой алюминиевых проводов при помощи обжимки и плоскогубцев; б — сваркой предварительно скр

Изображение: 

Рис. 35. Соединение проводов: г - скруткой и пропайкой медных, многопроволочных жил

Изображение: 

Рис. 36. Оконцевание жил проводов под винтовой и плоский зажимы

Изображение: 

3. Как "оживить" электрических помощников

Как "оживить" электрических помощников

1. Kак выполнить ввод в здание?

Kак выполнить ввод в здание?

Вводы воздушных линий электропередачи в здания делят на два участка: ответвление от воздушной линии до ввода — участок проводов от опоры ВЛ до ввода в здание; ввод в здание — участок от изоляторов на наружной стене здания до вводного устройства внутри здания. Если расстояние от опоры ВЛ до здания больше 10 м, то для ослабления натяжения проводов необходимо устанавливать подставную опору.

Ответвление от воздушной линии до ввода в строения длиной до 25 м, а также внутридворовые сети следует выполнять изолированными проводами или кабелем, проложенным на тросу или в земле. Сечение проводов в ответвлении должно быть не менее 6 мм^2 (при длине до 10 м не менее 4 мм^2) для меди и не менее 16 мм^2 для алюминия. Сечение жил кабеля — не менее 4 мм^2 для алюминия и 2, 5 мм^2 для меди. Расстояние от проводов ответвления до земли должно быть не менее 6 м, в проезжей части и внутри дворов не менее 3, 5м, а

3-11.jpg

Рис. 37. Схема ответвлений от воздушной линии 0, 38 кВ и вводов в здания: 1 — ввод; 2ответвление; 3 — трубостойка; 4 — опора; 5 — дорога; 6 — дополнительная (подставная) опора; 7 — тротуар

расстояние от земли до изолятора ввода в здание — не менее 2, 75 м (рис. 37).

Ответвления от ВЛ выполняют также кабельными линиями. В этом случае кабель прокладывают по опоре до перехода его в траншею. От случайных механических повреждений кабель защищают трубой или другой конструкцией на высоту до 2 м.

Провода наружной электропроводки располагаются или ограждаются таким образом, чтобы они были недоступны для прикосновения. Провода, проложенные открыто горизонтально по стенам, должны находиться на расстоянии не менее: над балконом, крыльцом - 2, 5 м; над окном - 0,5 м;

под балконом - 1,0 м; под окном (от подоконника) - 1, 0 м; при вертикальной прокладке - до окна - 0, 75 м, а до балкона - 1, 0 м.

При подвеске проводов на опорах около зданий расстояние от проводов до балконов и окон должно быть не менее 1, 5 м.

Вводы через стены зданий получили широкое применение, они просты в исполнении, всегда находятся в поле видимости, удобны при обслуживании. При вводе в здание изоляторы устанавливают на крюках (рис.38,б). Расстояние между проводами у вводов, а также расстояние от проводов до выступающих частей зданий должно быть не меньше 200 мм.

Концевые крепления алюминиевых многопроволочных проводов марок А-25... А-50 выполняют плашечными зажимами типа ПАБ с оставлением конца провода длиной не менее 200 мм для подключения ввода (рис. 38, в). Допускается концевое

3-12.jpg

крепление проводов выполнять бандажной вязкой с соблюдением размеров и числа витков, указанных на рис. 38, г. Недопустимо присоединение провода ввода непосредственно к натянутому проводу

3-13.jpg

Рис. 38. Монтаж элементов ввода: а - конструкция прохода через стену; б — установка крюков и изоляторов; в — крепление провода к изолятору зажимом; г — крепление провода к изолятору вязкой; 1 — цементный раствор; 2 — проволока; 3 — крюк; 4 — изолятор; 5 — вязка; 6 — провод для присоединения ввода; 7 — зажим ОАС; 8 — провод ввода; 9зажим ПАБ; 10 — втулка;11 - трубка; 12 - цементно-алебастровый раствор; 13 - воронка

ответвления, так как это способствует обрыву проводов ответвления.

Вводы в здания выполняют только изолированными проводами. Каждый провод заключают в отдельную резиновую изоляционную трубку, как показано на рис. 38, а. На концы трубок с наружной стороны здания устанавливают фарфоровые воронки таким образом, чтобы они находились на одной оси и были разнесены одна от другой в кирпичных стенах на 50 мм, в деревянных стенах на 100 мм. Внутри здания на трубки надевают втулки. Отверстия в стене заделывают алебастровым или цементным раствором. Проходы через стены в трубках должны выполняться с уклоном наружу, таким образом, чтобы вода не могла скапливаться в проходе или попадать внутрь здания. После прокладки проводов входные отверстия воронок и втулок заливают изоляционной массой, битумом.

Ввод в строение следует выполнять кабелем в негорючей оболочке сечением не менее 4 мм^2 для алюминия и 2, 5 мм^2 для меди или изолированными проводами тех же сечений.

Вводы через трубостойки выполняют в тех случаях, когда высота здания не позволяет обеспечить установленные ПУЭ вертикальные габаритные размеры. По способу закрепления и прохода внутрь здания трубостойки различают: ввод трубостойкой через стену; ввод трубостойкой через крышу.

Ввод трубостойкой через стену (рис. 39) более удобен. При монтаже трубостоек следят за тем, чтобы нижний горизонтальный конец трубы был установлен с уклоном 5° наружу, в нижней точке изгиба просверливают отверстие диаметром 5 мм для выхода влаги.

Ввод трубостойкой через крышу применяют в том случае, если расстояние от поверхности земли до низа трубостойки, устанавливаемой на стене, оказывается меньше 2 м. Особое внимание

3-14.jpg

. Рис. 39. Ввод трубостойкой через стену: 1 - крыша, 2 -оттяжка; 3 - изоляторы; 4 - трубостойка; 5 - болт зануления; 6 - кронштейн

уделяют качеству монтажа прохода через кровлю и его гидроизоляции.

Перед установкой в трубостойку затягивают стальную проволоку для последующего протягивания проводов. Верхний конец трубостойки двумя оттяжками из круглой стали диаметром 5 мм крепят к стене или к стропилам крыши.Все болтовые крепления вводов должны выполняться с применением пружинящих шайб, предохраняющих гайки от самооткручивания при раскачивании трубостоек и проводов ветром. Болтовые соединения смазывают защитной смазкой или техническим вазелином. Расстояние от самого нижнего проводника ввода через трубостойку до крыши должно быть не меньше 2, 5 м. Запрещается прокладывать голые или изолированные провода по крышам жилых домов.

Вводы в здания кабелем. От опоры до стены здания кабель прокладывают в траншее глубиной 0, 7 м. В фундаменте здания пробивают отверстие для ввода кабеля. Ввод выполняют в трубе. Диаметр труб выбирают из расчета 1, 5—2 диаметра кабеля, но не меньше 50 мм. Укладывают трубы с уклоном наружу в траншею и гидроизолируют так, чтобы исключить попадание воды в здание. Глубина заложения труб не менее 0, 5 м. С внутренней стороны здания труба должна выступать на 50 мм, а с наружной на 600 мм от фундамента.

В одной трубе прокладывают только один кабель. Если в здание вводится или выводится несколько кабелей, то число труб должно соответствовать их количеству. Кабели, прокладываемые вдоль здания, должны размещаться в траншее не ближе 0, 6 м от фундамента. У ввода в здание в траншее всегда оставляют запас кабеля (примерно 1 м) на случай повторной разделки концов, который укладывают полукругом с радиусом 1 м (запрещается запас укладывать кольцами). Глубина заложения не менее 500 мм с обязательным покрытием кирпичом или бетонными плитами. Места выхода кабеля из трубы уплотняют раствором цемента с песком, глиной или кабельной пряжей, смоченной маслом.

Kак изготовить трубостойку?

Для трубостоек используют водогазопроводные трубы, внутренний диаметр которых из условий механической прочности должен быть не менее 20 мм при вводе двух проводов и не менее 32 мм -четырех. Верхний конец трубостойки загибают на 180°, чтобы в нее не могла попасть влага. К трубе под изгибом приваривают траверсу с двумя штырями для установки вводных изоляторов. Для траверс к трубостойкам диаметром 20 мм используют стальной уголок длиною 500 мм сечением 45х45х5. На трубостойке приваривают болт для зануления (соединения нулевой жилы с металлической трубой), который для предохранения от коррозии смазывают техническим вазелином. Острые края трубы обрабатывают напильником, чтобы не повредить о них изоляцию проводов при затягивании. Ближе к изгибу приваривают кольцо (гайку), в котором закрепляют проволочную оттяжку, для компенсации усилия натяжения проводов ответвления от воздушной линии. Внутреннюю поверхность трубы окрашивают.

Рис. 37. Схема ответвлений от воздушной линии 0, 38 кВ и вводов в здания:

Изображение: 

Рис. 38. Монтаж элементов ввода: а - конструкция прохода через стену; б — установка крюков и изоляторов

Изображение: 

Рис. 38. Монтаж элементов ввода: в — крепление провода к изолятору зажимом; г — крепление провода к изолятору вязкой

Изображение: 

Рис. 39. Ввод трубостойкой через стену

Изображение: 

2. Какими приборами осуществляется учет электрической энергии?

Какими приборами осуществляется учет электрической энергии?

Учет израсходованной электрической энергии осуществляется счетчиком электрической энергии. В электроустановках промышленной частоты тока применяют счетчики индукционной системы.

Счетчики электрической энергии в зависимости от их конструкции, назначения и схемы включения изготавливают различных типов и маркируют буквами и цифрами, которые означают: С— счетчик; А—активной энергии; Р—реактивной энергии; О—однофазный; 3 и 4—для трехпроводной или четырехпроводной сети; У—универсальный;

И—индукционной измерительной системы; три следующие цифры характеризуют конструктивное исполнение счетчика. Буквы после них означают:

П—прямоточный (для включения без трансформаторов тока), Т— в тропическом исполнении, М— модернизированный. Например, СА4-И672М 380/220 В —счетчик активной энергии трехфазный, индукционной измерительной системы, модернизированный на линейное напряжение 380 В ток в сети 5А.

Учет электроэнергии однофазного тока производится с помощью однофазных счетчиков (рис. 40), а трехфазного тока — с помощью трехфазных счетчиков. В сетях 220 В, в которых предусматривается длительная работа в режиме неравномерных нагрузок фаз, следует применять трехэлементные четырехпроводные счетчики.

Класс точности счетчиков электроэнергии — 2. Счетчики должны быть непосредственного включения и иметь пломбу с клеймом госповерителя давностью на момент установки не более:

3-21.jpg

Рис. 40. Общий вид и подключение однофазного счетчика:

Ф — фазный провод; Nнулевой провод

трехфазные — 12 месяцев, однофазные — 2 лет. В жилых зданиях квартирного типа следует устанавливать один однофазный счетчик на каждую квартиру.

В жилых домах, принадлежащих гражданам на правах личной собственности, допускается установка трехфазных счетчиков по специальному разрешению энергоснабжающей организации, при этом на осветительную нагрузку устанавливается однофазный счетчик.

Подключение счетчиков в сеть производится в соответствии с принятой схемой (на внутренней стороне крышки зажимной коробки), соблюдая последовательность фаз.

Какие требования необходимо соблюдать при подключении счетчиков?

Приборы учета расхода электроэнергии устанавливаются на высоте 1, 4—1, 7 м от пола. Тип и количество устанавливаемых электросчетчиков в частных владениях граждан определяются проектом и зависят от вида тарифа на потребляемую энергию. Перед трехфазным счетчиком обязательно устанавливают отключающий аппарат (рубильник, автоматический или пакетный выключатель и т. п.). Приборы учета, отключающие аппараты и при необходимости другие устройства должны быть опломбированы. Приборы учета рекомендуется устанавливать в отапливаемом помещении, в противном случае предусматривается подогрев счетчика в зимнее время.

При монтаже электропроводки для присоединения счетчиков около счетчиков необходимо оставлять концы длиной не менее 120 мм. Оболочка нулевого провода на длине 100 мм перед счетчиком должна иметь отличную окраску или специальную метку. В электропроводке к счетчикам паек не допускается.

Сечения проводов и кабелей, присоединяемых к счетчикам, должны быть не менее 4 мм^2 для алюминия и 2, 5 мм^2 для меди.

Для безопасной установки и замены счетчиков должна предусматриваться возможность отключения счетчика установленными до него коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику.

При трехфазном вводе автоматические выключатели, магнитные пускатели, электросчетчики, а также другую защитную и пусковую аппаратуру рекомендуется помещать в шкафу. Шкаф должен быть металлический, жесткой конструкции, исключающий вибрацию и сотрясение аппаратуры, а также иметь уплотнения, исключающие попадание влаги.

Конструкции и размеры шкафов, ниш, щитков и т. п. должны обеспечивать удобный доступ к зажимам счетчиков и трансформаторов тока. Кроме того, должна быть обеспечена возможность удобной замены счетчика и установки его с уклоном не более 1°. Конструкция крепления должна обеспечивать возможность установки и съема счетчика с лицевой стороны.

Kак выполнить монтаж группового щитка?

Однофазные счетчики устанавливаются на металлических щитках. Квартирные щитки предназначены для распределения электрической энергии, защиты от перегрузок, токов короткого замыкания, а также для учета электроэнергии.

Квартирные щитки типа ЩК-9... ЩК-12 выпускают с резьбовыми предохранителями или автоматическими выключателями типа Пар (рис. 41, а). Квартирные щитки типа ЩК-13... ЩК-16 выпускают с автоматическими выключателями типа АЕ10 (рис. 41, 6). Щитки поставляются в продажу без счетчиков, которые приобретаются дополнительно.

Щиток монтируют после устройства ввода и выполнения внутренней электропроводки.

Сверху щитка имеются четыре заводские наметки, одну из которых открывают для ввода проводов комнатной электропроводки. Два одножильных провода с предварительно надетыми изоляционными трубками оконцовывают колечком и подключают к нижним зажимам предохранителей. Вторые концы их выводят на лицевую панель через второе и четвертое отверстия в щитке для подключения к счетчику. Провода ввода выводят через первое (фазный) и третье (нулевой) отверстия. В таком виде щиток устанавливается на опорном основании вертикально по отвесу так, чтобы закрывались вводные втулки, и крепится шурупами. Провода на щитке загибают вверх, обрезают на уровне горизонтальных шлицов для крепления счетчика и снимают с концов жил изоляцию на длине 20—25 мм. Отверткой ослабляют прижимы на зажимной колодке, вводят в них концы проводов и

3-22.jpg

Рис. 41. Общий вид и электрическая схема квартирных щитков:

а - ЩК-9... ЩК12; б - ЩК-13, ЩК-15; 1 - щиток; 2 - резьбовые предохранители; 3 - автоматические выключатели АЕ10;

4 — счетчик электрической энергии

снова прижимают. Счетчик крепят к щитку тремя винтами и закрывают крышкой зажимную колодку. Отрезают излишки проводов электропроводки, запитывающейся от щитка, надевают изоляционную трубку, зачищают концы жил, оконцовывают колечком, вводят в открытое отверстие в щитке и подключают к верхним зажимам предохранителей. На колодки предохранителей устанавливают защитные крышки, крепят их винтовыми пластмассовыми шайбами и ввинчивают пробки.

Рис. 40. Общий вид и подключение однофазного счетчика

Изображение: 

Рис. 41. Общий вид и электрическая схема квартирных щитков

Изображение: 

3. Какие применяют виды электропроводок и способы прокладки?

Какие применяют виды электропроводок и способы прокладки?

Электропроводка — совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими защитными конструкциями и деталями.

Виды электропроводок

1. Открытая электропроводка — проложенная по поверхности стен, потолков и другим строительным элементам зданий и сооружений.

При открытой электропроводке применяются следующие способы прокладки проводов и кабелей: непосредственно по поверхности стен, потолков и т. п., на струнах, тросах, роликах, изоляторах, в трубах, коробах, гибких металлических рукавах, на лотках, в электротехнических плинтусах и наличниках, свободной подвеской и т. п.

Открытая электропроводка может быть стационарной, передвижной и переносной.

2. Скрытая электропроводка — проложенная внутри конструктивных элементов зданий и сооружений ( в стенах, полах, фундаментах, перекрытиях, а также по перекрытиям в подготовке пола, непосредственно под съемным полом и т. п.).

При скрытой электропроводке применяются следующие способы прокладки проводов и кабелей: в трубах, гибких металлических рукавах, коробах, замкнутых каналах и пустотах строительных конструкций, в заштукатуриваемых бороздах, под штукатуркой, а также замоноличиванием в строительной конструкции при их изготовлении.

Наружная электропроводка — проложенная по наружным стенам зданий и сооружений, под навесом и т. п., а также между зданиями на опорах (не более четырех пролетов длиной до 25 м каждый) вне улиц, дорог и т.п.

Наружная электропроводка может быть открытой и скрытой.

Какие провода и кабели применяют при монтаже электропроводок и подключении электрооборудования?

Провод — одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка или оплетка волокнистыми материалами или проволокой.

Кабель — одна или более изолированных жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в который может входить броня.

Структура условного обозначения установочных проводов:

3-31.jpg

Шнур — две или более изолированных гибких или особо гибких жил сечением до 1, 5 мм2, скрученных или уложенных параллельно, поверх которых в зависимости от условий эксплуатации могут быть наложены неметаллическая оболочка и защитные покрытия.

Шнур предназначен для подключения электрических бытовых приборов к электрической сети.

Характеристики проводов и кабелей представлены в таблице 13.

Таблица 13. Провода и кабели, применяемые в электропроводках

Марка

Сечение жил, мм2

Число жил

Характеристика

1

2

3

4

Провода

АПВ

2,5-120

1

Провод с алюминиевой жилой и поливинилхлорйдной изоляцией

АППВ

2,5-6

2;3

Провод с алюминиевыми жилами, поливинилхлоридной изоляцией, плоский, с разделительным основанием

АППР

2,5-10 2,5

2; 4

3

Провод с алюминиевой жилой, не распространяющей горение резиновой изоляцией и разделительным основанием

АПР

2,5-120

1

Провод с алюминиевой жилой, резиновой изоляцией, в оплетке из хлопчатобумажной пряжи, пропитанной противогнилостным составом

АПРН

2,5-120

1

Провод с алюминиевой жилой и резиновой изоляцией, в негорючей резиновой оболочке

АМПВ

1-10

1

Провод с алюминиевой жилой и поливинилхлоридной изоляцией

АМППВ

1,5-6

2;3

То же, но плоский с разделительным основанием

ПВ-1

0,5-95

1

Провод с медной жилой и поливинилхлоридной изоляцией

ПВ-2

2,5-95

1

То же, но гибкий

ППВ

0,75-4

2,3

Провод с медными жилами, поливинилхлоридной изоляцией, плоский, с разделительным основанием



1

2

3

4

ПР

0,75-120

1

Провод с медной жилой, резиновой изоляцией, в оплетке из хлопчатобумажной пряжи, пропитанной противогнилостным составом

ПРГ

0,75-120

1

Провод гибкий, с медной жилой, резиновой изоляцией, в оплетке из хлопчатобумажной пряжи, пропитанной противогнилостным

составом

ПРГИ

0,75-120

1

Провод с медной гибкой жилой и резиновой изоляцией, обладающей защитными свойствами

ПРИ

0,75-120

1

Провод с медной жилой и резиновой изоляцией, обладающей защитными свойствами

Кабели

АВВГ

2,5-50

1; 2; 3; 4

Кабель силовой, с алюминиевыми жилами, поливинилхлорйдной изоляцией, в поливинилхлоридной оболочке

АВРГ

4-300 2,5-300

1 2;3;4

Кабель с алюминиевыми жилами, резиновой изоляцией, в поливинилхлорйдной оболочке (без покровов)

АНРГ

4-300 2,5-300

1 2; 3,4

Кабель с алюминиевыми жилами, резиновой изоляцией, в резиновой маслостойкой и негорючей оболочке (без покровов)

АПВГ

2,5-50

1;2;3;

4

Кабель силовой, с алюминиевыми жилами, полиэтиленовой изоляцией, в поливинилхлоридной оболочке

ВВГ

1,5-50 2,5-50

1;2;3 4

Кабель силовой, с медными жилами, поливииилхлоридной изоляцией, в поливинилхлоридной оболочке

ВРГ

1-240

1;2;3; 4

Кабель с медными жилами, резиновой изоляцией, в поливинилхлоридной оболочке

НРГ

1-240

1;2;3; 4

Кабель с медными жилами, резиновой изоляцией, в резиновой маслостойкой и негорючей оболочке

пвг

1,5-50

1;2;3; 4

Кабель силовой, с медными жилами, полиэтиленовой изоляцией, в поливинилхлоридной оболочке



Kак определить сечение жил проводов и кабелей для питания

электрооборудования?

Сечение проводов и кабелей напряжением до 1000 В определяют исходя из двух условий:

1) по условию нагревания длительным расчетным током

Iдоп > Iр,

где Iдоп — длительно допустимый ток для принятого сечения провода или кабеля и условий его прокладки. Приводятся данные в ПУЭ или справочной литературе,

Ip — расчетный ток, А;

2) по условию соответствия сечения провода аппарату защиты

Iдоп > Кз • Iн.пл, где Кз - коэффициент защиты;

Iн.пл. — номинальный ток плавкой вставки, А.

Кз = 1,25 при защите проводников с резиновой и пластмассовой изоляцией во взрыво- и пожароопасных, торговых и т.п. помещениях плавкими предохранителями и автоматическими выключателями; при защите этих же проводников в невзрыво- и непожароопасных помещениях Кз = 1,0.

Осветительные проводки дополнительно рассчитывают на потерю напряжения.

Допустимые длительные токовые нагрузки на провода и кабели, а также выбор пусковой и защитной аппаратуры, проводов и кабелей для отдельно устанавливаемых электродвигателей находят по справочникам.

Kак выбрать марку провода или кабеля для электропроводки?

Способы выполнения электропроводок в различных условиях определяются ПУЭ, а рекомендуемые при этом марки проводов и кабелей — Руководством по выбору и применению проводов для силовых и осветительных сетей, а также Едиными техническими указаниями по выбору и применению электрических кабелей.

Таблица 14. Марки проводов и кабелей в зависимости от вида и способа прокладки электропроводок

3-32.jpg

3-33.jpg

3-34.jpg

Рекомендуемые марки проводов и кабелей для различных помещений в зависимости от вида электропроводок и способа их прокладки приведены в таблице 14.

Kак зависят вид и способ электропроводки от характера помещений?

В сухих отапливаемых помещениях (жилых комнатах, отапливаемых складах, подсобных помещениях, где относительная влажность не превышает 60%) разрешаются все виды проводок. В сухих неотапливаемых и влажных помещениях (к последним относятся помещения, где пары или конденсирующаяся влага выделяются лишь временно в небольших количествах и где относительная влажность больше 60%, но не превышает 75%: кухни в жилых помещениях, лестничные клетки, неотапливаемые склады и т. п.) запрещены, скрытые проводки в изоляционных трубках. В пыльных помещениях (выделяемая по технологическим условиям пыль может оседать на проводах, проникать внутрь машин и аппаратов) разрешена открытая проводка изолированными проводами в изоляционных трубках с тонкой металлической оболочкой, открытая и скрытая проводки изолированными проводами в стальных трубах, кабелем.

К сырым относятся помещения, где относительная влажность длительно превышает 75%: овощехранилища, туалеты. К особо сырым относятся помещения с относительной влажностью воздуха до 100%, когда потолок, стены, полы и предметы, находящиеся в помещении, покрыты влагой. Особо сырыми являются теплицы, парники, наружные установки под навесом, в сараях, в неотапливаемых временных помещениях. Здесь возможна открытая или скрытая проводка изолированными защищенными или незащищенными проводами в трубах, кабелем.

Есть много помещений особо сырых с химически активной средой: помещения, где содержатся животные. В таких помещениях выполняют открытые или скрытые проводки изолированными защищенными или незащищенными проводами в трубах или кабелем.

В пожароопасных помещениях выполняют открытые проводки изолированными проводами на изоляторах или в трубах, скрытые - изолированными проводками в стальных трубах, кабелем.

К взрывоопасным относятся хранилища нефтепродуктов. Здесь все проводки (открытые и скрытые) монтируют изолированными проводами в стальных трубах; разрешена открытая прокладка небронированных кабелей с резиновой изоляцией в свинцовой или поливинилхлоридной оболочке для осветительных сетей при напряжении не более 250 В по отношению к земле при отсутствии механических и химических воздействий.

Kак выполнить монтаж внутренней электропроводки плоскими проводами?

Скрытые электропроводки плоскими проводами выполняют: по несгораемым основаниям, подлежащим затирке или покрываемым мокрой штукатуркой (соответственно в заштукатуриваемой борозде или под штукатуркой), по сгораемым основаниям, покрываемым мокрой штукатуркой, стенам и перегородкам (под слоем штукатурки с подкладкой под провод слоя листового асбеста толщиной не менее 3 мм или по намету штукатурки толщиной не менее 5мм; асбест или намет штукатурки укладывают поверх дранки, которая может быть вырезана по ширине асбестовой прокладки и выступать не менее чем на 10 мм с каждой стороны провода); в каналах и пустотах строительных конструкций; закладкой в несгораемые строительные конструкции при изготовлении их на заводах строительной индустрии. Запрещается прокладка и монтаж плоских проводов при температуре ниже -15°С.

Горизонтальную прокладку проводов по стенам осуществляют, как правило, параллельно линиям пересечения стен с потолком на расстоянии 100—200 мм от потолка или 50—100 мм от карниза или балки. Магистрали штепсельных розеток рекомендуется прокладывать по горизонтальной линии. Спуск и подъем проводов к светильникам, выключателям и штепсельным розеткам выполняют по вертикальным линиям. По перекрытиям плоские провода прокладывают по кратчайшим расстояниям между ответвительными коробками и

светильниками, в местах, где исключена возможность их механического повреждения, или в каналах плит. Запрещается прокладка плоских проводов пакетами или пучками. Пересечения плоских проводов между собой следует избегать. При необходимости пересечения изоляцию проводов в этом месте усиливают тремя-четырьмя слоями прорезиненной или поливинилхлоридной липкой ленты или изоляционной трубкой. Расстояние от открыто проложенных внутри зданий проводов и кабелей, а также от соединительных коробок скрытых проводок до стальных трубопроводов при параллельной прокладке должно быть не менее 100 мм, а при пересечении не менее 50 мм. Расстояние до трубопроводов с горючими жидкостями и газами соответственно не менее 400 и 100 мм.

При повороте трассы проводки на угол 90° в плоскости стены и потолка плоские провода изгибают по плоской стороне на угол 90° без разрезания разделительной пленки (при этом жилы не должны плотно прилегать друг к другу) или разрезают посредине разделительную пленку вдоль провода и одну жилу отводят внутрь угла в виде полупетли.

При скрытой прокладке в бороздах или пазах плоские провода в отдельных местах «примораживают» алебастровым раствором или прикрепляют скобками, хомутиками из пластмассы, резины, хлопчатобумажной ленты. Запрещается при любом способе скрытой прокладки крепление плоских проводов непосредственно гвоздями.

Соединение и ответвление плоских проводов выполняют сваркой, опрессовкой, пайкой или зажимами в ответвительных коробках.

При скрытой прокладке допускается выполнять ответвление плоских проводов во вводных коробках выключателей, штепсельных розеток и светильников.

В несгораемьк стенах и перекрытиях сухих и влажных помещений в качестве ответвительных коробок могут использоваться гнезда (ниши) с гладкими стенками, закрытые крышками.

Присоединения и ответвления плоских проводов, прокладываемых скрыто, выполняют с запасом провода длиной не менее 50 мм.

В металлических коробках и местах ввода плоских проводов устанавливают втулки из изолирующего материала или на провод дополнительно накладывают три-четыре слоя изоляции из прорезиненной или липкой поливинилхлоридной ленты.

На проводах, подключаемых к зажимам выключателей, штепсельных розеток, настенных патронов, разделительную пленку удаляют лишь на участке, необходимом для присоединения.

Технологический процесс монтажа внутренней проводки условно делят на две стадии: подготовительную и основную. Во время подготовительной стадии выполняют разметочные и заготовочные работы, во время основной прокладывают провода и выполняют необходимые соединения.

Разметочные работы выполняют непосредственно на объекте монтажа. Они позволяют уточнить трассы проводок и проходов последних через стены и междуэтажные перекрытия, трассы заземлений, места пересечения линий проводки между собой и с трубопроводами различного назначения, места крепления светильников, выключателей, штепсельных розеток, проводов или труб, в которых прокладывают провода, а также места установки коробок. Заготовочные работы заключаются в пробивке сквозных и гнездовых отверстий, в подготовке борозд для обхода препятствий, в установке закладочных частей, крепежных и изолирующих опор и деталей, в прокладке труб и трубок для проводов.

Прокладка проводов предусматривает: правку проводов путем протягивания провода через сухую тряпку, зажатую в руке; заготовку концов проводов и протягивание их в коробки; прокладку проводов по стенам с «примораживанием» их алебастровым раствором.

Прозвонку выполняют после затвердевания алебастрового раствора в местах крепления проводов и коробок.

Как выполнить монтаж проводок в трубах?

Электропроводки в трубах выполняют с целью их защиты от механических повреждений или от воздействия окружающей среды (например, сырость, взрывоопасные смеси, химически активные газы).

Для электропроводок применяют: стальные обыкновенные водогазопроводные трубы; полиэтиленовые и полипропиленовые трубы; винипластовые трубы; металлические гибкие провода.

Работы по монтажу электропроводок в трубах выполняют в две стадии. Сначала отмечают расположение концов труб, подходящих к щитам, электроприемникам, аппаратам управления. Затем размечают трассы электропроводок, места установки коробок, углы поворотов, точки крепления.

Стальные трубы сначала осматривают, отбраковывают мятые, выправляют гнутые; очищают от грязи, ржавчины металлической щеткой; окрашивают внутри и снаружи. Затем трубы размечают и режут ножовкой; нарезают резьбу; снимают заусенцы напильником. Диаметр труб для конкретной электропроводки зависит от количества прокладываемых проводов (кабелей) и их диаметра.

Пластмассовые трубы изгибают только в горячем состоянии при температуре 100—130°С. Неметаллические трубы используют для электропроводок только в помещениях, в которых максимальная температура окружающей среды не превышает 60°С.

Электропроводки в трубах должны монтироваться с учетом условий окружающей среды. Трубы укладывают с уклоном (не нормируется), чтобы не собиралась конденсирующая влага. Соединение труб во взрывоопасных и пожароопасных зонах, в наружных установках, во влажных, сырых и особо сырых помещениях, а также при скрытой прокладке выполняют только на резьбе с паклей и суриком.

Все металлические элементы должны быть защищены от коррозии. Металлические части электропроводок в трубах зануляют или заземляют.

Зануление и заземление электропроводок выполняют гибкой медной перемычкой от трубы к корпусу или через трубу заземляющими гайками.

Перед затягиванием проводов трубопроводы проверяют и продувают воздухом. В трубы затягивают стальную проволоку диаметром 1, 5-3, 5 мм с петлей на конце. Провода выравнивают, протягивая их через зажатую сухую тряпку, присоединяют к проволоке и затягивают два человека в рукавицах — один тянет проволоку, другой с противоположной стороны подает провода в трубу.

В коробках и у концов труб оставляют запас провода для присоединения. Соединение проводов делают только в коробках (в трубах соединять запрещено) и тщательно изолируют. Затем испытывают сопротивление изоляции проводов между собой и между каждым проводом и землей (трубой), норма не менее 0, 5МОм.

Kак выполнить монтаж троссовых проводок(на струнах)?

Тросовыми называют электропроводки, у которых провода или кабели укреплены на натянутом несущем стальном тросе.

Тросовые электропроводки применяют в хозяйственных постройках и в наружных установках как для осветительных, так и для силовых сетей.

Проводки с креплением проводов и кабелей непосредственно к натянутому тросу или проволоке выполняют незащищенными проводами марок АПВ, АПРВ, ПВ и другими, а также кабелями -АВРГ, АВВГ, ВРГ и др.

В качестве несущего троса рекомендуют использовать многопроволочные оцинкованные тросы диаметром 3—6, 5 мм. Трос крепят к строительным основаниям с помощью крюков и натягивают с помощью натяжной муфты.

Крепление проводов и кабелей к тросу выполняют стальными полосками с пряжками или пластмассовыми перфорированными лентами. Расстояние между креплениями не более 500 мм.

Ответвительные коробки для присоединения светильников к проводам и кабелям крепят при помощи скоб непосредственно к тросу. Для ответвления от тросовых проводов устанавливают специальные тросовые коробки типа У-245. Ответвление проводов в коробке выполняют только ответвительными сжимами без разрезания провода. Светильники подвешивают к коробкам на подвесах. Подвешивать светильники на проводах не допускается.

Несущий трос зануляют в двух точках на концах

линий — соединением троса и нулевого провода гибкой перемычкой.

По завершении монтажа до установки ламп в светильники измеряют сопротивление изоляции электропроводки (норма 0, 5 МОм).

Разновидность тросовых проводок — струнные электропроводки. Струну изготавливают из стальной проволоки диаметром 2—4 мм. Ее закрепляют вплотную к строительным основаниям, например, привариванием к закладным деталям или пристреливанием. Струнные проводки применяют для монтажа проводов по железобетонным стенам, балкам и другим конструкциям, где крепление проводок другими способами затруднено.

Kак выполнить электропроводку в чердачных помещениях ?

Обособленную группу представляют электропроводки в чердачных помещениях, к которым относят непроизводственные помещения между верхним этажом здания или потолком и крышей здания, имеющие несущие конструкции из сгораемых материалов (например, кровлю, фермы, стропила, балки и т. п.). Если в таких помещениях несущие конструкции изготовлены из несгораемых материалов, их не рассматривают как чердачные.

Чердачные помещения в большинстве случаев малодоступны для осмотра и обладают повышенной пожарной опасностью. Поэтому чердачные электропроводки имеют свои особенности.

В чердачных помещениях применяют как открытые, так и скрытые электропроводки. Открытые электропроводки, выполненные проводами и кабелями с медными жилами, прокладывают в трубах на любой высоте, а выполненные проводами и кабелями с алюминиевыми жилами - в стальных трубах или несгораемых стенах и перекрытиях, а также в производственных зданиях сельскохозяйственного назначения со сгораемыми перекрытиями. Стальные трубы соединяют друг с другом ответвительными коробками и аппаратами на резьбе, что препятствует проникновению пыли внутрь электропроводки. Защищенные провода и кабели в оболочках прокладывают по несгораемым или трудносгораемым стенам и перекрытиям на любой высоте, незащищенные изолированные одножильные провода — на изоляторах на высоте не менее 2, 5 м (при прокладке на высоте до 2, 5 м провода защищают от прикосновения к ним и механических повреждений).

Скрытые электропроводки прокладывают в стенах и перекрытиях из несгораемых материалов на любой высоте. Выключатели, переключатели и другие коммутационные аппараты в цепях токоприемников устанавливают за пределами чердачных помещений. При монтаже открытых электропроводок незащищенные одножильные провода прокладывают на роликах в сухих и влажных помещениях, а на изоляторах и роликах больших размеров (для сырых мест) — в помещениях всех видов и наружных установках. При этом на роликах для сырых мест допускается применять электропроводки под навесами или в других аналогичных условиях, исключающих попадание на них дождя или снега.

Кабели в неметаллической и металлической оболочках прокладывают непосредственно на поверхности стен, потолков и на струнах, полосах и других незащищенных конструкциях в наружных установках, незащищенные и защищенные одно- и многожильные провода и кабели в неметаллической и металлической оболочках — непосредственно на поверхности стен, потолков и на струнах, полосах и других несущих конструкциях в помещениях всех видов.

Специальные провода с несущим тросом, незащищенные и защищенные одно- и многожильные провода и кабели в металлической и неметаллической оболочках прокладывают на тросах в помещениях всех видов. Для прокладки в наружных установках используют только специальные провода с несущим тросом или кабели. Скрытые электропроводки, как правило, должны быть сменяемыми. Незащищенные провода допускается замоноличивать в строительные конструкции при их изготовлении (или непосредственно на монтаже) для сухих, влажных и сырых помещений. Незащищенные и защищенные одно- и многожильные провода, а также кабели в неметаллической оболочке прокладывают в неметаллических трубах из сгораемых материалов, например из несамозатухающего полиэтилена (исключение составляют изоляционные трубы с металлической оболочкой, стальные трубы и глухие короба с толщиной стенок 2 мм и меньше в сырых, особо сырых помещениях и наружных установках), в замкнутых каналах строительных конструкций, под штукатуркой и помещениях всех видов и наружных установках. Открытыми и скрытыми электропроводками могут быть незащищенные и защищенные одно- и многожильные провода, кабели в неметаллической оболочке, прокладываемые в металлических гибких рукавах, стальных трубах и глухих стальных коробах, неметаллических трубах и глухих коробах из трудносгораемых материалов, а также в изоляционных трубах.

Структура условного обозначения установочных проводов

Изображение: 

Таблица 14. Марки проводов и кабелей в зависимости от вида и способа прокладки электропроводок (окончание)

Изображение: 

Таблица 14. Марки проводов и кабелей в зависимости от вида и способа прокладки электропроводок (продолжение)

Изображение: 

Таблица 14. Марки проводов и кабелей в зависимости от вида и способа прокладки электропроводок

Изображение: 

4. Какие электрические аппараты применяют для защиты электрических сетей от токов короткого замыкания и перегрузки?

Какие электрические аппараты применяют для защиты электрических сетей от токов короткого замыкания и перегрузки?

Предохранитель это простейший аппарат, защищающий электрическую сеть от коротких замыканий и значительных перегрузок. Предохранитель состоит из двух основных частей: фарфорового основания с металлической резьбой и смежной плавкой вставки (рис. 42, а) Плавкая вставка рассчитана на номинальные токи 10, 16, 20 А.

Вместо предохранителей могут применяться автоматические выключатели (автоматы). Включают автоматы вручную, а отключать можно вручную и автоматически, в результате срабатывания вмонтированных в корпус расцепителей.

Автоматы с тепловыми расцепителями предназначены для защиты от перегрузок. В качестве теплового расцепителя служит биметаллическая пластинка. При прохождении по ней тока перегрузки она изгибается и приводит в действие расцепляющий механизм, отключающий автомат.

Электромагнитный расцепитель состоит из катушки, сердечника и пружины. Автоматы с электромагнитным расцепителем служат для защиты от коротких замыканий. Ток короткого замыкания, проходя по катушке, содействует втягиванию внутрь ее сердечника, который сжимает пружину и приводит в действие расцепляющее устройство. Автоматы могут иметь тепловой или электромагнитный расцепитель или одновременно тот и другой, т. е. комбинированный. В осветительных сетях вместо предохранителей могут применяться резьбовые автоматические выключатели типа Пар 6, ЗА; 10А и 16А; 250 В (рис.42,б) и автоматические выключатели АЕ10 на 16А; 25А; 250В (рис. 42, в).

3-41.jpg

Рис. 42. Устройства защиты от токов короткого замыкания и перегрузок: а предохранитель; б — резьбовой автоматический выключатель Пар; в — автоматический выключатель АЕ10; г — автоматический выключатель АП50Б; 1 — дугогасительная камера; 2электромагнитный расцепитель; 3—главные контакты; 4 и 5 — кнопки ручного включения и отключения; 6 — пластмассовое основание

Для защиты трехфазных электрических сетей применяют трехфазные автоматические выключатели серий АЕ20, АП50Б и др. Предпочтительным является применение автоматических выключателей серии АП50Б (рис. 42, г), так как контакты для подключения жил проводов или кабелей закрыты крышкой, что повышает электробезопасность при их обслуживании. Автоматические выключатели АП50Б выпускаются с номинальными токами на 6, 3; 10; 16; 25 и 40 А.

Для нормальной работы защитных аппаратов необходимо определить рабочий ток, по которому производится выбор плавкой вставки предохранителя и выбор выключателя. Для этого необходимо определить мощность потребителей, которые будет защищать этот аппарат. Принято считать, что при однофазной нагрузке на 1 кВт мощности приходится ток, равный 5 А; при трехфазной — на 1 кВт — 3 А. Зная нагрузку, определяют номинальный ток плавкой вставки или автоматического выключателя.

Например, необходимо выбрать защиту для электропроводки в доме и для трехфазного электродвигателя мощностью 3 кВт. Определяем суммарную нагрузку в доме сложением, получаем 2, 2 кВт (2200 Вт). 2, 2 • 5 = 11 А. Номинальный ток плавкой вставки предохранителя или автомата должен быть больше тока рабочего. Выбираем плавкую вставку на 16 А или автомат АЕ с номинальным током на 16 А.

Для электродвигателя: 3 • 3 == 9 А. Выбираем автомат АП50Б на 10 А.

Более точный выбор пускозащитной аппаратуры изложен ниже.

Kак выбрать плавкую вставку предохранителя?

Токи плавких вставок для проводов осветительной сети выбирают по номинальному току

Iл.вст>I ном

При выборе плавких вставок для защиты асинхронных электродвигателей необходимо учитывать, что пусковой ток двигателя в 5—7 раз больше номинального. Поэтому выбирать плавкую вставку по номинальному току нельзя, так как она при пуске электродвигателя перегорит.

Для асинхронных электродвигателей с коротко-замкнутым ротором при небольшой частоте включения и легких условиях пуска (tпуск=5—10с) номинальный ток плавкой вставки можно определить по выражению

Iпл.вст>0,4 Iпуск,

где I — пусковой ток электродвигателя, А.

При тяжелых условиях работы (частые пуски, продолжительность разбега до 40 с)

Iпл.вст > (0,5 - 0,6) Iпуск

Как выбрать автоматический выключатель?

Автоматические воздушные выключатели применяют для защиты участков сети от коротких замыканий, перегрузок или снижений напряжения. Их используют также для нечастых оперативных включений и отключений асинхронных короткозамкнутых электродвигателей. Конструкции автоматических выключателей различаются расцепителями — встроенными устройствами в виде защитных реле для дистанционного отключения. Различают расцепители максимального тока (электромагнитные или тепловые), минимального напряжения (нулевые) и независимые. Электромагнитные расцепители срабатывают практически мгновенно (за 0,02 с), тепловые отключают цепь в зависимости от длительности и силы тока, превышающего уставку теплового расцепителя. При наличии комбинированного расцепителя (то есть электромагнитного и теплового) выключатель мгновенно срабатывает при сверхтоках и с выдержкой времени от перегрузок, определяемой тепловым расцепителем. При снижениях напряжения до 70—30% номинального срабатывает расцепитель минимального, напряжения.

Условия выбора автоматических воздушных выключателей сводятся к следующему:

1) номинальное напряжение выключателя должно соответствовать напряжению сети, то есть

Uн.авт>Uc;

2) номинальный ток автомата должен быть равен рабочему или превышать его: Iн.авт>Ip ;

3) номинальный ток расцепителя автомата

должен быть равен рабочему току (например, электродвигателя) или превышать его: Iн. расц> Ip;

4) правильность срабатывания электромагнитного расцепителя автомата проверяют из условия

Iсраб.расц>1.25Imax

Если применен автомат только с тепловым расцепителем, то по условиям надежной защиты от коротких замыканий необходимо последовательно с ним устанавливать также плавкие предохранители.

Для чего предназначен магнитный пускатель ?

3-42.jpg

Магнитные пускатели (рис.43) предназначены для дистанционного управления электродвигателями и другими электроустановками. Они обеспечивают нулевую защиту, т.е. при исчезновении напряжения или при его снижении до 50 — 60% от номинального катушка не удерживает магнитную систему контактора и силовые контакты размыкаются. При восстановлении напряжения токоприемник остается отключенным. Это исключает возможность аварий, связанных с самопроизвольным пуском электродвигателя или другой электроустановки. Пускатели с тепловыми реле осуществляют также защиту электроустановки от длительных перегрузок.

Наибольшее распространение получили магнитные пускатели серий ПМЕ, ПМЛ и ПМА.

Изготовляются эти серии в открытом, защищенном, пылеводозащищенном и пылебрызгонепроницаемом исполнении на напряжение 220 и 380 В. Они могут быть реверсивными и нереверсивными. Реверсивные пускатели наряду с пуском, остановом и защитой электродвигателя изменяют направление его вращения.

В магнитные пускатели встраиваются тепловые реле ТРН (двухполюсные) и ТРЛ, РТИ (трехполюсные). Они срабатывают под влиянием протекающего по ним тока перегрузки электродвигателя и отключают его от сети.

Маркировка магнитных пускателей расшифровывается следующим образом: первая цифра после сочетания букв, указывающих на тип пускателя, обозначает величину, которая соответствует определенному значению тока (0 — 6, 3 А; 1 — 10 А;

2 - 25 А; 3 - 40 А; 4 - 63 А; 5 - 80 А; 6 - 125 А);

вторая — исполнение по роду защиты от окружающей среды (1 — открытое исполнение; 2 — защищенное; 3 —пылезащищенное; 4 — пылебрызгонепроницаемое), третья — исполнение (1 — нереверсивный без тепловой защиты; 2 — нереверсивный с тепловой защитой; 3 — реверсивный без тепловой защиты, 4 — реверсивный с тепловой защитой).

Для чего применяется тепловое реле и как его выбрать?

Тепловое реле (рис.43) применяют для защиты электродвигателя от перегрузок.

Тепловое реле и номинальный ток теплового элемента, если нет особых требований к тепловой защите, выбирают с соблюдением следующих условий: максимальный ток продолжительного режима реле должен быть не менее номинального тока защищаемого двигателя; ток уставки реле должен быть равен номинальному току защищаемого двигателя или несколько больше (в пределах 5%); запас на регулировку тока уставки как в сторону увеличения, так и в сторону уменьшения должен быть наибольший. Для этого на шкале уставки оставляют одно-два свободных деления в обе стороны от положения регулятора, соответствующего выбранному току уставки.

Для чего и как выполняют зануление?

Зануление — основная мера защиты от поражения электрическим током в электроустановках напряжением до 1000 В с глухозаземленной нейтралью источника питания в случае прикосновения к металлическим корпусам электрооборудования и металлическим конструкциям, оказавшимся под напряжением вследствие повреждения изоляции сети или электроустановок.

Всякое замыкание токоведущих частей на зануленные части превращается таким образом в однофазное короткое замыкание, что приводит к отключению аварийного участка сети.

В качестве нулевых защитных проводников могут быть использованы нулевые рабочие проводники, специально предусмотренные проводники (четвертая или третья жила кабеля или провод сети, стальные полосы и т.п.), стальные трубы электропроводки, алюминиевые оболочки кабелей, металлические конструкции зданий, металлические кожухи шинопроводов, все трубопроводы, проложенные открыто, кроме трубопроводов для горючих и взрывоопасных смесей, канализации, центрального отопления и бытового водопровода. По проводимости (сопротивлению) все перечисленные заземлители нулевых проводов должны удовлетворять требованиям ПУЭ. Устанавливать разъединяющие приспособления в цепях нулевых проводников запрещается, кроме тех случаев, когда одновременно отключаются и все токоведущие провода в установке.

Для зануления однофазных бытовых электроплит следует делать ответвление от нулевого рабочего проводника (шины) этажного щитка на вво

де, выполняемое отдельным проводом, площадь сечения у которого такая же, как у фазного. Этот провод должен подключаться к нулевому рабочему проводнику перед счетчиком до отключающего аппарата.

При зануден и и трехфазных электроплит не разрешается использовать нулевой рабочий проводник в качестве зануляющего рабочего проводника.

Для зануления светильников, вводы в которые выполняются защищенным проводом или незащищенными проводами в трубе (металлорукаве) или при скрытой проводке, делают ответвление от нулевого рабочего проводника внутри светильника. При вводе в светильник открытых незащищенных проводов для зануления корпуса светильника следует использовать гибкий провод (ответвление), присоединяемый с одной стороны к нулевому рабочему проводу на неподвижной опоре, а с другой — к заземляющему винту корпуса.

В наружных установках и во взрывоопасных помещениях для зануления нужно использовать свободную жилу кабеля или свободный провод воздушной сети, присоединяемые к нулевому рабочему проводнику в ответвительной коробке, а в помещениях В-1 — в ближайшем групповом щитке.

С целью выравнивания потенциала во всех помещениях и наружных установках, где выполнено зануление, все металлические конструкции трубопровода, корпуса оборудования и т.п. должны быть присоединены к сети зануления.

Kак выполняют заземление?

Заземляющее устройство состоит из заземлителя, заземляющих магистралей и заземляющих проводников. Различают два типа заземлителей: естественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий и сооружений, надежно соединенные с землей.

В качестве заземляющих проводников используют стальные трубы электропроводок, свинцовые и алюминиевые оболочки кабелей, металлические трубопроводы всех назначений, проложенные открыто. Запрещается использовать для этой цели трубопроводы для горючих и взрывчатых смесей, а также служащие для автопоения скота.

Использование голых алюминиевых проводников для прокладки в земле в качестве заземляющих проводников и заземлителей запрещается.

Все естественные заземлители для большей надежности соединяют с заземляющими магистралями электроустановки не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Соединение выполняют вблизи от ввода в здание при помощи сварки или хомутов (для труб), контактную поверхность которых облуживают. Трубы в местах накладки хомутов зачищают. Места и способы присоединения проводников выбирают с учетом возможных ремонтных работ трубопроводов. При разъединении трубопроводов должно быть обеспечено непрерывное действие заземляющего устройства.

Если естественные заземлители и заземляющие проводники отсутствуют или если они не обеспечивают необходимого нормированного сопротивления, тогда применяют искусственные заземлители.

В качестве искусственных заземлителей применяют: трубы, угловую сталь, металлические стержни и т. п., горизонтально проложенные стальные полосы, круглую сталь и т. п. В случае опасности усиленной коррозии применяют омедненные или оцинкованные заземлители. Заземлители и заземляющие проводники, проложенные в земле, не должны иметь окраски.

Монтаж наружного контура заземления начинают с разметки трассы и рытья траншей глубиной 0,6—0,8 м (ниже уровня промерзания грунта).

Искусственные заземлители в виде отрезков стальных труб, круглых стержней или уголков длиной 3—5 м забивают в грунт так, чтобы головка электрода оказалась на глубине 0,5 м от поверхности. Заглубленные электроды соединяют друг с другом стальной полосой с помощью сварки. Места сварки покрывают разогретым битумом для защиты от коррозии. От заземлителей отводят магистраль заземления из стальных шин. Уложенные в траншеи заземляющие проводники и заземлители засыпают землей, не содержащей камней, строительного мусора, и плотно утрамбовывают. Количество электродов заземляющего контура зависит в основном от удельного сопротивления почвы, длины и расположения электродов. Для получения сопротивления заземления до 10 Ом необходимо забить от 2 до 30 электродов.

Соединение заземляющих проводников друг с другом и присоединение к конструкциям выполняют сваркой, а подключение к корпусам аппаратов, машин, и т. п. — болтовыми соединениями. При наличии вибрации применяют контргайки, пружинящие шайбы или иные средства против ослабления соединения. Сварочные швы выполняют длиной, равной двойной ширине проводника при прямоугольном сечении или шести диаметрам при круглом сечении. Соединяемые контактные поверхности болтовых соединений зачищают до металлического блеска и покрывают тонким слоем вазелина.

Каждый заземленный элемент электроустановки присоединяют к заземляющей магистрали отдельным проводником. Последовательное соединение этих проводников запрещается.

Заземляющие проводники, расположенные в помещениях, должны быть доступны для осмотра. Для предохранения от коррозии стальные голые провода окрашивают черной масляной краской.

Как измерить сопротивление заземляющего контура?

Для измерения сопротивления заземляющего контура применяют специальный прибор М416.

Для грубых измерений сопротивления заземления зажимы 7 и 2 соединяют перемычкой и подключают прибор к измеряемому объекту по трехзажимной схеме (рис.44,а). При точных измерениях снимают перемычку с зажимов 1 и 2, подключают прибор к измеряемому объекту по четырехзажимной схеме. Эта схема позволяет исключить погрешность, которую вносят сопротивления соединительных проводов и контактов. Перед измерением регулируют прибор в такой последовательности. Ставят его горизонтально и переводят переключатель пределов измерения в положение «Контроль 5 Ом». Нажимают кнопку, вращением рукоятки прибора «Реохорд» устанавливают стрелку индикатора на нулевую отметку. На шкале реохорда должно быть показание 0,35—5 Ом при нормальных климатических условиях и номинальном напряжении источника питания. Прибор располагают около измеряемого заземления. Стержни, образующие вспомогательный заземлитель R5 и потенциальный электрод R3(«Зонд»), устанавливают на расстояниях, данных на рисунке.

Длина стержней в грунте должна составлять не менее 500 мм, обычно 1-1,5 м. Вспомогательный заземлитель и зонд выполняют в виде металлического стержня или трубы диаметром не менее 10 мм.

При испытании заземляющих устройств с сопротивлением растеканию не менее 10 Ом сопротивления вспомогательного заземлителя прини-

3-43.jpg

Рис.44. Измерение сопротивления заземления: а—с помощью измерителя заземлений типа М416; б—по методу амперметра и вольтметра; 1 — заземлитель, сопротивление которого неизвестно; 2 — заземлитель зонда; 3 — вспомогательный заземлитель; 4 — сварочный трансформатор; V — вольтметр на 5—10 В;

А — амперметр на 2,5 — 5 А

мают не более 250 Ом. Если сопротивление растеканию заземляющего устройства находится в пределах 100—1000 Ом, сопротивление вспомогательного электрода должно быть не более 500—1000 Ом. Сопротивление зонда рекомендуется для всех случаев измерений не более 1000 Ом. При грунтах с высоким удельным сопротивлением измерения будут приближенными.

Для повышения точности измерения уменьшают сопротивление вспомогательных заземлите-лей увлажнением вокруг них почвы и увеличением их количества.

Дополнительные стержни забивают на расстоянии не менее 2—3 м друг от друга. Все стержни, образующие контур зонда или вспомогательного заземлителя, соединяют между собой электрически. Измерение проводят по схеме, приведенной на рисунке.

Порядок измерения следующий. Переключатель прибора устанавливают в положение «х1» (умножить на один). Нажимают кнопку и, вращая ручку прибора «Реохорд», добиваются максимального приближения стрелки индикатора к нулю. Результат измерения отсчитывают по шкале реохорда. Если измеряемое сопротивление окажется больше 10 Ом, переключатель устанавливают в одно из положений х5, х20 или х100 и проделывают операции, указанные выше. Результат измерения находят как произведение показания шкалы реохорда на множитель.

При отсутствии специальных приборов сопротивление заземляющего контура можно измерить методом амперметра-вольтметра (рис.44,б). Для этого необходимо иметь источник переменного тока (электрически не связанный с сетью) и вольтметр на малые пределы измерения, но с большим внутренним сопротивлением.

Фактическое сопротивление заземления определяют по формуле

Rх=U/I;

где U — показания вольтметра. В;

I — показания амперметра, А.

Замеры сопротивления заземляющего контура производят в периоды наименьшей проводимости почвы: зимой при наибольшем промерзании, летом во время наибольшего просыхания ее.

Надежность заземления и его общее состояние проверяют при замерах не реже одного раза в год, а также после каждого капитального ремонта и длительного бездействия установки.

Внешний осмотр состояния заземляющих проводников (шин) производят не реже одного раза в шесть месяцев, а в сырых и особо сырых помещениях — не реже одного раза в три месяца.

Как выполнить молниезащиту здания?

Основными средствами защиты зданий и сооружений от прямых ударов молнии являются молниеотводы, которые принимают на себя разряды и отводят в землю.

Молниеотводы бывают тросовыми и стержневыми. Тросовые молниеотводы устанавливают главным образом на крышах зданий. Молние-приемником является трос, который соединяет две или несколько опор.

Стержневые чаще всего устанавливают у наружных стен зданий и только в отдельных случаях — на крышах. Удар молнии принимает стержневой молниеприемник, крепящийся на опоре.

Стержневой молниеотвод состоит из молниеприемника, который воспринимает удары молний, токоотвода, соединяющего молниеприемник с заземлителем, заземляющего устройства, служащего для отвода молнии в землю, и опоры. Для изготовления молниеприемников применяют стальные прутки диаметром 12 мм, полосы 35х3 мм, уголки 20х20х3 мм, газовые трубки диаметром 1/2 - 3/4 дюйма и др. Длину молниеприемников принимают от 300 до 1500 мм.

Токоотводы выполняют из стали диаметром не менее 6 мм и полосы сечением 35 мм^2. Обычно для токоотводов применяют стальную проволоку (катанку). Части токоотвода соединяют между собой при помощи сварки или болтами. Площадь контакта должна быть не менее двойной площади сечения токоотвода. Токоотвод прокладывают по крышам и стенам защищаемого здания, а также по деревянным конструкциям опор молниеотводов вплотную к их поверхности, за исключением зданий с легковоспламеняющейся кровлей.

Место установки молниеотвода выбирают с таким расчетом, чтобы обеспечить защиту не только зданий и сооружений, но и защиту людей от шагового напряжения. Шаговое напряжение возникает в момент отвода тока молнии в землю. Чтобы избежать поражения шаговым напряжением, заземлители размещают не ближе 4 м от наружных стен зданий, где нет проходов, скоплений людей и животных. Необходимо делать ограждения заземлителей всех видов на расстоянии 4 м (в радиусе). Помещения длиною до 14—15 м защищают от прямого удара молнии одним стержневым молниеотводом, установленным на крыше здания.

Для помещений длиною до 25 м грозозащиту выполняют стержневым молниеотводом, с установкой опоры по центру здания у наружной продольной стены.

Помещения сложной планировки и длиною более 25 м защищают двумя и более стержневыми молниеотводами с установкой опор у наружных стен. Высоту молниеотвода от уровня земли принимают равной 18—20 м.

Сопротивление заземления грозозащиты не должно превышать 10Ом.

При защите помещений двумя стержневыми молниеотводами расстояние от угла торцевой стены, в зависимости от ширины постройки, должно быть 2—6 м. Увеличение расстояния ведет к увеличению высоты молниеотвода и усложнению его конструкции.

Установка молниеотводов, если крыша металлическая, не требуется. В этом случае крышу по периметру через 20—25 м заземляют. Трубы, вентиляционные устройства и т. п., установленные на крыше, присоединяют к металлической кровле.

Как экономить электрическую энергию?

В электроосветительных установках борьбу за экономию энергии нельзя вести в ущерб высокому качеству освещения, которое создает комфортные условия и положительно влияет на производительность труда. Здесь, так же как и в других потребительских установках, следует следить за безусловным соблюдением действующих норм, внедрять прогрессивные источники света и рациональные типы осветительной арматуры, правильно выбирать лампы и светильники, поддерживать нормальный уровень напряжения в осветительной сети, обеспечивать хорошую эксплуатацию.

Замена ламп накаливания на люминесцентные и газоразрядные может дать большую экономию электроэнергии. Последние имеют более высокий энергетический КПД. Поэтому при переходе на люминесцентные или газоразрядные лампы можно при сокращенном расходе электроэнергии значительно повысить уровень освещенности рабочих мест.

В интересах экономии энергии нужно автоматизировать и программировать продолжительность искусственного освещения. Для этих целей применяют реле времени, фотоэлементы, фотореле и регуляторы напряжения.

Электроэнергию в осветительных установках можно экономить также за счет поддержания отражающих поверхностей в состоянии, соответствующем нормативным требованиям, используя новые химические препараты для мойки стекол, снижения уровня освещенности в нерабочих помещениях: тамбурах, коридорах, туалетах и т.п.

В жилом секторе осветительные приборы следует включать только в том случае, когда это действительно необходимо. За счет этого можно сэкономить до 15% энергии. По возможности лампы накаливания следует заменить на люминесцентные. Вместо нескольких ламп небольшой мощности желательно пользоваться одной мощной лампой.

В домах с централизованным теплоснабжением важно следить за тем, чтобы температура воздуха в жилых комнатах не превышала нормы. Нужно помнить, что повышение температуры на ГС в закрытом помещении связано с дополнительным расходом на отопление 3—5% электроэнергии.

На расход энергии в домах влияет состояние их теплоизоляции. Из-за неутепленных окон и дверей помещения зачастую теряют до 40% теплоты. Подсчитано, что через неутепленную балконную дверь уходит столько же тепла, сколько и сквозь дырку диаметром 20 см.

Рис. 42. Устройства защиты от токов короткого замыкания и перегрузок

Изображение: 

Рис. 43. Обший вид магнитного пускателя с тепловым реле

Изображение: 

Рис.44. Измерение сопротивления заземления

Изображение: 

5. Позиционные обозначения (Буквенные коды) элементов и установка на электрических схемах

Позиционные обозначения (Буквенные коды) элементов и установка на электрических схемах

М — электродвигатель R - резистор С - конденсатор

GB — источник питания, генераторы, аккумуляторы рА — прибор измерительный, амперметр pV - прибор измерительный, вольтметр Wh - прибор измерительный, счетчик активной энергии Т, TV, ТА — трансформаторы, автотрансформаторы ТА - трансформатор тока TV - трансформатор напряжения LL - катушка индуктивности, дроссели LL — дроссель люминесцентного освещения QS - разъединитель, рубильник QF - выключатель автоматический EL - лампа осветительная ЕК - нагревательный элемент HL — прибор световой сигнализации KM - электромагнитный контактор, пускатель КК - реле электротепловое KV - реле напряжения SA - выключатель или переключатель SB - выключатель кнопочный SQ - выключатель путевой FU - предохранитель плавкий FV — разрядный элемент YB — тормоз с электромагнитным приводом XS — соединение разъемное, гнездо ХР — соединение разъемное, штырь XT — соединение разборное РТ - часы, измеритель времени действия PR - счетчик реактивной энергии RP — потенциометр PR — омметр SF— выключатель автоматический (в аппаратах, не имеющих контактов силовых цепей)

6. Условные графические обозначения электрического оборудования и проводок на планах

Условные графические обозначения электрического оборудования и проводок на планах

3-61.jpg

Условные графические обозначения электрического оборудования и проводок на планах

Изображение: 

4. Литература

Литература

1. Правила устройства электроустановок. — 6-е изд. — М.: Энергоатомиздат, 1986 - 648 с.

2. Правила технической эксплуатации электроустановок потребителей и Правила техники безопасности при эксплуатации электроустановок потребителей. — 4-е изд. - М.: Энергоатомиздат, 1986 - 424 с.

3. СНиП 3.05.06-85. Электротехнические устройства. — М.: Госстрой СССР, 1988 - 56 с.

4. Электрооборудование и автоматизация сельскохозяйственных агрегатов и установок /Под ред. И.Ф.Кудрявцева. - М.: Агропромиздат, 1988 - 480 с.

5. Практикум по технологии монтажа и ремонта электрооборудования /Под ред. А-А.Пястолова. - М.: Агропромиздат, 1990 - 162 с.

6. Электротермическое оборудование сельскохозяйственного производства /Под ред. Л.С.Герасимовича. -Мн.: Ураджай, 1995 - 416 с.

7. Соколов Б.А., Соколова И.Б. Монтаж электрических установок. — 3-е изд. — М.: Энергоатомиздат, 1991 - 592 с.

8. Шогенов А.Х. Монтаж электрооборудования на фермах. — М.: Агропромиздат, 1991 - 256 с.

9. Электротехника. - 2-е изд. /Под ред. И.А.Федоровой. — Мн.: Вышэйшая школа, 1977 — 392 с.

10.Корнилов Ю.В., Бредихин А.Н. Слесарь-электромонтажник. - М.: Высшая школа, 1988 - 256 с.

11.Шипуль П.Т. 100 советов электрику. — Мн.: Ураджай, 1976.

12.Марочкин В.К. и др. Малая энергетика сельскохозяйственньк предприятий. - Мн.: Ураджай, 1990.

2. Раздел 2.

Раздел 2.

 

1. Общие справочные сведения

1. Общие справочные сведения

 

1.1. Понятия и определения, условные обозначения

1.1. Понятия и определения, условные обозначения

Ниже приведены некоторые определения и сведения из принятых Правил устройства электроустановок (ПУЭ), которых придерживаются при проектировании и эксплуатации электроустановок.

Электроустановка представляет собой совокупность машин, аппаратов, линий их связи и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи и распределения электроэнергии.

Электроустановки по условиям безопасности разделяются на электроустановки напряжением до 1000 В и электроустановки напряжением более 1000 В. В настоящем справочнике даются сведения по электроустановкам напряжением 380/220 В, где 380 В — напряжение между каждыми двумя из трех токоведущих проводов трехфазной сети (между фазами), а 220 В — напряжение между каждыми из этих проводов и нулевым проводом, соединенным с нейтралью трансформатора, питающего сеть, с заземляющим устройством нейтрали и с повторным заземлением самого нулевого провода.

В электроустановке электрические машины могут производить или потреблять электроэнергию.

Электрические аппараты применяются для включения, отключения и защиты электроприемников или участков линий.

Электрические линии могут быть воздушными или кабельными.

Открытыми или наружными электроустановками называются установки, не защищенные зданием от внешних воздействий.

Закрытыми или внутренними называются установки, расположенные внутри здания.

В табл. 1. 1 приведены виды помещений в зависимости от условий среды.

Таблица 1. 1 ВИДЫ ПОМЕЩЕНИЙ В ЗАВИСИМОСТИ ОТ УСЛОВИЙ СРЕДЫ

1-11.jpg

В соответствие с ПУЭ электроустановки классифицируются в зависимости от пожароопасности и взрывоопасности.

Пожароопасной зоной называется пространство внутри и вне помещения, в переделах которого постоянно или периодически образуются горючие вещества и в котором они могут находиться при нормальном технологическом процессе или при его нарушении.

Взрывоопасной зоной называется помещение или ограниченное пространство в помещении или наружной установке, в которых имеются или могут образовываться взрывчатые смеси газов или паров с воздухом, кислородом или другими окислителями, а также горючей пыли или волокон с воздухом при переходе их во взвешенное состояние.

Классы пожароопасных и взрывоопасных зон приведены в табл. 1.2.

В отношении поражения людей электрическим током различаются:

1. Помещения без повышенной опасности, в которых .отсутствуют условия повышенной опасности.

2. Помещения с повышенной опасностью, в которых существует одно из условий повышенной опасности:

1) сырость или токолроводящая пыль;

2) токопроводящие полы;

3) возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям, технологическим аппаратам и т. д., с одной стороны, и к корпусам электрооборудования, с другой;

4) высокая температура.

3. Особо опасные помещения, характеризующиеся наличием одного из следующих условий:

1) особая сырость;

2) химически активная или органическая среда;

3) одновременно два или более условий повышенной опасности.

Электрической сетью является совокупность электроустановок, обеспечивающих передачу и распределение электроэнергии (подстанции, распределительные устройства, воздушные и кабельные линии и т. д.)

Элементом называется часть электротехнического изделия, которая выполняет определенную функцию (резисторы, конденсаторы, транзисторы, коммутационные аппараты и т. д.).

Совокупность элементов, представляющих единую конструкцию (плата, блок, шкаф и т. д.) называют устройством.

Каждый элемент электротехнического устройства характеризуется номинальным параметром, указываемым изготовите-

Таблица 1. 2 ПОЖАРООПАСНЫЕ И ВЗРЫВООПАСНЫЕ ЗОНЫ

1-12.jpg

лем и учитываемым при его использовании (напряжение, ток, мощность). Номинальные параметры указываются и для устройств.

Для каждого элемента и устройства государственными стандартами устанавливаются условные обозначения, некоторые из них приведены в прил. 1.

Таблица 1. 3 ЕДИНИЦЫ ИЗМЕРЕНИЯ НЕКОТОРЫХ ФИЗИЧЕСКИХ ВЕЛИЧИН ПО МЕЖДУНАРОДНОЙ СИСТЕМЕ СИ И ИХ ОБОЗНАЧЕНИЯ

1-13.jpg

Продолжение табл. 1. 3

1-14.jpg

Продолжение табл. 1. 3

1-15.jpg

Окончание табл. 1. 3

1-16.jpg

Таблица 1.4 ВЫРАЖЕНИЕ НЕКОТОРЫХ ЕДИНИЦ ИЗМЕРЕНИЯ ДРУГИХ СИСТЕМ ЧЕРЕЗ ЕДИНИЦЫ ИЗМЕРЕНИЯ СИСТЕМЫ СИ

1-17.jpg

Таблица 1. 5 ПРИСТАВКИ И МНОЖИТЕЛИ ДЛЯ ОБРАЗОВАНИЯ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ

1-18.jpg

Таблица 1. 5 ПРИСТАВКИ И МНОЖИТЕЛИ ДЛЯ ОБРАЗОВАНИЯ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ

Изображение: 

Таблица 1.1 ВИДЫ ПОМЕЩЕНИЙ В ЗАВИСИМОСТИ ОТ УСЛОВИЙ СРЕДЫ

Изображение: 

Таблица 1.2 ПОЖАРООПАСНЫЕ И ВЗРЫВООПАСНЫЕ ЗОНЫ

Изображение: 

Таблица 1.3 ЕДИНИЦЫ ИЗМЕРЕНИЯ НЕКОТОРЫХ ФИЗИЧЕСКИХ ВЕЛИЧИН ПО МЕЖДУНАРОДНОЙ СИСТЕМЕ СИ И ИХ ОБОЗНАЧЕНИЯ (окончание)

Изображение: 

Таблица 1.3 ЕДИНИЦЫ ИЗМЕРЕНИЯ НЕКОТОРЫХ ФИЗИЧЕСКИХ ВЕЛИЧИН ПО МЕЖДУНАРОДНОЙ СИСТЕМЕ СИ И ИХ ОБОЗНАЧЕНИЯ (продолжение)

Изображение: 

Таблица 1.3 ЕДИНИЦЫ ИЗМЕРЕНИЯ НЕКОТОРЫХ ФИЗИЧЕСКИХ ВЕЛИЧИН ПО МЕЖДУНАРОДНОЙ СИСТЕМЕ СИ И ИХ ОБОЗНАЧЕНИЯ (продолжение)

Изображение: 

Таблица 1.3 ЕДИНИЦЫ ИЗМЕРЕНИЯ НЕКОТОРЫХ ФИЗИЧЕСКИХ ВЕЛИЧИН ПО МЕЖДУНАРОДНОЙ СИСТЕМЕ СИ И ИХ ОБОЗНАЧЕНИЯ

Изображение: 

Таблица 1.4 ВЫРАЖЕНИЕ НЕКОТОРЫХ ЕДИНИЦ ИЗМЕРЕНИЯ ДРУГИХ СИСТЕМ ЧЕРЕЗ ЕДИНИЦЫ ИЗМЕРЕНИЯ СИСТЕМЫ СИ

Изображение: 

1.2. Некоторые формулы электротехники

1.2. Некоторые формулы электротехники

Закон Ома для участка цепи постоянного тока

U=I*R,

где U— напряжение на участке цепи, В, I— сила тока на этом участке, А, R — сопротивление участка цепи, Ом. Сопротивление проводника

R=p*l/S

где р — удельное сопротивление. Ом • м, l — длина проводника, м, S — площадь поперечного сечения проводника, м^2

Формула зависимости сопротивления проводника от температуры

Rt=Rt0[1+a(t-t0)],

где Rt и Rt0 — сопротивления проводника соответственно при температурах t и t0. С, а — температурный коэффициент сопротивления Ом/°С.

Общее сопротивление цепи:

при последовательном соединении сопротивлений

R=R1+R2+R3+. .+Rn

при параллельном соединении

1-21.jpg

Общая емкость конденсаторов:

при последовательном соединении

1-22.jpg

при параллельном соединении

С = С1 +С2 +С3+...+Сn.

Мощность постоянного тока, Вт,

Р=U*I

Энергия электрической цепи, Дж, W =Pt.

где Р — мощность, Вт, t — время, с.

Количество теплоты, выделяющееся в проводнике, Дж,

A=I^2Rt,

где I — сила тока. А, R — сопротивление проводника, Ом, t — время прохождения тока, с.

Закон Ома при переменном токе

U =IZ.

где Z — полное сопротивление, Ом.

1-23.jpg

1-24.jpg

1-25.jpg

где I — частота, Гц, w число витков в катушке, В — индукция магнитного поля в стали магнитопровода, Т, S — площадь сечения магнитопровода, м^2. Подъемная сила электромагнита, Н,

F=3978*B^2*S*10^2;

где В — магнитная индукция. Т, S — площадь сечения электромагнита, м^2.

Частота вращения магнитного поля электрической машины, об/мин,

n=60f/p

 

где р — число пар полюсов машины.

Мощность однофазного переменного тока:

активная, Вт,

Р = U*Icosф, реактивная, вар,

Q = UI sinф, полная, В-А,

1-26.jpg

1-27.jpg

Внешний вид нанесения цветной маркировки

Изображение: 

Таблица определения номиналов

Изображение: 

Ф.1 Индуктивность катушки без сердечника

Изображение: 

Ф.2 Закон электромагнитной индукции

Изображение: 

Ф.3 Мощность однофазного переменного тока

Изображение: 

Ф.4 Мощность трехфазного переменного тока

Изображение: 

Цветовая индикация резисторов

Изображение: 

1.3. Краткие сведения о надежности электротехнических устройств

1. 3. Краткие сведения о надежности электротехнических устройств

Надежность — свойство технического устройства или изделия выполнять свои функции в пределах допустимых отклонений в течение определенного промежутка времени.

Работоспособность — состояние изделия, при котором оно способно выполнять свои функции в пределах установленных требований.

Отказ — событие, при котором нарушается работоспособность изделия.

Неисправность — состояние изделия, при котором оно не соответствует хотя бы одному требованию технической документации.

Наработка — продолжительность работы изделия в часах

или других единицах времени.

Наработка на отказ, или среднее время безотказной работы — среднее значение наработки ремонтируемого изделия между отказами.

Вероятность безотказной работы — вероятность того, что в данный промежуток времени не возникнет отказа изделия.

Интенсивность отказов — вероятность отказа неремонтируемого изделия в единицу времени после данного момента времени.

Безотказность — свойство изделия сохранять работоспособность в течение некоторой наработки.

Долговечность — свойство изделия сохранять работоспособность до предельного состояния с перерывами на обслуживание и ремонт.

Ресурс — наработка изделия до предельного состояния, оговоренная в технической документации.

Срок службы — календарная продолжительность работы изделия до предельного состояния, оговоренная в технической документации.

Ремонтопригодность — доступность изделия для его обслуживания и ремонта.

Отказы электротехнического изделия могут означать не только электрические или механические повреждения, но и уход его параметров за допустимые пределы. В связи с этим отказы могут быть внезапными и постепенными.

Возникновения внезапных отказов в устройстве являются случайными событиями. Эти отказы могут быть независимыми, когда отказ одного элемента в устройстве происходит независимо от других элементов, и зависимыми, когда отказ одного элемента вызван отказом других. Разделение отказов на внезапные и постепенные является условным, так как внезапные отказы могут быть вызваны развитием постепенных отказов.

Количественной характеристикой для математического определения надежности является интенсивность отказов устройства в единицу времени, которая обычно измеряется числом отказов в час.

Величина, обратная интенсивности отказов, называется средней наработкой до первого отказа и измеряется в часах.

В течение срока службы технического устройства можно выделить три периода, интенсивность отказов в которых меняется по-разному.

В первый период, называемый периодом приработки, происходит выявление конструктивных, технологических, монтажных и других дефектов, поэтому интенсивность отказов может повышаться в начале периода, понижаясь при подходе к периоду нормальной работы.

Период нормальной работы характеризуется внезапными отказами постоянной интенсивности, которая увеличивается к периоду износа.

В период износа интенсивность отказов увеличивается с течением времени по мере износа изделия.

Очевидно, основным должен быть период нормальной работы, а другие периоды являются периодами входа и выхода из этого периода.

Надежность изделия закладывается на стадии проектирования. Если принятые при этом конструкторские решения соответствуют мировому уровню, то это будет способствовать большей надежности при работе изделия. Так же влияют технология производства и грамотность кадров на всех уровнях.

На надежности изделия сказываются условия транспортировки и хранения, монтаж, наладка и обкатка, соблюдение правил эксплуатации оборудования.

1.4. Обеспечение безопасного обслуживания персоналом машин и аппаратов и защиты их от влияния окружающей среды

1.4. Обеспечение безопасного обслуживания персоналом машин и аппаратов и защиты их от влияния окружающей среды

Имеются различные исполнения машин и аппаратов по степени защиты и среди них выбирают такие исполнения, которые были бы безопасны и надежно работали в данных условиях. Степень защиты указывается в технической документации и в паспорте, укрепляемом на машине или аппарате.

Классы электротехнических изделий по способу защиты человека представлены в табл. 1. 6.

Таблица 1. 6 КЛАССЫ ЭЛЕКТРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПО СПОСОБУ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

1-41.jpg

Характеристики степеней защиты оболочек электрооборудования напряжением до 1000 В от поражения персонала и от влияния внешней среды приведены в табл. 1. 7.

Таблица 1.7 ХАРАКТЕРИСТИКИ СТЕПЕНЕЙ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРООБОРУДОВАНИЯ НАПРЯЖЕНИЕМ ДО 1000 В

1-42.jpg

Окончание табл. 1. 7

1-43.jpg

Обозначения степеней защиты оболочек аппаратов показаны в табл. 1. 8.

Степени защиты электрических машин показаны в табл. 1. 9.

Условное обозначение степени защиты содержит следующие данные в указанной последовательности: a) IP — первые буквы английских слов International Protection, означающие защиту по международным нормам; б) первая цифра указывает степень защиты от соприкосновения и попадания посторонних тел; в) вторая цифра указывает степень защиты от проникновения воды.

Способ охлаждения электрической машины обозначается символом IС (первые буквы слов International Cooling, означающих охлаждение по международным нормам), и цифрами.

Таблица 1.8 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ СТЕПЕНЕЙ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРИЧЕСКИХ АППАРАТОВ НАПРЯЖЕНИЕМ,ДО 1000 В

1-44.jpg

Таблица 1.9 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ СТЕПЕНЕЙ ЗАЩИТЫ ЭЛЕКТРИЧЕСКИХ МАШИН НАПРЯЖЕНИЕМ ДО 1000 В

1-45.jpg

Электрические машины со степенями защиты IР54 и IР44 выпускаются со способом охлаждения 1С0141. Первые две цифры (01) определяют, что внешняя поверхность машины обдувается вентилятором, насажденным на вал машины и охлаждающим машину окружающим воздухом через ее оболочку.

Следующие две цифры (41) относятся к внутренней части машины и означают, что воздух внутри машины приводится в движение самим ротором или дополнительным внутренним вентилятором и тепло внутри машины передается окружающей среде через поверхность станины, которая может быть гладкой или с ребрами.

Способ охлаждения IС0041 отличается от предыдущего отсутствием внешнего вентилятора.

При способе охлаждения IС0151 обмен теплотой между воздухом внутри и вне машины происходит с помощью встроенного охладителя.

Способ охлаждения IС01 имеют машины в исполнении IP23.

Электрооборудование обычно предназначается для работы на высоте над уровнем моря до 1000 м при температуре внешней среды не выше +40 С и не ниже —45 С.

Установлены следующие категории мест размещения электрооборудования при эксплуатации:

1 — на открытом воздухе, где они подвергаются воздействию всех природных факторов,

2 — помещения, в которых отсутствует прямое воздействие атмосферных осадков и солнечных лучей (навесы, палатки и т. д.),

3 — закрытые помещения с естественной вентиляцией без искусственно регулируемых климатических условий, где колебания температуры и влажности воздуха, солнечного света, воздействие песка и пыли меньше, чем на открытом воздухе (неотапливаемые помещения).

4 — помещения с искусственно регулируемыми климатическими условиями (производственные помещения закрытые отапливаемые и вентилируемые).

5 — помещения с повышенной влажностью, в которых возможно длительное нахождение воды или конденсированной влаги, например, неотапливаемые и невентилируемые помещения под землей, в том числе шахты и подвалы.

Электрооборудование по условиям окружающей среды может иметь следующие исполнения:

для умеренного климата У1—У5,

для холодного и умеренного климата ХЛ1—ХЛ5,

УХЛ1-УХЛ5,

для тропического климата Т1—Т5.

Таблица 1. 6 КЛАССЫ ЭЛЕКТРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПО СПОСОБУ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Изображение: 

Таблица 1.7 ХАРАКТЕРИСТИКИ СТЕПЕНЕЙ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРООБОРУДОВАНИЯ НАПРЯЖЕНИЕМ ДО 1000 В (окончание)

Изображение: 

Таблица 1.7 ХАРАКТЕРИСТИКИ СТЕПЕНЕЙ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРООБОРУДОВАНИЯ НАПРЯЖЕНИЕМ ДО 1000 В

Изображение: 

Таблица 1.8 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ СТЕПЕНЕЙ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРИЧЕСКИХ АППАРАТОВ НАПРЯЖЕНИЕМ,ДО 1000 В

Изображение: 

Таблица 1.9 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ СТЕПЕНЕЙ ЗАЩИТЫ ЭЛЕКТРИЧЕСКИХ МАШИН НАПРЯЖЕНИЕМ ДО 1000 В

Изображение: 

1.5. Электроустановки во взрывоопасных зонах

1.5. Электроустановки во взрывоопасных зонах

Электрооборудование таких электроустановок имеет степень защиты от взрыва окружающей взрывоопасной смеси газов и паров с воздухом в зависимости от категорий и групп этих смесей, которые показаны в табл. 1. 10 и 1. 11, где БЭМЗ — безопасный экспериментальный максимальный зазор между фланцами оболочки, через который не происходит передачи

взрыва из оболочки в окружающую среду при любой концентрации смеси в воздухе.

Температура самовоспламенения — самая низкая температура горючего вещества, при которой происходит увеличение скорости реакций, заканчивающихся пламенным горением.

Взрывозащищенное электрооборудование — электрооборудование, в котором предусмотрены конструктивные меры по устранению или затруднению возможного воспламенения окружающей взрывоопасной среды.

Уровни взрывозащиты электрооборудования.

Уровень 2 — электрооборудование повышенной надежности против взрыва — Взрывозащищенное электрооборудование, в котором защита от взрыва обеспечивается только в признанном нормальным режиме работы.

Уровень 1 — взрывобезопасное электрооборудование -— Взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятными повреждениях, определенных условиями эксплуатации, кроме повреждений средств взрывозащиты.

Уровень 0 — особо взрыаобезопасное электрооборудование — электрооборудование, в котором по отношению к взрывобезопасному электрооборудованию приняты дополнительные средства взрывозащиты, предусмотренные стандартами.

Таблица 1.10 КАТЕГОРИИ ВЗРЫВООПАСНЫХ СМЕСЕЙ ГАЗОВ И ПАРОВ С ВОЗДУХОМ

1-51.jpg

Группы взрывозащищенного электрооборудования по области его применения показаны в табл. 1.12, подгруппы электрооборудования группы II— в табл. 1. 13, температурные классы электрооборудования группы II — в табл. 1. 14.

Таблица 1.11 ГРУППЫ ВЗРЫВООПАСНЫХ СМЕСЕЙ ГАЗОВ И ПАРОВ С ВОЗДУХОМ ПО ТЕМПЕРАТУРЕ САМОВОСПЛАМЕНЕНИЯ

1-52.jpg

Таблица 1.12 ГРУППЫ ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРООБОРУДОВАНИЯ ПО ОБЛАСТИ ЕГО ПРИМЕНЕНИЯ

1-53.jpg

Виды защиты:

взрывонепроницаемые оболочки d заполнение или продувка оболочки защитным газом

под избыточным давлением р

искробезопасная цепь i

кварцевое заполнение оболочки с токоведущими частями q

масляное заполнение оболочки с токоведущими частями о

специальный вид взрывозащиты s

защита вида «е» е

В маркировку взрывозащищенного электрооборудования входят:

знак уровня защиты электрооборудования 2,1, 0

знак, указывающий на соответствие электрооборудования стандартам на взрывозащищенное электрооборудование Ех

знак вида защиты d, р, i, q, о, s, е

знак группы или подгруппы электрооборудования II, IIA, IIВ, НС

Таблица 1 .13 ПОДГРУППЫ ЭЛЕКТРООБОРУДОВАНИЯ ГРУППЫ II С ВИДАМИ ВЗРЫВОЗАЩИТЫ «ВЗРЫВОНЕПРОНИЦАЕМАЯ ОБОЛОЧКА» ИЛИ (И) «ИСКРОБЕЗОПАСНАЯ ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ»

1-54.jpg

Таблица 1.14 ТЕМПЕРАТУРНЫЕ КЛАССЫ ЭЛЕКТРООБОРУДОВАНИЯ ГРУППЫ II

1-55.jpg

Примеры маркировки взрывозащищенного электрооборудования приведены в табл. 1. 15.

Исполнение электрооборудования в зависимости от класса взрывоопасной зоны показано в табл. 1. 16, допустимые способы прокладки проводов и кабелей в зависимости от класса зоны — в табл. 1. 17.

Таблица 1. 5 ПРИМЕРЫ МАРКИРОВКИ ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРООБОРУДОВАНИЯ

1-56.jpg

Таблица 1.16 ИСПОЛНЕНИЕ ЭЛЕКТРООБОРУДОВАНИЯ В ЗАВИСИМОСТИ ОТ КЛАССА ВЗРЫВООПАСНОЙ ЗОНЫ, ГДЕ ОНО ПРИМЕНЯЕТСЯ

1-57.jpg

Окончание табл. 1. 16

1-58.jpg

* Символ «х» заменяет цифру, которая выбирается в зависимости от условий среды.:

Таблица 1.17 ДОПУСТИМЫЕ СПОСОБЫ ПРОКЛАДКИ КАБЕЛЕЙ И ПРОВОДОВ ВО ВЗРЫВООПАСНЫХ ЗОНАХ

1-59.jpg

Окончание табл. 1.17

1-510.jpg

Таблица 1.10 КАТЕГОРИИ ВЗРЫВООПАСНЫХ СМЕСЕЙ ГАЗОВ И ПАРОВ С ВОЗДУХОМ

Изображение: 

Таблица 1.11 ГРУППЫ ВЗРЫВООПАСНЫХ СМЕСЕЙ ГАЗОВ И ПАРОВ С ВОЗДУХОМ ПО ТЕМПЕРАТУРЕ САМОВОСПЛАМЕНЕНИЯ

Изображение: 

Таблица 1.12 ГРУППЫ ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРООБОРУДОВАНИЯ ПО ОБЛАСТИ ЕГО ПРИМЕНЕНИЯ

Изображение: 

Таблица 1.13 ПОДГРУППЫ ЭЛЕКТРООБОРУДОВАНИЯ ГРУППЫ II С ВИДАМИ ВЗРЫВОЗАЩИТЫ «ВЗРЫВОНЕПРОНИЦАЕМАЯ ОБОЛОЧКА» ИЛИ (И) «ИСКРОБЕЗОПАСН

Изображение: 

Таблица 1.14 ТЕМПЕРАТУРНЫЕ КЛАССЫ ЭЛЕКТРООБОРУДОВАНИЯ ГРУППЫ II

Изображение: 

Таблица 1.15 ПРИМЕРЫ МАРКИРОВКИ ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРООБОРУДОВАНИЯ

Изображение: 

Таблица 1.16 ИСПОЛНЕНИЕ ЭЛЕКТРООБОРУДОВАНИЯ В ЗАВИСИМОСТИ ОТ КЛАССА ВЗРЫВООПАСНОЙ ЗОНЫ, ГДЕ ОНО ПРИМЕНЯЕТСЯ (окончание)

Изображение: 

Таблица 1.16 ИСПОЛНЕНИЕ ЭЛЕКТРООБОРУДОВАНИЯ В ЗАВИСИМОСТИ ОТ КЛАССА ВЗРЫВООПАСНОЙ ЗОНЫ, ГДЕ ОНО ПРИМЕНЯЕТСЯ

Изображение: 

Таблица 1.17 ДОПУСТИМЫЕ СПОСОБЫ ПРОКЛАДКИ КАБЕЛЕЙ И ПРОВОДОВ ВО ВЗРЫВООПАСНЫХ ЗОНАХ (окончание)

Изображение: 

Таблица 1.17 ДОПУСТИМЫЕ СПОСОБЫ ПРОКЛАДКИ КАБЕЛЕЙ И ПРОВОДОВ ВО ВЗРЫВООПАСНЫХ ЗОНАХ

Изображение: 

1.6. Электроустановки в пожароопасных зонах

1.6. Электроустановки в пожароопасных зонах

Степени защиты электрооборудования, применяемого в пожароопасных зонах, приведены в табл. 1. 18.

Таблица 1.18 ДОПУСТИМЫЕ СТЕПЕНИ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРООБОРУДОВАНИЯ В ЗАВИСИМОСТИ ОТ КЛАССА ПОЖАРООПАСНОЙ ЗОНЫ

1-61.jpg

Окончание табл. 1. 18

1-62.jpg

* Символ «х» означает, что степень защиты принимается в соответствии с условиями внешней среды в месте установки светильника.

Электропроводка внутри светильника с лампами накаливания и ДРЛ до места присоединения внешних проводов должна выполняться термостойкими проводами.

Степень защиты переносного светильника — IP54, стеклянный колпак должен быть защищен металлической сеткой.

Таблица 1.18 ДОПУСТИМЫЕ СТЕПЕНИ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРООБОРУДОВАНИЯ В ЗАВИСИМОСТИ ОТ КЛАССА ПОЖАРООПАСНОЙ ЗОНЫ (окончание)

Изображение: 

Таблица 1.18 ДОПУСТИМЫЕ СТЕПЕНИ ЗАЩИТЫ ОБОЛОЧЕК ЭЛЕКТРООБОРУДОВАНИЯ В ЗАВИСИМОСТИ ОТ КЛАССА ПОЖАРООПАСНОЙ ЗОНЫ

Изображение: 

2. Обеспечение надежности элементов,устройств,машин

2.1. Резисторы

2.1. Резисторы

Резисторы классифицируются по характеру изменения сопротивления (постоянные, переменные регулируемые, переменные подстроечные), по назначению (общего назначения, высокочастотные, высоковольтные и др.), по материалу резистивного элемента (проволочные, непроволочные).

Непроволочные резисторы в зависимости от материала токопроводящего слоя подразделяются на металлодиэлектрические, металлоокисные, углеродистые, лакопленочные, на проводящей пластмассе и др.

Новая система обозначений резисторов представлена в табл. 2. 1.

Таблица 2. 1 СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ РЕЗИСТОРОВ

2-11.jpg

В старой системе обозначений резисторов первый элемент означает: С — резистор постоянный, СП — резистор переменный, СТ — терморезистор, СН — варистор; второй элемент:

1 — углеродистые и бороуглеродистые, 2 — металлодиэлектрические и металлоокисные, 3 — композиционные пленочные, 4 — композиционные объемные, 5 — проволочные.

Применяются резисторы и с более старыми обозначениями, например, непроволочные постоянные ВС, УЛМ, МЛТ, проволочные ПЭ.

Номинальными параметрами резистора являются номинальная мощность рассеяния Рном, номинальное сопротивление R, допускаемое отклонение сопротивления, или допуск, температурный коэффициент сопротивления (ТКЕ), который показывает относительное обратимое изменение сопротивления при изменении температуры резистора на 1 С. Чем меньше ТКС, тем большей температурной стабильностью обладает резистор. Номинальную мощность резистора можно узнать по маркировке на корпусе или в зависимости от размеров по табл. 2. 2.

Таблица 2. 2 ОПРЕДЕЛЕНИЕ МОЩНОСТИ РЕЗИСТОРОВ ПО ИХ РАЗМЕРАМ

2-12.jpg

На корпус резистора наносится маркировка, если позволяют его размеры, которая содержит сокращенное обозначение, номинальную мощность, номинальное сопротивление, допуск.

Номинальное сопротивление обозначается цифрами с указанием единицы измерения:

Ом (R или Е по-старому или без буквы) — омы; кОм (К) — килоомы, МОм (М) — мегаомы, ГОм (G) — гигаомы, ТОм (Т) — тераомы. Например,

220 Ом 680 кОм 3, 3 МОм 4, 7 ГОм 1 ТОм или 220 680к 3М3 4G7 1Т,

где буква между цифрами определяет положение запятой.

Коды допускаемых отклонений сопротивления показаны в табл. 2. 3.

Таблица 2. 3 КОДЫ ДОПУСКАЕМЫХ ОТКЛОНЕНИЙ СОПРОТИВЛЕНИЙ РЕЗИСТОРОВ

2-13.jpg

Примеры маркировки резисторов показаны на рис. 2. 1.

Для иностранных резисторов цвет пояска означает цифру:

черный — 0, коричневый — 1, красный — 2, оранжевый — 3, желтый — 4, зеленый — 5, синий — 6, фиолетовый — 7, серый — 8, белый — 9.

Число, соответствующее величине сопротивления резистора в Омах, составляется из цифр, соответствующих цвету поясков, начиная с первого (1), причем цвет третьего пояска (3) определяет число нулей, которые нужно приписать к двум первым цифрам, чтобы получить величину сопротивления. Четвертый поясок (4) обозначает класс точности резистора: золотой поясок — ±5%, серебряный — ±10%, отсутствие пояска - ±20%.

На схемах постоянные резисторы имеют внутри символа обозначения знак, указывающий номинальную мощность рассеяния резистора (рис. 2. 1, б). Рядом с условным обозначением резистора указывается величина его номинального сопротивления и знак R с цифрой или числом, указывающим порядковый номер резистора на схеме.

2-14.jpg

Рис. 2. 1. Маркировка резисторов и обозначение их мощности на схемах:

а) пример маркировки отечественного резистора. Расшифровка: тип МЛТ, мощность рассеяния 2 Вт, 2, 2 кОм, отклонение величины сопротивления 5%;

6) пример маркировки иностранного резистора: 1-4 — номера поясков. В данном случае цвета поясков: 1 — коричневый, 2 — черный, 3 — черный, 4 — серебряный. Расшифровка: 100 Ом, класс точности ±10%;

в) обозначение мощности рассеяния резисторов на схемах.

Величины номинальных сопротивлений от 1 до 99 Ом указываются числом без единицы измерения, а если число содержит дробь, то с указанием единицы измерения, например, 56, 5, 6 О. м. Величины сопротивлений от 1 до 999 кОм обозначаются числом с буквой к — 5, 6к, 56к.

Величины сопротивлений в мегаомах на схемах указывают числом без единицы измерения, причем в целом числе при этом присутствуют запятая и нуль — 56, 0.

Данные некоторых резисторов приведены в табл. 2Д

Полупроводниковые нелинейные резисторы, в отличие от рассмотренных линейных резисторов, обладают способностью изменять свое сопротивление под действием управляющих факторов: температуры, напряжения, магнитного поля и др.

Терморезисторы, или термисторы, имеют резко выраженную зависимость электрического сопротивления от температуры. Терморезисторы могут быть как с отрицательным, так и с положительным коэффициентом сопротивления — позисторы.

Таблица 2. 4 ДАННЫЕ НЕКОТОРЫХ РЕЗИСТОРОВ

2-15.jpg

Наряду с параметрами, сходными с параметрами линейных резисторов, терморезисторы имеют свои параметры.

Коэффициент температурной чувствительности В определяет характер температурной зависимости данного вида терморезистора.

Постоянная времени характеризует тепловую инерционность. Она равна времени, в течение которого температура

терморезистора изменяется на 63% при перенесении его из воздушной среды с температурой 0 °С в воздушную среду с температурой 100 °С.

Варисторы обладают резко выраженной зависимостью электрического сопротивления от приложенного к ним напряжения.

Данные некоторых нелинейных резисторов показаны в табл. 2. 5.

Таблица 2. 5 НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ

2-16.jpg

Отказы резисторов происходят в основном из-за обрывов в токопроводящей цепи, из-за нарушений контактов и от перегрева, приводящего к перегоранию проводящего слоя. Вследствие перегорания проводящего материала происходят внезапные отказы, а вследствие дрейфа сопротивления резистора — постепенные отказы.

Часть отказов резисторов зависит от состояния других деталей в аппаратуре и их отказов, значительное число отказов происходит из-за их неправильного применения.

При выборе резистора нужно учитывать как его параметры, так и условия среды, где он будет работать — температуру, влажность, вибрации и т. д. Следует также учитывать, что у резисторов существует максимальная частота приложенного напряжения, при которой их сопротивление начинает меняться, и допускаемое напряжение.

При определении состояния работающих резисторов или новых для замены вышедших из строя необходима их проверка.

Постоянные резисторы проверяют внешним осмотром на отсутствие механических повреждений и соответствие параметров, указанных на корпусе, принципиальной электрической схеме. Сопротивление резисторов измеряется омметром. При осмотре резистора проверяют целость корпуса, его покрытия, прочность выводов. Целость выводов проверяют измерением сопротивления резистора при их покачивании.

Переменные резисторы после внешнего осмотра проверяют на плавность изменения сопротивления путем его измерения при вращении оси, на соответствие закона изменения сопротивления резистора его типу, сопротивление резистора при крайних положениях оси. При измерении сопротивления резистора при вращении его оси часто наблюдаются скачки сопротивления, что говорит о неисправности резистора и о необходимости его замены.

Для замены необходим соответствующий подбор резистора. Параметры резистора должны соответствовать условиям его применения по нагрузке и внешней среде, фактическая мощность, рассеиваемая на резисторе, и его температура должны быть ниже предельных значений по техническим условиям на резистор.

По величине отклонения сопротивления резистора от номинального резисторы выбирают с учетом особенностей цепей, где они работают. Если большое отклонение сопротивления мало влияет на работу устройства, то можно применять резисторы с отклонением 20%. Такими резисторами могут быть резисторы в цепях управляющих сеток ламп, в цепи коллекторов транзисторов.

Если от величины сопротивления резистора зависит режим работы цепи, то следует применять резисторы с допуском 5 или 10%. К ним относятся резисторы в цепях эмиттера и базы

транзистора.

В цепях, где требуется постоянство сопротивления, применяются резисторы с допуском не более 2%.

Работа резистора в схеме проявляется его нагревом. Относительно сильный нагрев (до 300 С) для резистора не опасен, выделяющееся тепло может отрицательно повлиять на соседние детали. В таких случаях для уменьшения нагрева резистора его нужно заменить на другой, большей мощности, но с теми же другими параметрами.

Рис. 2.1. Маркировка резисторов и обозначение их мощности на схемах

Изображение: 

Таблица 2.1 СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ РЕЗИСТОРОВ

Изображение: 

Таблица 2.2 ОПРЕДЕЛЕНИЕ МОЩНОСТИ РЕЗИСТОРОВ ПО ИХ РАЗМЕРАМ

Изображение: 

Таблица 2.3 КОДЫ ДОПУСКАЕМЫХ ОТКЛОНЕНИЙ СОПРОТИВЛЕНИЙ РЕЗИСТОРОВ

Изображение: 

Таблица 2.4 ДАННЫЕ НЕКОТОРЫХ РЕЗИСТОРОВ

Изображение: 

Таблица 2.5 НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ

Изображение: 

2.2. Конденсаторы

2.2. Конденсаторы

В основу классификации конденсаторов положено деление их на группы по виду применяемого диэлектрика и по конструктивным особенностям.

Сокращенное обозначение конденсатора состоит из букв и цифр. Первый элемент обозначения — буква или сочетание букв — обозначает подкласс конденсатора: К — постоянной емкости, КТ — подстроечные, КП — переменной емкости. Второй элемент означает группу конденсаторов в зависимости от вида диэлектрика (табл. 2. 6). Третий элемент пишется через дефис и соответствует порядковому номеру разработки. В состав второго и третьего элементов могут входить буквы.

Таблица 2. 6 УСЛОВНОЕ ОБОЗНАЧЕНИЕ НЕКОТОРЫХ КОНДЕНСАТОРОВ В ЗАВИСИМОСТИ ОТ МАТЕРИАЛА ДИЭЛЕКТРИКА

2-21.jpg

Для старых типов конденсаторов в основу условных обозначений брались конструктивные, технологические и другие признаки: КД — конденсаторы дисковые, ФТ — фторопластовые теплостойкие, КТП — конденсаторы трубчатые проходные.

Маркировка конденсатора содержит, если позволяют размеры корпуса, его тип, номинальное напряжение, емкость, допуск, группу ТКЕ, а если размеры не позволяют, то применяется цветовая маркировка (табл. 2. 7).

Таблица 2.7 ЦВЕТОВЫЕ КОДЫ ДЛЯ МАРКИРОВКИ КОНДЕНСАТОРОВ (В ВИДЕ ТОЧЕК ИЛИ ПОЛОС)

2-22.jpg

Полное обозначение номинальных емкостей состоит из чисел величины емкости и единицы измерения (пф — пикофарада, мкФ — микрофарада, Ф — Фарада).

Кодированное обозначение номинальных емкостей содержит две или три цифры и букву. Буква из русского или латинского алфавита обозначает название доли фарады или целой фарады: П (р) — пикофарада = 10^-12 Ф, Н (п) — нанофарада = 10^-9 Ф, М (ц) — микрофарада = 10^-6 Ф, Ф (F) — фарада. Например, емкость 2,2 пф обозначается 2П2 (2р2), 1500 нФ — 1Н5 (1n5); 1 мкФ - М1 (ц1), 10 мкФ - 10М (10ц), 1 Ф - 1Ф0 (1F0).

Допускаемые отклонения емкости обозначаются цифрами или кодом (табл. 2.8).

Т а б л и ц а 2.8 ДОПУСКАЕМЫЕ ОТКЛОНЕНИЯ ЕМКОСТИ КОНДЕНСАТОРА ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ

2-23.jpg

Параметрами конденсаторов являются номинальная емкость, номинальное напряжение. Тангенс угла потерь характеризует активные потери энергии в конденсаторе. Величина, обратная тангенсу угла потерь, называется добротностью конденсатора.

Сопротивление изоляции и ток утечки характеризуют качество диэлектрика. Наиболее высокое сопротивление изоляции имеют фторопластовые, полистирольные и полипропиленовые конденсаторы, несколько ниже оно у керамических и поликарбонатных.

Для оксидно-электролитических конденсаторов задается ток утечки, значение которого пропорционально емкости и напряжению. Наименьший ток утечки имеют танталовые конденсаторы (от единиц до десятков микроампер), а у алюминиевых конденсаторов он на один-два порядка больше.

Температурный коэффициент емкости (ТКЕ) определяет относительное изменение емкости при изменении температуры конденсатора на 1 С.

Данные некоторых конденсаторов приведены в табл. 2.9.

Большинство отказов конденсаторов происходит из-за пробоя и перекрытия, бывают отказы из-за механических повреждений, уменьшения емкости и сопротивления изоляции.

Выход из строя диэлектрика конденсатора может происходить за счет пробоя в объеме диэлектрика и разряда по его поверхности. Пробой происходит, когда напряженность электрического поля превышает определенное значение для данного диэлектрика — пробивную напряженность, характеризующую электрическую прочность диэлектрика. Для твердых диэлектриков характерны две формы пробоя - электрический и тепловой.

Таблица 2. 9 ДАННЫЕ НЕКОТОРЫХ КОНДЕНСАТОРОВ

2-24.jpg

* Для ряда промежуточных емкостей.

Окончание табл. 2. 9

2-25.jpg

В основе электрического пробоя находится ударная ионизация электронами материала диэлектрика, в результате чего

увеличивается количество носителей заряда. Происходит пробои, который может сжечь диэлектрик или прожечь в его объеме канал.

Электрический разряд по поверхности диэлектрика может быть в воздухе над ним или по самой поверхности диэлектрика с образованием дорожек.

Тепловой пробой происходит в результате нарушения теплового равновесия в диэлектрике, когда нагрев диэлектрика при электрической нагрузке превышает отвод тепла. Происходит уменьшение электрического сопротивления, и электрической прочности диэлектрика, что приводит к электрическому пробою. Повреждение имеет вид проводящего канала. Обычно пробой происходит в результате ряда факторов: электрической нагрузки, механической нагрузки, влажности, высокой внешней температуры. Пробой выражается в виде проводящего канала от одной до другой обкладки.

В процессе хранения и работы конденсатора могут происходить обратимые и необратимые изменения его параметров.

Вышедшие из строя конденсаторы иногда можно определить по внешнему виду, например, у электролитических конденсаторов может быть вздутие корпуса, у малогабаритных — следы сгорания. Проверяется также прочность крепления выводов. Тем же проверкам подвергаются и новые конденсаторы, предназначенные для замены. При этом проверяется соответствие их параметров, указанных на корпусе, электрической схеме. У конденсаторов переменной емкости проверяют плавность вращения ротора, отсутствие заеданий и люфтов.

Окончательные сведения о состоянии конденсатора может дать его электрическая проверка с помощью приборов, которая заключается в следующем:

проверка на короткое замыкание и пробой;

измерение сопротивления изоляции, у электролитических конденсаторов — тока утечки;

измерение емкости;

проверка целости выводов.

Проверка неэлектролитических конденсаторов заключается в следующем.

Конденсаторы на короткое замыкание проверяют омметром на максимальных пределах измерения, измеряя сопротивление между выводами и между выводами и корпусом, если корпус металлический. Если емкость конденсатора больше 1 мкф, и он исправен, то после присоединения омметра конденсатор заряжается и стрелка прибора отклоняется в сторону 0, причем отклонение зависит от емкости конденсатора, типа прибора и напряжения источника питания, потом стрелка медленно возвращается к положению около оо.

При наличии утечки омметр показывает малое, сопротивление — сотни и тысячи Ом, величина которого Зависит от емкости и типа конденсатора. При проверке исправных конденсаторов емкостью меньше 1 мкф стрелка прибора не отклоняется, потому что малы ток заряда конденсатора и время заряда. При пробое конденсатора его сопротивление около 0.

При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении.

В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.

Конденсаторы переменной емкости проверяют на пробой при плавном повороте ротора.

Проверить конденсатор на пробой-можно на специальной испытательной установке, прикладывая между выводами и каждым выводом и корпусом повышенное напряжение, превышающее номинальное в 1.5...3 раза в течение 10...60 с, в зависимости от типа конденсатора.

Сопротивление изоляции конденсатора между выводами и каждым выводом и корпусом проверяют ламповым мегаомметром. При этом сопротивление изоляции бумажных конденсаторов сотни и тысячи мегом, остальных — десятки и сотни тысяч мегом.

Проверка электролитических конденсаторов заключается в наблюдении заряда конденсатора от источника питания тестера. При этом от конденсатора отпаивают детали, если он в схеме, и разряжают его, подготавливают прибор для измерения больших сопротивлений, гнездо общее прибора должно быть соединено с положительным выводом конденсатора, а гнездо сопротивлений — с корпусом конденсатора.

Если конденсатор исправен, то стрелка прибора быстро движется к нулю, а затем устанавливается около знака оо. Если конденсатор потерял емкость, то стрелка прибора почти не отклоняется, а если имеет значительную утечку, то стрелка отклоняется почти до нуля и устанавливается далеко от знака со.

Клиновые конденсаторы не имеют выводов и впаиваются в вырезы печатных плат. При этом в корпусе конденсатора могут образоваться трещины, нарушающие работу конденсатора или создающие помехи. Поэтому при проверке таких конденсаторов нужно обращать внимание на их целость

При выборе конденсатора для замены нужно ориентироваться на заменяемый конденсатор, если на его корпусе есть данные о его параметрах.

Если данных нет, то нужно пользоваться схемой этого или сходного устройства, а если ее нет, то приходится ставить конденсатор, похожий по внешнему виду. При этом нужно учитывать условия эксплуатации и руководствоваться следующим.

Номинальное напряжение конденсатора определяют с учетом постоянной и переменной составляющих напряжения в месте установки конденсатора. Сумма постоянной и амплитуды переменной составляющих не должна превышать номинального напряжения, а для электролитических конденсаторов амплитуда переменной составляющей не должна превышать величины постоянной составляющей. Рабочее напряжение электролитических конденсаторов должно быть ниже номинального на 10... 20%, так как пробивное напряжение для них близко к номинальному.

В цепях с высокой стабильностью параметров, например, в колебательных контурах, применяют керамические и воздушные конденсаторы с высоким классом точности.

В цепях, к которым не предъявляются высокие требования по стабильности параметров, например, в фильтрах развязки, применяют бумажные конденсаторы.

В некоторых цепях существуют высокие требования к сопротивлению изоляции, например, к конденсаторам связи между соседними каскадами. В этом случае применяют слюдяные конденсаторы.

В цепях высокой частоты применяют конденсаторы с высокой предельной частотой.

Бумажные конденсаторы не применяют в цепях с частотой, превышающей единицы мегагерц.

В цепях высокой частоты применяют керамические и вакуумные конденсаторы.

Электролитические и бумажные конденсаторы применяют в цепях сглаживающих фильтров выпрямителей, фильтров развязки и блокировки. При этом требуются конденсаторы большой емкости.

В этих цепях применяются также сегнетоэлектрические конденсаторы.

В цепях при напряжении менее 10 В не рекомендуется применять конденсаторы с вкладными выводами, так как в них может нарушиться контакт с фольгой.

Герметизированные конденсаторы в металлическом корпусе имеют большую емкость на корпус. Если при монтаже ни один вывод конденсатора не соединяется с шасси устройства, то конденсатор необходимо изолировать от шасси на опорах толщиной 0.5...1 см.

Для малогабаритной аппаратуры необходимо выбирать малогабаритные конденсаторы..

Конденсаторы могут применяться в цепях постоянного и переменного напряжения. Для цепей постоянного тока применяются в основном электролитические конденсаторы, у которых с одного конца корпуса выходит один или несколько изолированных выводов. При монтаже конденсатора эти выводы присоединяются к положительному полюсу цепи с учетом соответствия напряжений участков цепи и выводов конденсатора, а корпус конденсатора присоединяется к металлическому корпусу устройства. Если у электролитического конденсатора другая конструкция, то полярность его выводов обозначается знаками <+» и «—». Следует учесть, что могут быть и неполярные электролитические конденсаторы.

Если полярный конденсатор включить в сеть переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, и он может выйти из строя. В крайнем случае, при отсутствии нужного конденсатора на переменное напряжение вместо него можно применить полярный конденсатор при условии, что его напряжение много больше напряжения сети. Например, полярный конденсатор с напряжением 250 В может работать в сети переменного напряжения 50 В при частоте 50 Гц. Внешними признаками выхода из строя бумажных и электролитических конденсаторов являются вздутие корпуса, отрыв торцевых изолирующих частей у выводов, отрыв выводов.

Керамические конденсаторы могут обугливаться или разрушаться. Признаки внутренних неисправностей могут быть выявлены только при измерениях, о чем говорилось выше.

При любой неисправности конденсатор должен быть заменен.

Таблица 2.6 УСЛОВНОЕ ОБОЗНАЧЕНИЕ НЕКОТОРЫХ КОНДЕНСАТОРОВ В ЗАВИСИМОСТИ ОТ МАТЕРИАЛА ДИЭЛЕКТРИКА

Таблица 2.7 ЦВЕТОВЫЕ КОДЫ ДЛЯ МАРКИРОВКИ КОНДЕНСАТОРОВ (В ВИДЕ ТОЧЕК ИЛИ ПОЛОС)

Изображение: 

Таблица 2.8 ДОПУСКАЕМЫЕ ОТКЛОНЕНИЯ ЕМКОСТИ КОНДЕНСАТОРА ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ

Изображение: 

Таблица 2.9 ДАННЫЕ НЕКОТОРЫХ КОНДЕНСАТОРОВ (окончание)

Изображение: 

Таблица 2.9 ДАННЫЕ НЕКОТОРЫХ КОНДЕНСАТОРОВ

Изображение: 

2.3. Катушки электрических аппаратов

2.3. Катушки электрических аппаратов

Катушкой называется обмотка изолированного провода, намотанная на каркас или без каркаса, имеющая выводы для присоединения. Каркас изготовляется из картона или пластмассы. Катушки служат для создания магнитного потока, который создает движущие силы для работы аппаратов или индуктивное сопротивление, когда катушка является дросселем.

Катушки можно разделить на два вида: токовые, содержащие небольшое количество витков провода площадью сечения, соответствующей силе проходящего тока, и катушки напряжения, содержащие большое количество витков провода небольшого сечения.

Катушки применяются в электромагнитах пускателей и реле, расцепителей автоматических выключателей, электрических тормозов, в электроизмерительных приборах, в пуско-регулирующих аппаратах люминесцентных ламп в качестве дросселей, в блоках питания аппаратуры автоматики и радиоэлектроники также в виде дросселей.

Изоляция катушки подвергается перенапряжениям — скачкам напряжения при разрыве цепи ее обмотки, зависящим от скорости размыкания цепи, числа витков ее обмотки, магнитной системы аппарата. Эти перенапряжения могут передаваться на другие реле, вызывая их ложное срабатывание.

Перенапряжения также могут передаваться из внешней цепи при включении катушек других аппаратов.

Электрическая прочность изоляции катушки проверяется согласно гл. 5.

Катушки одинаковых размеров могут изготовляться на разное напряжение — переменное 36, 110, 220, 380, 660 В и постоянное 6, 12, 24, 36, 48, 60, 110, 220, 440 В. Поэтому катушки новых аппаратов нужно проверять на соответствие напряжения, на которое они изготовлены, напряжению сети, что можно сделать по этикетке на общей изоляции обмотки катушки. То же делается и при замене вышедшей из строя катушки, при этом если на поверхности катушки нет этикетки, то можно измерить ее сопротивление и сравнить с такой же катушкой другого аппарата. При наладке нового аппарата или замене катушки перед ее укреплением на месте нужно проверить, не касаются ли подвижные детали электромагнита изоляции катушки, и если касаются, то нужно ее поставить так, чтобы не было касания, или отрегулировать ход подвижных деталей, и только после этого укреплять катушку.

Нужно проследить, чтобы не было воздушного зазора при касании якоря и сердечника электромагнита, так как при наличии воздушного зазора уменьшается индуктивное сопротивление обмотки, увеличивается ток, и катушка может перегреться и выйти из строя.

При присоединении катушки постоянного тока нужно соблюдать полярность, когда аппарат, например, поляризационное реле, реагирует на направление тока.

Перегрев катушки ведет к увеличению активного сопротивпения провода, уменьшению тока и силы, притягивающей сердечник электромагнита, что может вызвать ложное срабатывание реле, увеличение воздушного зазора между якорем

сердечником и еще больший перегрев катушки и сгорание изоляции ее обмотки. Поэтому нужно следить, чтобы катушки не нагревались от посторонних источников тепла, например, от резисторов, установленных рядом и особенно ниже катушки. Высокая температура катушки может быть обусловлена высокой температурой в помещении, где установлена аппаратура, высокой температурой в шкафу управления из-за выделения тепла аппаратами, перегревом аппарата, на котором установлена катушка. Перегрев катушки аппарата может быть также при его частом включении—отключении.

Высокая температура катушки также приводит к уменьшению сопротивления изоляции провода обмотки. При высокой температуре возможны обрывы провода при разном температурном расширении провода и каркаса катушки. Высокая температура ведет к ускорению процессов старения изоляции катушки.

Влага может проникать в катушку через общую изоляцию, изоляцию между слоями к проводу и способствовать уменьшению сопротивления изоляции провода. Это может вызвать замыкание между слоями намотки или между витками в слое. В результате замыкания может быть обрыв провода или шунтирование части витков, что будет способствовать перегреву катушки.

При низкой температуре влага может замерзать в катушке и способствовать выходу ее из строя.

Низкая температура также способствует уменьшению надежности катушки, так как при этом могут быть местные напряжения в проводах и изоляции в результате уменьшения объемов материалов при охлаждении.

На катушки влияют механические воздействия в виде вибрации и сотрясений, вызывая разрушающие механические напряжения в деталях катушки.

В результате воздействий на катушку, рассмотренных выше, в катушке могут быть нарушения цепи для тока из-за обрыва провода внутри катушки, обрывов выводов, окисления выводных зажимов, сгорание изоляции части витков или полное сгорание изоляции обмотки. В последнем случае говорят, что катушка сгорела.

Заменять катушку нужно при обрыве провода внутри катушки или замыкании витков с различными последствиями.

При проверке катушки после отказа полное сгорание ее изоляции видно сразу, так как обычно сгорает наружная изоляция катушки. Если наружная изоляция не сгорела, но катушка не работает, то, отогнув наружную изоляцию, можно увидеть сгоревшую изоляцию провода Проверку провода катушки на обрыв можно производить с помощью индикатора напряжения, омметра или мегаомметра.

При проверке катушки с помощью индикатора напряжения при исправной обмотке и наличии напряжения на одном выводе катушки оно должно быть и на другом выводе. Этот последний вывод должен быть отсоединен от сети для устранения ошибок при измерении.

Омметр, присоединенный к выводам катушки, при исправной катушке покажет ее сопротивление согласно паспорта, а при наличии замыкания витков покажет меньшее сопротивление, но если замыкание витков происходит только под действием напряжения, то омметр может и не показать изменение сопротивления.

Мегаомметр при исправной катушке покажет сопротивление ее обмотки при измерении в килоомах немногим более 0, но меньше 1 кОм, и при измерении в мегаомах — 0, так как сопротивление катушки измеряется в омах.

2.4. Трансформаторы, применяемые в устройствах автоматики и электроники

2.4. Трансформаторы, применяемые в устройствах автоматики и электроники

Так как трансформаторы устройств автоматики и электроники отличаются от катушек только тем, что они изготовляются с сердечником, все сказанное в отношении катушек относится и к ним. Отличие только в том, что в трансформаторах две или более обмоток, которые выходят из строя не все сразу.

Нагрузкой трансформатора является ток во вторичной обмотке или обмотках, который может увеличиваться при перегрузке или при коротком замыкании в цепи данной обмотки.

Как показала практика, у обмоток трансформаторов, по которым протекает большой ток, могут греться места пайки выводов. Причина может быть в том, что сечение проводов обмотки или отходящих проводов от этой обмотки во внешнюю цепь меньше, чем этого требует ток нагрузки в данной цепи. Другой причиной может быть некачественная пайка выводов. Попытки перепайки могут быть не всегда успешны, так как для обмотки могут быть применены провода не из меди, а из сплавов, не поддающихся пайке в эксплуатационных условиях. В таком случае пайку можно заменить болтовым или винтовым соединением.

Если трансформатор требует замены, то новый трансформатор перед установкой должен проверяться внешним осмотром или с помощью приборов. Омметром можно проверить целость обмоток трансформатора, отсутствие замыканий между обмотками и каждой обмотки с корпусом.

Сопротивление изоляции между обмотками и между обмоткой и корпусом проверяется мегаомметром.

Бывает, что не обозначены выводы разных обмоток трансформатора. Тогда принадлежность выводов обмоток можно проверить с помощью омметра, если известна схема трансформатора, где указаны сопротивления обмоток. Присоединяя омметр поочередно к разным выводам и измеряя сопротивления, по их величине можно определить принадлежность выводов обмоток.

Наличие или отсутствие напряжения на обмотках и его величину можно определить с помощью вольтметра.

Когда напряжения обмоток трансформаторов электронных устройств не известны, их можно определить следующим образом. Обмотка накала ламп, как правило, имеет толстый провод. В этом случае нужно вынуть одну из ламп устройства и вставить концы накальной обмотки проверяемого трансформатора в накальные гнезда панели вынутой лампы. После этого, при наличии напряжения в цепи накала, измерив напряжения между выводами обмоток трансформатора, можно по величине напряжений определить принадлежность обмоток.

Можно применить этот метод и при наличии другого источника напряжения, если в трансформаторе известна обмотка, напряжение которой соответствует напряжению этого источника. Присоединив концы этой обмотки к источнику напряжения и замерив напряжения на других обмотках трансформатора, можно сделать вывод о назначении этих обмоток.

При выходе из строя трансформатора легче всего его заменить на такой же резервный. Если нет точно такого трансформатора, можно применить другой, если в нем есть обмотки с нужными величинами напряжений и не меньшей мощности. В случае, если другой трансформатор не подходит по месту крепления, место крепления в устройстве можно подогнать под новый трансформатор или трансформатор укрепить в другом месте данного устройства.

2.5. Электронные лампы

2.5. Электронные лампы

Несмотря на то, что электронные лампы стараются не применять в новых разработках электронной аппаратуры, их можно встретить в используемой в настоящее время аппаратуре. Лампы различаются числом электродов (от 3 до 9) и в

зависимости от этого называются: триод, тетрод, пентод, гексод, гептод, октод.и эннод. Двухэлектродная лампа — диод не имеет управляющих сеток и применяется для выпрямления переменного тока.

Приемно-усилительные лампы имеют обозначения, состоящие из четырех элементов. Первый элемент — напряжение накала катода лампы, округленное до целого числа вольт, второй — буква, показывающая тип лампы. Например, маломощные диоды имеют букву Д, двойные диоды — X, диоды для выпрямления переменного тока — Ц, триоды — С, двойные диоды — Н, тетроды — Э, выходные пентоды — П, маломощные пентоды — Ж. Третий элемент — номер разработки, четвертый — буква, показывающая конструктивное оформление: С — стеклянная лампа с баллоном диаметром более 22,5 мм, П — стеклянная миниатюрная («пальчиковая») с баллоном 19 и 22,5 мм, Р, А, Б, Г — сверхминиатюрные стеклянные лампы и т. д. Отсутствие буквы означает металлический баллон.

Параметры некоторых ламп, применяемых в электронной аппаратуре, приводятся в табл. 2.10.

Таблица 2.10 ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОННЫХ ЛАМП

2-51.jpg

Условные обозначения:

Rк— сопротивление в цепи катода ламп;

ВЧ — высокая частота;

НЧ — низкая частота

Крутизна характеристики показывает, на сколько изменяется анодный ток лампы при изменении напряжения управляющей сетки на 1 В.

Внутреннее сопротивление показывает, на сколько вольт надо изменить напряжение на аноде лампы, чтобы ее анодный ток изменился на 1 мА.

Электронные лампы считаются наименее надежными элементами аппаратуры. Внезапные отказы ламп обусловлены перегоранием нити накала, потерей вакуума, обрывами и замыканиями элементов.

Постепенные отказы обусловлены снижением эмиссионной способности катода, величины токов, выходной мощности, ростом сеточных токов.

Надежность ламп зависит от их качества, температуры катода при работе, тока эмиссии катода, напряжения на электродах, от мощностей, рассеиваемых на них, тока управляющей сетки, температуры баллона, микроклимата в месте установки, механических нагрузок. Различие в качестве ламп приводит к разбросу их параметров, что при равных условиях работы в схеме приводит к их различной надежности.

Перегрев катода происходит при повышенном напряжении накала. Это приводит к усилению протекания всех физико-химических процессов в лампе и выходу ее из строя. Понижение напряжения накала на несколько процентов ведет к повышению надежности ламп, при этом напряжение должно быть стабилизировано, чтобы не допустить дальнейшего его понижения.

Частой причиной выхода из строя ламп является снижение сопротивления изоляции и пробой ее у подогревателей катодов. Это происходит потому, что атомы вольфрама нити накала подогревателя диффундируют в его изоляцию, ухудшая ее свойства. Происходит пробой этой изоляции, короткое замыкание подогревателя на катод и перегорание подогревателя.

Процессы ухудшения изоляции подогревателя происходят более интенсивно при большой температуре подогревателя и увеличенном напряжении между катодом и подогревателем. Поэтому не следует допускать повышения напряжения накала подогревателя. При эксплуатации ламп нужно следить, чтобы между катодом и подогревателем не превышали допустимых пределов ток утечки и напряжение.

При больших напряжениях на аноде и экранной сетке возможны изменения траектории электронов, часть электронов попадает на детали лампы, образуя электрические заряды, которые искажают электрические поля и изменяют параметры ламп. Увеличивается энергия электронов, которые бомбардируют детали лампы, вызывают выделение газа и ухудшение вакуума, разогрев баллона и других деталей и, как следствие, ухудшение параметров лампы.

Температура баллона оказывает большое влияние на надежность ламп. При увеличении температуры увеличивается интенсивность газовыделения из стекла и его электролиза, который изменяет химический состав стекла и его коэффициент расширения, что может вызвать разгерметизацию в месте выводов. Снижение вакуума в лампе отрицательно влияет на работу катода. Так как стекло баллона почти не прозрачно для инфракрасного излучения, тепло при нагреве электродов лампы передается баллону. Оно отводится за счет конвекции, лучеиспускания и теплопроводности; Теплоотвод для ламп небольшой мощности обычно не предусматривается, и перегрев баллонов является обычным явлением.

При перегреве происходят механические разрушения ламп, видимые снаружи. Например, отваливаются колпачки выводов анодов ламп, окисляются штырьки выводов и ухудшаются контакты лампы со схемой.

Происходит нагрев ламповой панели и, если она не керамическая, через несколько лет подгорает и рассыпается, что ухудшает контакты штырьков в гнездах. Тогда нужно заменять панель на другую, желательно керамическую, хотя и в ней не исключено плохое касание штырьков, их нагрев и ухудшение контакта.

Для понижения температуры баллона лампы можно ставить на нее вплотную к баллону медные или латунные экраны, которые улучшают теплоотвод, принимая тепло на себя и отводя его. Если они мало эффективны, то можно применять радиаторы с хорошим теплоотводом.

Тепловой режим лампы определяют мощности, рассеиваемые на электродах, и температура среды в месте установки лампы. Поэтому при других нормальных условиях нагрузка на лампу и температура среды определяют срок ее службы.

Длительные вибрации и сотрясения приводят также к выходу из строя ламп.

При выходе из строя лампа заменяется на другую такую же, но может быть заменена и на лампу другого типа, если соответствуют ее схема и конструкция.

Отказы ламп можно определить по внешним признакам — нить накала лампы не светится, или нить накала светится, но лампа не греется, как обычно.

В первом случае, если нити накала других ламп светятся, причина может быть в том, что не подходит напряжение накала к подогревателю катода. Причина же этого явления заключается в окислении штырьков выводов электродов лампы или в окислении гнезд панели лампы. В таком случае штырьки можно почистить, например, надфилем, а гнезда — четырехгранным шилом.

Внутренней причиной несвечения нити накала лампы является перегорание подогревателя катода лампы. В таком случае лампу нужно менять.

Если нить накала лампы светится, но лампа не греется, как обычно, то значит, что через нее не проходит поток электронов, т. е. электрический ток. Причина может быть во внешней цепи, когда к лампе не подходят нужные напряжения. Это можно проверить измерением напряжений в схеме у штырьков лампы. При отсутствии напряжений или их уменьшении более чем на 20% причину нужно искать во внешней цепи.

Другой причиной, при наличии напряжений, может быть потеря эмиссии катодом лампы. В таком случае лампу нужно менять.

Белый налет внутри лампы, ее необычное свечение также говорят о выходе из строя лампы.

Таблица 2.10 ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОННЫХ ЛАМП

Изображение: 

2.6. Полупроводниковые приборы

2.6. Полупроводниковые приборы

2.6.1. Обозначения полупроводниковых приборов

2.6.1. Обозначения полупроводниковых приборов

В 1973 г. принята новая система обозначений на вновь разрабатываемые и модернизируемые приборы.

Первый элемент обозначения определяет исходный полупроводниковый материал, из которого изготовлен прибор. Для приборов устройств широкого применения обозначение исходного материала производится буквами: Г — германий или его соединения, К — кремний или его соединения, А — соединения галлия. Для приборов, используемых в устройствах специального назначения, обозначения производятся соответственно цифрами 1, 2, 3.

Второй элемент определяет подкласс прибора: транзисторы без полевых — Т, транзисторы полевые — П, диоды выпрямительные универсальные, импульсные — Д, выпрямительные столбы и блоки — Ц, диоды сверхвысокочастотные — А, варикапы — В, тиристоры диодные — Н, тиристоры триодные — У, стабилизаторы тока — К, стабилитроны — С.

Третий элемент в обозначении диодов, транзисторов и тиристоров определяет назначение прибора и обозначается цифрой.

Диоды выпрямительные малой мощности (прямой ток не более 0, 3 А) обозначаются 1, средней мощности — прямой ток от 0, 3 до 10 А — 2, диоды универсальные с рабочей частотой не более 1000 МГц — 4.

Транзисторы малой мощности (не более 0, 3 Вт) на частоту не более 3 МГц обозначаются 1, на частоту от 3 до 30 МГц — 2, на частоту более 30 МГц — 3. Транзисторы средней мощности (от 0, 3 до 1, 5 Вт) обозначаются соответственно цифрами 4, 5, 6, транзисторы большой мощности — 7, 8, 9.

Четвертый и пятый элементы означают номер разработки прибора и обозначаются цифрами от 01 до 99.

Для стабилитронов третий элемент обозначает индекс мощности, четвертый и пятый — номинальное напряжение стабилизации.

Шестой элемент в обозначении диодов и транзисторов определяет параметрическую группу приборов, а в обозначении стабилитронов — последовательность разработки и обозначается буквами от А до Я.

Примеры обозначения:

ГТ605А — транзистор для устройств широкого применения германиевый, средней мощности, номер разработки 05, группа А;

КД215А — диод выпрямительный для устройств широкого применения кремниевый, средней мощности, номер разработки 15, группа А.

Приборы, разработанные в период с 1964 до 1973 г. имеют сходную маркировку.

Приборы, разработанные до 1964 г., имеют маркировку, состоящую из двух или трех элементов.

Первый элемент: Д — диоды, П — плоскостные транзисторы, С — точечные транзисторы.

Второй элемент — цифра, указывающая тип прибора.

Диоды точечные германиевые — от 1 до 100, точечные кремниевые — от 101 до 200, плоскостные кремниевые — от 201 до 300, плоскостные германиевые — от 301 до 400, стабилитроны — от 801 до 900, варикапы — от 901 до 950, выпрямительные столбы — от 1001 до 1100.

Транзисторы: маломощные германиевые низкочастотные — от 1 до 100, маломощные кремниевые низкочастотные — от 101 до 200, мощные германиевые низкочастотные — от 201 до 300, мощные кремниевые низкочастотные — от 301 до 400.

Третий элемент — буква, указывающая разновидность прибора: П16А, П16Б.

По более ранней системе обозначений плоскостные германиевые диоды обозначаются Д7.

2.6.2. Полупроводниковые диоды

2.6.2. Полупроводниковые диоды

Полупроводниковым диодом называется прибор, основой конструкции которого является один р-n переход. Условное обозначение диода (прил. 1) сохранилось от первых электровакуумных диодов. В изображении черта означает катод, а треугольник анод. Чтобы это запомнить, достаточно представить, что катод испускает электроны, и они выходят из него расходящимся пучком, образуя треугольник. Если считать проводимость диода направленной от плюса к минусу, то она будет соответствовать стрелке, образованной вершиной треугольника.

Параметры некоторых выпрямительных диодов показаны в табл.2.11,

Таблица 2.11 ПАРАМЕТРЫ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

2-6-21.jpg

где Iпр ср — прямой средний ток: среднее за период значение тока через диод;

Uобр,и,п — обратное импульсное повторяющееся напряжение: наибольшее мгновенное значение обратного напряжения;

Uобр. макс — максимальное допустимое постоянное обратное напряжение;

Iобр, и — импульсный обратный ток: наибольшее мгновенное значение обратного тока, обусловленное импульсным обратным напряжением;

Iобр — постоянный обратный ток, обусловленный постоянным обратным напряжением;

Iобр, ср — средний обратный ток: среднее за период значение обратного тока.

Примеры маркировки диодов цветными метками приведены в табл. 2.12.

Таблица 2.12 МАРКИРОВКА ДИОДОВ ЦВЕТНЫМИ МЕТКАМИ

2-6-22.jpg

Универсальные и импульсные диоды — полупроводниковые диоды, имеющие малую длительность переходных процессов включения и выключения и предназначенные для применения в импульсных режимах работы.

Стабилитрон — полупроводниковый диод, предназначенный для стабилизации напряжения. Обратная ветвь вольт-амперной характеристики этого диода является почти прямой линией (рис. 2.2), поэтому при изменении тока, проходящего через прибор, напряжение на нем практически не меняется.

2-6-23.jpg

Рис. 2.2. Схемы применения полупроводниковых диодов:

а) выпрямление переменного тока с помощью выпрямительного диода. Rнагр — сопротивление нагрузки; 6) стабилизация напряжения с помощью стабилитрона. Uвх — входное напряжение, Uвых — выходное напряжение;

в), г) вольт-амперные характеристики. iпр, Unp, iобр.Uобр ~ прямые и обратные токи и напряжения, Uст — стабилизированное напряжение.

Параметры некоторых стабилитронов приведены в табл. 2.13, где Uст — напряжение стабилизации, Iст — ток стабилизации: значение постоянного тока, протекающего через стабилитрон в режиме стабилизации, Pст.макс — максимально допустимая мощность стабилизации.

Варикап — полупроводниковый диод, действие которого основано на использовании зависимости его емкости от величины обратного напряжения. Он применяется как элемент с электрически управляемой емкостью: Основные параметры некоторых варикалов приведены в табл. 2.14, где Св — емкость варикапа, Qв добротность варикапа: отношение реактивного сопротивления варикапа на заданной частоте к сопротивлению потерь при заданной емкости или обратном напряжении.

Таблица 2.13 СТАБИЛИТРОНЫ ОБЩЕГО НАЗНАЧЕНИЯ

2-6-24.jpg

Таблица 2.14 ВАРИКАПЫ

2-6-25.jpg

Рис. 2.2. Схемы применения полупроводниковых диодов:

Изображение: 

Таблица 2.11 ПАРАМЕТРЫ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Изображение: 

Таблица 2.12 МАРКИРОВКА ДИОДОВ ЦВЕТНЫМИ МЕТКАМИ

Изображение: 

Таблица 2.13 СТАБИЛИТРОНЫ ОБЩЕГО НАЗНАЧЕНИЯ

Изображение: 

Таблица 2.14 ВАРИКАПЫ

Изображение: 

2.6.3. Тиристоры

2.6.3. Тиристоры

Тиристором .называется полупроводниковый прибор на основе четырехслойной структуры р-n-р-n, имеющий три р-n перехода. Напряжения подводятся так, что крайние переходы работают в прямом направлении, а средний — в обратном направлении. Прибор обладает свойством диода.

Если у прибора сделаны выводы только от крайних областей структуры, то он называется диодным тиристором или динистором.

Триодный тиристор, или просто тиристор, включается импульсами тока управления, а выключается или подачей обратного напряжения или прерыванием тока с помощью другого аппарата.

Запираемый тиристор выключается с помощью импульсов тока управления

Симистор (симметричный тиристор) является эквивалентом встречно-параллельного соединения двух тиристоров и способен при открытом состояние пропускать ток в обоих направлениях. Включение происходит импульсами тока управления.

Оптронный тиристор включается с помощью светового сигнала.

Основные параметры некоторых тиристоров показаны в табл. 2.15,

Таблица 2.15 ТИРИСТОРЫ

2-6-31.jpg

где Iос.ср.макс-ток в открытом состоянии средний максимально допустимый;

Iос, д. макс — ток в открытом состоянии действующий максимально допустимый;

Iз,и-ток запираемый импульсный (для запираемых тиристоров);

Uзс, п — напряжение в закрытом состоянии повторяющееся — наибольшее мгновенное значение напряжения, прикладываемое к тиристору;

Uзс. МАКС — напряжение в закрытом состоянии максимально допустимое;

Uот — напряжение открывания динистора;

Uобр, п — напряжение обратное повторяющееся, наибольшее значение напряжения, прикладываемого к тиристору;

Uобр, макс — напряжение обратное допустимое, максимальное значение;

Iзс, п — ток в закрытом состоянии повторяющийся;

Iзс — постоянный ток в закрытом состоянии;

Iу,от — т управления отпирающий;

Iу, от, и ~ отпирающий импульсный ток управления;

Iу, з, и — ток управления запирающий импульсный;

tвкл — время включения;

tвыкл — время выключения.

Тиристоры применяются в преобразователях электрической энергии.

Таблица 2.15 ТИРИСТОРЫ

Изображение: 

2.6.4. Транзисторы

2.6.4. Транзисторы

Транзисторами называются полупроводниковые приборы на основе кристалла с двумя р-n переходами и служащие для усиления электрических сигналов. В структуре транзистора возможно количество переходов, отличное от двух. Транзисторы с двумя р-п переходами называются биполярными, так как их работа основана на использовании зарядов обоих знаков.

Полевой транзистор — полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, и управляемый электрическим полем. В полевом транзисторе используются заряды одного знака.

В кристалле полупроводника транзистора созданы три области электропроводности с порядком чередования р-n-р или n-р-n.

Средняя область кристалла транзистора называется базой, крайние области — эмиттером и коллектором. Переходы

между базой и эмиттером и базой и коллектором называются соответственно эмиттерным и коллекторным.

Для обозначения величин, относящихся к базе, эмиттеру и коллектору, применяют буквы б, э, к.

На изображении транзистора стрелка указывает условное направление тока в эмиттере от плюса к минусу.

В зависимости от напряжений на переходах транзистора он может работать в трех режимах.

Активный режим Получается при напряжениях прямом на эмиттерном и обратном на коллекторном переходах.

Режим отсечки или запирания — напряжения на обоих переходах обратные.

Режим насыщения — напряжения на обоих переходах прямые.

Основным является активный режим.

В схеме с транзистором образуются две цепи — входная и выходная. Во входную цепь включается управляющий сигнал, который должен быть усилен, а в выходную — нагрузка, на которой выделяется усиленный сигнал.

Предельно допустимые параметры при работе транзистора:

I к. макс — постоянный ток коллектора;

Pк, макс — постоянная рассеиваемая мощность коллектора;

Uкэ — постоянное напряжение коллектор—эмиттер;

Uкэ, R — то же при определенном сопротивлении в цепи база—эмиттер,

Uкб, макс — постоянное напряжение коллектор—база;

Uэб, макс — постоянное напряжение эмиттер—база;

h21э — коэффициент передачи тока в режиме большого сигнала в схеме с общим эмиттером;

h21э — коэффициент передачи тока в режиме малого сигнала в схеме с общим эмиттером. Коэффициент передачи означает отношение величины сигнала на выходе к величине сигнала на входе, он называется также коэффициентом усиления. .

Из частотных параметров отметим:

fh21 — предельная частота коэффициента передачи тока:

частота, на которой модуль коэффициента передачи тока h21э. уменьшается на 3 дБ;

fгр — граничная частота коэффициента передачи тока в схеме с общим эмиттером: частота, на которой h21э равен 1.

Статические параметры транзистора — параметры, определяемые при постоянном напряжении на всех его электродах.

Параметры некоторых биполярных транзисторов приведены в табл. 2.16.

Таблица 2. 16 ДАННЫЕ НЕКОТОРЫХ ТРАНЗИСТОРОВ

2-6-41.jpg

Схемы включения транзисторов разделяются в зависимости от того, какой электрод транзистора является общим относительно входного и выходного переменных напряжений. В соответствии с этим схемы называются схемами с общим эмиттером — ОЭ, общей базой — ОБ, общим коллектором — ОК Схема ОЭ является более распространенной, так как дает наибольшее усиление по мощности. Данные схемы включения транзисторов приведены на рис. 2. 3.

2-6-42.jpg

Рис. 2. 3. Схемы включения транзисторов

а.) с общим эмиттером; б) с общей базой; в) с общим коллектором. ИС — источник сигнала, подаваемого на вход транзистора, Uвх, Uвых — входное и выходное напряжения сигнала, Uбэ, Uбк, Uкэ — напряжения между базой и эмиттером, базой коллектором, коллектором и эмиттером, iб,iэ,iк- токи базы, эмиттера и коллектора, E1, Е2 — источники питания, С1, С2, — конденсаторы большой емкости, сопротивление которых для переменного сигнала является малым и через которые коллектор по переменному току замкнут, являясь в схеме общим.

Рис. 2.3. Схемы включения транзисторов

Изображение: 

Таблица 2.16 ДАННЫЕ НЕКОТОРЫХ ТРАНЗИСТОРОВ

Изображение: 

2.6.5. Оптоэлектронные приборы

2.6.5. Оптоэлектронные приборы

Оптоэлектронный полупроводниковый прибор — полупроводниковый прибор, действие которого основано на использовании явлений излучения, передачи или поглощения в видимой, инфракрасной или ультрафиолетовой областях спектра.

Светоизлучающий диод — полупроводниковый прибор с одним переходом, в котором происходит преобразование электрической энергии в энергию светового излучения. Прибор предназначен для использования в устройствах визуального представления информации. Основные параметры светоизлучающих диодов приведены в табл. 2.17, где I. — сила света, мкд (милликандела), В — яркость, кд/м^2 (кандела на метр^2). Остальные параметры — как в обычных диодах.

Таблица 2.17 ОПТОЭЛЕКТРОННЫЕ ПРИБОРЫ

2-6-51.jpg

Полупроводниковый знаковый индикатор — полупроводниковый прибор, который состоит из нескольких светоизлучающих диодов и предназначен для использования в устройствах визуального представления информации. Некоторые параметры индикаторов представлены в той же табл. 2.17.

Оптопара — оптоэлектронный полупроводниковый прибор, который состоит из излучающего и фотоприемного элементов, между которыми имеется оптическая связь, обеспечивающая электрическую изоляцию между входом и выходом.

Основные параметры оптопар и оптоэлектронных ключей представлены в табл. 2.18, где Iвх,опт — входной ток оптопары, Uвх-вых — напряжение между входом и выходом, Uвx, обр — обратное входное напряжение, Рпотр -- потребляемая мощность, Uвх — входное напряжение, Uпит — напряжение питания, Uвых — выходное остаточное напряжение, Rи — сопротивление изоляции между входом и выходом оптопары.

Таблица 2.18 ОПТОПАРЫ И ОПТОЭЛЕКТРОННЫЕ КЛЮЧИ

2-6-52.jpg

Таблица 2.17 ОПТОЭЛЕКТРОННЫЕ ПРИБОРЫ

Изображение: 

Таблица 2.18 ОПТОПАРЫ И ОПТОЭЛЕКТРОННЫЕ КЛЮЧИ

Изображение: 

2.6.6. Отказы полупроводниковых приборов и их проверка

2.6.6. Отказы полупроводниковых приборов и их проверка

Отказы полупроводниковых приборов часто связаны с пробоем, когда прибор проводит ток в обратном направлении. В основе этого явления лежит пробой р-n перехода в монокристаллической структуре, составляющей основу прибора. Существует несколько разновидностей пробоя р-n перехода.

Тепловой пробой происходит в результате тепловой ионизации атомов полупроводника и местного перегрева структуры.

Лавинный пробой происходит в результате ударной ионизации атомов полупроводника неосновными носителями в области объемного заряда.

Зенеровский пробой происходит в результате перехода валентных электронов из валентной зоны в зону проводимости. При этом происходит разрушение кристаллической решетки в области объемного заряда электрическим полем.

Поверхностный пробой происходит в местах выхода р-n перехода на поверхность полупроводника. Он обусловлен увеличением напряженности поля объемного заряда в связи с искажением поля поверхностными зарядами, ухудшением свойств среды у поверхности полупроводника.

Практически действуют несколько видов пробоя одновременно.

Нарушение вентильных свойств приборов может также происходить при различных перенапряжениях, при перегрузках по току и вызванных ими тепловых перегрузках.

Для увеличения пропускаемого тока безопасного перегрева применяется охлаждение приборов. Охлаждение предусматривается для силовых диодов и тиристоров в энергетике и для мощных диодов, транзисторов и тиристоров в электронике. Охлаждение может быть воздушное, водяное и испарительное.

Воздушное охлаждение осуществляется путем присоединения к прибору теплостока, или радиатора. Радиаторы могут быть медными или алюминиевыми. Применяется в основном резьбовое соединение радиатора с прибором.

Большое значение имеет проблема контакта прибора с радиатором. При этом должно быть плотное затягивание резьбы, но без повреждения резьбы и поверхностей.

В случае применения алюминия для радиаторов проблема контакта заключается в том, что имеется большая электрохимическая разность потенциалов медь—алюминий — около 1, 8 В. Попадание влаги в место контакта вызывает коррозию алюминия, поэтому применяется гальваническое покрытие основания вентиля.

Водяное охлаждение осуществляется присоединением приборов к контуру с водой, например, через полую шину.

Испарительное охлаждение осуществляется присоединением прибора к контуру, где жидкость испаряется и потом конденсируется.

Ясно, что без охлаждения, если оно предусмотрено конструкцией, полупроводниковый прибор не может обеспечить необходимый режим работы и выйдет из строя.

Кроме указанных причин, отказы полупроводниковых приборов могут быть обусловлены обрывами и перегоранием выводов, наружным пробоем между выводами, растрескиванием кристаллов и другими причинами.

Иногда выход из строя прибора можно определить по внешнему виду, если он обгорел, разрушился, обгорели провода. Но не всегда признаки выражены явно, поэтому нужно пользоваться приборами. Рассмотрим проверку некоторых полупроводниковых приборов и других элементов аппаратуры с помощью измерительных приборов.

Диоды

С помощью омметра можно измерить прямое и обратное сопротивления постоянному току. Чем меньше прямое сопротивление и больше обратное сопротивление, тем лучше диод. Прямое сопротивление должно быть не больше примерно 200 Ом, а обратное не меньше 500 кОм. Следует иметь в виду, что если прямое сопротивление около 0, а обратное — около оо, то в первом случае имеется пробой, а во втором — обрыв выводов или нарушение структуры. Сопротивление диода переменному току меньше прямого сопротивления и зависит от положения рабочей точки.

Транзисторы

Как известно, транзистор состоит из двух переходов, каждый из которых обладает свойствами диода, поэтому проверить транзистор можно как диод. С помощью омметра можно проверить сопротивление между эмиттером и базой и коллектором и базой в прямом и обратном направлении.

Если транзистор исправен, то прямые сопротивления составляют величину порядка 30... 50 Ом, а обратные — 0, 5... 2 МОм.

Но недостаточно измерить только величины сопротивлений переходов, чтобы сделать вывод о работоспособности транзистора. Желательно измерить обратный ток коллектора, обратный ток эмиттера и ориентировочное значение коэффициента усиления по току. Есть специальные приборы для измерения этих параметров транзисторов, например, прибор ТЛ-4М.

Пригодность транзистора определяется сравнением полученных при измерении данных с данными, указанными в паспорте транзистора.

При измерениях параметров отдельного транзистора можно выявить обрывы электродов и замыкания в транзисторах,

но это же можно сделать и при измерениях в схемах с транзисторами. При этом нужно иметь в виду, что применяемый измерительный прибор должен обладать достаточно большим внутренним сопротивлением.

При измерениях можно сделать следующие выводы.

При обрыве цепи базы напряжения базы и эмиттера отсутствуют, напряжение коллектора повышено.

При обрыве цепи эмиттера напряжение коллектора повышено, напряжение базы почти нормальное, напряжение на эмиттере приблизительно равно напряжению базы.

При обрыве цепи коллектора напряжения на всех электродах транзистора уменьшаются.

При обрыве базы внутри транзистора напряжение базы близко к нормальному, напряжение эмиттера уменьшается, а напряжение коллектора повышается.

При замыкании эмиттера и коллектора внутри транзистора напряжение базы изменяется незначительно, напряжение эмиттера возрастает, напряжение коллектора падает.

Нужно учитывать, что транзистор может работать в режиме насыщения. Этот режим бывает тогда, когда сопротивление нагрузки в цепи коллектора велико и ток коллектора создает на нем падение напряжения, равное напряжению источника питания. В этом режиме потенциалы всех электродов транзистора одинаковы. Данный режим используется в импульсных устройствах, а для усилителей опасен.

Параметры и характеристики транзисторов зависят от температуры окружающей среды, стабильности нагрузки, условий теплоотвода. Все эти факторы изменяют температуру транзистора. При повышении температуры возможен выход транзистора из строя и неизбежное изменение параметров схемы. Большую температурную чувствительность транзистора можно объяснить следующим.

Электропроводность германия и кремния, из которых изготовляют транзисторы, зависит от температуры. При увеличении температуры нарушается электрическое равновесие, увеличивается эмиттерный и коллекторный ток, что увеличивает мощность, рассеиваемую на коллекторе, и температуру коллектора, вызывая увеличение обратного тока коллектора. При этом может быть равновесие или транзистор выйдет из строя. Это зависит от условий охлаждения, от окружающей температуры и величины сопротивления в цепи коллектора, ограничивающего нарастание коллекторного тока. Следует помнить, что при большом сопротивлении в цепи коллектора транзистор входит в режим насыщения и перестает быть усилителем.

Второй момент, увеличивающий чувствительность транзистора к температуре, состоит в том, что прямая проводимость участка эмиттер—база увеличивается с ростом температуры. Это явление вызывает увеличение тока эмиттера.

Иногда имеет место самопроизвольное изменение параметров транзисторов независимо от изменений окружающей среды.

Неисправность транзистора в схеме — явление редкое и может быть вызвано его перегревом при плохом теплоотводе или при пайке, или нарушением режимов работы схемы.

Перед заменой транзистора нужно детально его проверить, а при выходе из строя транзистора проверить другие детали, входящие в схему, от которых зависит его работа, так как выход их из строя может быть причиной выхода из строя транзистора.

Для замены нужно брать транзистор такого же типа или равноценный. Перед установкой его нужно проверить описанными методами. Расположение выводов нужно определять по прилагаемому паспорту или по справочнику.

Для пайки транзисторов желательно иметь низковольтный паяльник на 6 или 12 В, присоединяемый через понижающий трансформатор, мощностью около 40 Вт. Можно пользоваться и обычным паяльником, но нужно сначала его нагреть, а потом отключить и паять.

Выводы транзистора, если позволяет его конструкция, нужно оставлять не короче 15 мм, изгибать их не ближе 10 мм от корпуса, изгиб должен быть плавным.

Температура нагрева контактного слоя транзистора не должна превышать 75 С, поэтому для отвода тепла при пайке выводы у корпуса нужно держать плоскогубцами или пинцетом. Паяльник должен быть возможно дальше от транзистора, пайку нужно заканчивать быстрей. Жало паяльника должно быть зачищено и покрыто припоем, который должен быть легкоплавким.

Желательно применение пистолетных паяльников, которые включаются только во время пайки.

Интегральные микросхемы (ИМС)

Отказы ИМС могут быть связаны с физико-химическими процессами внутри полупроводника, с теми же процессами на поверхности полупроводника и обусловлены состоянием контактных соединений.

Первая группа отказов обусловлена структурными дефектами — дислокациями, микротрещинами — внутри полупроводника. Эти дефекты могут с течением времени развиваться под воздействием температурных и механических влияний и изменять характеристики микросхемы, приводя к отказам.

Вторая группа отказов связана с накоплением на поверхности полупроводника двуокиси кремния, а в объеме, близком к поверхности, зарядов, изменяющих состояние р-n переходов, и появление поверхностных каналов. В результате этого происходит увеличение токов утечки, отсутствие насыщения вольт-амперной характеристики перехода коллектор—база, омическое шунтирование эмиттера с коллектором, снижение обратного пробивного напряжения на коллекторе, уменьшение коэффициента усиления по току, омическое шунтирование эмиттера с базой, увеличение шумов.

В ИМС применяется металлизированная разводка между отдельными элементами с соединением алюминиевых контактных площадок с внешними выводами с помощью золотых проводников, привариваемых к контактным площадкам и наружным выводам. Отказы связаны с нарушением соединений этих проводников и металлической разводки из-за механических повреждений или малой толщины пленки алюминия. Нарушения соединений могут вызвать перегрев в этих местах, что ведет к коррозии или расплавлению металла.

Нарушение электрической цепи и появление отказов может произойти по причине образования диэлектрической пленки на границе раздела алюминия и кремния или образования гидрата окиси алюминия на металлизированной разводки, при попадании влаги внутрь корпуса ИМС.

Отказы могут быть также из-за нарушения контакта золотых проводников с контактными площадками микросхемы и внешними выводами корпуса.

Внешним проявлением ухудшений состояния ИМС является увеличение обратного тока коллекторного перехода за счет появления тока утечки.

Надежность ИМС можно повысить за счет улучшения технологии их производства.

Вышедшие из строя микросхемы, как правило, подлежат замене. Заменять ИМС нужно на такую же, но можно и на микросхему сходного типа, электрическая схема которой подходит для данного устройства. Если микросхемы впаяны в печатные платы, то при их замене нужно соблюдать следующие правила.

Паяльник должен быть небольшого размера, мощностью не более 40 Вт, с температурой нагрева жала не более 200 С, с насадкой. Насадка имеет два широких жала, которые прижимаются к рядам припаиваемых выводов микросхемы. Она навинчивается на резьбу на жале паяльника. Припой должен быть с низкой температурой плавления, количество его при пайке должно быть минимальным. Пайка должна производится несколько секунд при отключенном питании паяльника.

Нельзя производить необоснованный замен деталей в схеме, содержащей ИМС, так как это может вывести ее из строя.

2.7 Трансформаторы для электроснабжения

2.7. Трансформаторы для электроснабжения

2.7.1. Общие сведения

2.7.1. Общие сведения

В справочнике рассматривается электрооборудование напряжением до 1000 В, а трансформаторы для электроснабжения этого электрооборудования имеют на входе напряжение более 1000 В — в основном 6, 10 кВ. Но иметь представление о трансформаторах и их отказах начинающему электрику нужно, исходя из их важности в электроснабжении и влиянии на качество напряжения в сети, чтобы не искать причины плохого качества напряжения в самой сети при неисправностях трансформатора.

Большинство потребителей получает электроэнергию от трансформаторов, преобразующих электроэнергию высокого напряжения в энергию напряжения, применяемого потребителем — 380/220 В. В основном применяются трансформаторы трехфазные двухобмоточные с масляным охлаждением, в особых условиях могут применяться трансформаторы сухие и с кварцевым заполнением.

Условное обозначение типа трансформатора состоит из букв, означающих число фаз, вид охлаждения и цифр, показывающих мощность и напряжения высшее и низшее.

Число фаз трансформатора обозначается: О — однофазный, Т — трехфазный.

Обозначения вида охлаждения трансформаторов показаны в табл. 2.19.

Основные данные некоторых трансформаторов показаны в табл. 2. 20, где ТМ — трехфазный с масляным охлаждением, цифра через черточку означает номинальную мощность трансформатора в кВ*A, ВН — высшее напряжение, НН — низшее напряжение, XX — холостой ход, КЗ — короткое замыкание.

Напряжение короткого замыкания Uk — напряжение, которое надо приложить к его первичной обмотке при замкнутой накоротко вторичной, чтобы по обмоткам трансформатора протекал номинальный ток.

Таблица 2.19 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ВИДА ОХЛАЖДЕНИЯ ТРАНСФОРМАТОРОВ

2-7-11.jpg

Таблица 2.19 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ВИДА ОХЛАЖДЕНИЯ ТРАНСФОРМАТОРОВ

Изображение: 

2.7.2. Группы соединений обмоток трансформаторов

2.7.2. Группы соединений обмоток трансформаторов

Первичные и вторичные обмотки трансформатора могут быть соединены по-разному. На рис. 2.4, а показано соединение обмоток звездой, которое применяется часто. На рис. 2.4, б показаны векторы напряжений первичной и вторичной обмоток, а на рис. 2.4, в — эти векторы, совмещенные со схемой циферблата часов. Минутная стрелка часов совпадает с направлением векторов первичной обмотки, а часовая — с направлением вектора вторичной обмотки той же фазы.

Группу соединений образуют несколько схем соединений обмоток трансформаторов, дающие одинаковый сдвиг по фазе векторов напряжений вторичных обмоток относительно векторов напряжений первичных обмоток. Вторичные напряжения одноименных фаз всех трансформаторов, имеющих одну и ту же группу соединений, совпадают по фазе.

Таблица 2.2 ДАННЫЕ НЕКОТОРЫХ ТРАНСФОРМАТОРОВ

2-7-21.jpg

Векторы первичных и вторичных напряжений в зависимости от схемы соединения обмоток и их расположения на стержнях магнитопровода могут иметь сдвиги, кратные 30°, поэтому всего основных групп может быть: 360° : 30° = 12, или в часах 1,2... 12. Очевидно, группы 0 и 12 являются одной и той же группой.

Четные группы (2, 4, 6, 8, 10, 12) получаются, если обмотки высшего напряжения (ВН) и обмотки низшего напряжения (НН) соединены одинаково — в звезду или в треугольник.

Нечетные группы (1, 3, 5, 7, 9, 11) получаются, если одна обмотка соединена в звезду, а другая в треугольник.

В обозначении группы соединений слева от черточки расположены знаки или буквы, характеризующие схему соединения обмоток, а справа — цифры, указывающие сдвиг в часовом обозначении.

2-7-22.jpg

Рис. 2.4. Группа соединений обмоток трансформатора:

а) схема обмоток трансформатора; б) векторная диаграмма обмоток высшего и низшего напряжений; в) совмещение векторов высшего и низшего напряжений на схеме циферблата часов.

2-7-23.jpg

Рис. 2.4. Группа соединений обмоток трансформатора:

Изображение: 

Рис. 2.4. Знаки обозначений схемы соединений

Изображение: 

Таблица 2.2 ДАННЫЕ НЕКОТОРЫХ ТРАНСФОРМАТОРОВ

Изображение: 

2.7.3. Параллельная работа трансформаторов

2.7.3. Параллельная работа трансформаторов

Не всегда один трансформатор может справиться с нагрузкой от потребителей, поэтому обычно они работают параллельными группами. Но не каждый трансформатор может

работать в параллельной группе с другими трансформаторами. Для параллельной работы трансформаторов необходимо чтобы они удовлетворяли следующим условиям.

Равенство коэффициентов трансформации К=ВН/НН. где ВН — высшее напряжение, НН — низшее напряжение. При несоблюдении этого условия между вторичными обмотками трансформаторов будет циркулировать уравнительный ток. приводящий к перегреву трансформатора.

Равенство напряжений короткого замыкания %. В противном случае трансформаторы не будут загружаться пропорционально своим мощностям. При этом отношение мощностей параллельно работающих трансформаторов должно быть не больше 1 : 3, иначе для малых трансформаторов перегрузки могут оказаться недопустимыми.

Одинаковые группы соединений. При различных группах соединений параллельно работающих трансформаторов между векторами их вторичных напряжений будет сдвиг фаз, вызывающий уравнительные токи между обмотками трансформаторов. При разных группах соединений, при самом малом сдвиге фаз, равном 30°, уравнительный ток превышает номинальный ток трансформатора в 5 раз, при самом большом сдвиге 180° — в 20 раз.

2.7.4. Приемка и транспортировка трансформаторов

2.7.4. Приемка и транспортировка трансформаторов

Трансформатор принимается после изготовления службами контроля на заводе, а также при покупке его для замены вышедшего из строя трансформатора или для электроснабжения нового объекта. Но после этого надежность трансформатора может измениться в худшую сторону, так как он может перемещаться к месту хранения на заводе или на базе снабжения, и это перемещение и условия хранения могут ухудшить его состояние.

В новом трансформаторе прежде всего нужно обращать внимание на уровень масла. Оно-должно быть видно хотя бы в маслоуказателе, иначе есть сомнение в его наличии в трансформаторе, что, в свою очередь, говорит о течи в корпусе трансформатора. Нужно проверять отсутствие течи и при наличии масла в маслоуказателе.

Необходимо убедиться в отсутствие механических повреждений корпуса трансформатора, изоляторов и шпилек, в отсутствие трещин на изоляторах, в целостях резьбы на шпильках и т. д.

К трансформатору должна быть приложена вся необходимая документация, запасные части, что должно быть проверено по ведомости комплектации.

Погрузка и перевозка трансформатора должна производиться с предосторожностями, чтобы его не повредить. Для предотвращения ударов и перемещений при перевозке трансформатор привязывается.

Таблица 2. 21 НЕИСПРАВНОСТИ ТРАНСФОРМАТОРОВ

2-7-41.jpg

* Обслуживание и ремонт трансформаторов производят электрики специализированных служб При ликвидации аварии им могут помогать электрики других служб при отсутствии напряжения в месте работы на токоведущих частях и вблизи них

Окончание табл. 2. 21

2-7-42.jpg

Таблица 2.21 НЕИСПРАВНОСТИ ТРАНСФОРМАТОРОВ (окончание)

Изображение: 

Таблица 2.21 НЕИСПРАВНОСТИ ТРАНСФОРМАТОРОВ

Изображение: 

2.8. Выпрямители

2.8. Выпрямители

Многие потребители энергии требуют для своей работы постоянного тока. К ним относятся аппаратура радиоэлектроники и автоматики, двигатели постоянного тока в промышленности и на транспорте, технологические процессы в промышленности, например, электролиз.

Преобразование переменного тока в постоянный осуществляется в выпрямителях с использованием полупроводниковых приборов.

Основными частями выпрямителя являются:

вентильная группа, преобразующая переменный ток в постоянный, трансформатор, преобразующий величину напряжения, получаемого из сети, в величину, нужную для приемника постоянного напряжения;

сглаживающий фильтр для уменьшения пульсации выпрямленного напряжения.

Кроме того, выпрямитель может иметь устройства для стабилизации и регулирования выпрямленного напряжения.

По числу фаз первичной обмотки трансформатора выпрямители могут быть однофазными и трехфазными.

На рис. 2. 5 показаны распространенные схемы выпрямителей.

2-81.jpg

Рис. 2. 5. Схемы выпрямителей:

а) однофазная мостовая; б) трехфазная нулевая; в) трехфазная мостовая. i2,i2а,i2б,i2с — токи в обмотках трансформатора; iнагр — ток в нагрузке;

Rнагр — сопротивление.нагрузки; А — общий анод; К — общий катод.

Выпрямители с регулированием выпрямленного напряжения, или управляемые, могут работать по тем же схемам рис. 2.5, б, в, но с применением управляемых диодов и системы управления этими диодами.

Однофазная мостовая схема выпрямления (рис. 2.5, а) состоит из четырех диодов, включенных по схеме моста, причем

нагрузка присоединяется к общей точке катодов двух диодов и к общей точке анодов других двух диодов, составляя диагональ моста 1—2. Другая диагональ моста присоединяется к вторичной обмотке трансформатора. Направление тока в полупериод, когда знак «+» на верхнем конце обмотки трансформатора, показано на рисунке, при этом ток проводят диоды VD1 и VD3, а другие диоды находятся под обратным напряжением. В следующий полупериод ток проводят диоды VD2 и VD4. Ток в нагрузке всегда идет от точки 1 к точке 2, от зажима «+» выпрямителя к зажиму «—».

Трехфазная нулевая схема (рис. 2. 5, б) состоит из 3 вентилей, аноды которых присоединяются к выводам вторичной обмотки трансформатора, соединенной звездой, а катоды присоединяются общей точкой к нагрузке. Второй зажим нагрузки присоединяется к нулевой точке вторичной обмотки трансформатора. Ток через вентиль проходит в течение трети периода, а потом переходит на другой вентиль.

Пульсации выпрямленного напряжения в данной схеме меньше, чем в однофазной мостовой.

В трехфазной мостовой схеме выпрямления (рис. 2. 5, в) применяются шесть вентилей, образующих две группы: 3 вентиля с общим анодным выводом, а 3 — с общим катодным выводом. Нагрузка присоединяется к этим общим выводам. При активной нагрузке в любой момент времени ток проходит через два вентиля из разных групп. Пульсации выпрямленного напряжения в данной схеме меньше, чем в трехфазной нулевой.

В выпрямительных установках диоды вместе с охладителями входят в состав модулей, а модули входят в состав выпрямительного блока кассетного типа.

Применяется воздушное или жидкостное охлаждение диодов.

При воздушном охлаждении для приборов на токи 10... 25* А применяют охладители в виде пластин, а для более мощных приборов — специальные радиаторы.

Воздушное охлаждение бывает естественным и принудительным.

При естественном охлаждении из-за худших условий охлаждения по сравнению с принудительным охлаждением нагрузку приборов приходится снижать на 40%.

Принудительное охлаждение производится с помощью вентиляторов.

При жидкостном охлаждении в индивидуальных или групповых охладителях циркулирует вода, подаваемая насосами.

В тиристорных установках на токи 25, 50, 100 А применяется один шкаф для всех узлов установки, например, шкаф КТЭ. В его состав входят рама с автоматическими выключателями, кассеты системы регулирования, кассета системы защиты и сигнализации, блок питания, силовой тиристорный блок, измерительные приборы, устройства сигнализации.

Тиристорный агрегат AT на ток до 500 А состоит из шкафа вводного устройства и трансформатора, шкафа преобразователя, шкафа с автоматическим выключателем и реактором. Шкафы имеют приборы измерения напряжения и тока, приборы сигнализации.

На надежность выпрямительного устройства влияет качество монтажа. При монтаже надо обратить внимание на затягивание зажимов токоведущих частей, не допуская в то же время деформации металла в месте соединения. Как правило, агрегаты общепромышленных установок предназначены для работы в помещениях при температуре окружающего воздуха 1... 50 С, относительной влажности воздуха не более 85... 90% при+ 20 С или 50% при +40 С, отсутствии в помещении агрессивных газов и паров. Агрегаты монтируют на перекрытиях или полах с креплением болтами, причем отклонение от вертикали должно быть не более 5 угл град.

После монтажа агрегата производится наладка его блоков.

Сопротивление изоляции в силовых цепях измеряется мегаомметром на напряжение 2, 5 кВ и должно быть не менее 50 МОм, в цепях управления — мегаомметром на 0, 5 кВ и должно быть не ниже 0, 5 МОм.

Основным условием правильной работы агрегата является обеспечение строгой последовательности управляющих импульсов на электродах соответствующих тиристоров, что достигается фазировкой системы управления. Фазировка осуществляется с помощью осциллографа по инструкции.

При работе вентилей имеют место перенапряжения не только при аварийных режимах, но и при обычной работе. Это объясняется тем, что цепи с вентилями имеют реактивные элементы в виде дросселей и конденсаторов, в которых происходят колебания напряжения при переходе тока с вентиля на вентиль. Так как этот переход тока происходит непрерывно, то непрерывно происходят и колебания напряжения. Вследствие этого на вентилях могут быть перенапряжения, представляющие для них опасность. Перенапряжения могут происходить и при переключениях автоматами и контакторами.

Неисправности выпрямительных установок и методы их устранения приведены в инструкциях по эксплуатации. Некоторые неисправности установок приведены в табл.2. 22.

Таблица 2.22 НЕИСПРАВНОСТИ ТИРИСТОРНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

2-82.jpg

Рис. 2.5. Схемы выпрямителей:

Изображение: 

Таблица 2.22 НЕИСПРАВНОСТИ ТИРИСТОРНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Изображение: 

2.9. Электрические аппараты

2.9. Электрические аппараты

Рубильники и переключатели

Рубильники и переключатели служат для замыкания и размыкания вручную электрических цепей переменного тока напряжением до 500 В и постоянного тока напряжением до 440 В. Они устанавливаются на панелях распределительных устройств, в шкафах и ящиках.

Технические данные рубильников и переключателей приведены в табл. 2. 23.

Первая цифра в обозначении аппарата соответствует числу полюсов, вторая соответствует его величине по току: 1 —

100 А, 2 — 250 А, 4 — 400 А, 6 — 600 А. В таблице показаны только аппараты на 100 А.

Рубильники Р и переключатели П изготовляются без дугогасительных камер и могут работать только в качестве разъединителей, т. е. размыкать обесточенные электрические цепи. Рубильники и переключатели прочих типов изготовляются с дугогасительными камерами и могут коммутировать электрические цепи под нагрузкой.

Таблица 2. 23 ДАННЫЕ О РУБИЛЬНИКАХ И ПЕРЕКЛЮЧАТЕЛЯХ

2-91.jpg
Плавкие предохранители

Предохранители предназначены для защиты электрооборудования и сетей от токов короткого замыкания и недопустимых длительных перегрузок.

Данные плавких предохранителей массового применения показаны в табл. 2. 24. Данные предохранители имеют кварцевое заполнение корпуса в виде кварцевого песка, у предохранителей НПН стеклянный корпус круглого сечения, а у ПН2 — фарфоровый корпус прямоугольного сечения.

Таблица 2. 24 ДАННЫЕ НЕКОТОРЫХ ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ

2-92.jpg

Автоматические выключатели (автоматы)

Автоматы предназначены для защиты от токов короткого замыкания и перегрузки электрических линий и приемников энергии, для включений и отключений линий и приемников энергии.

Данные выключателей массового применения приведены в табл. 2.25.

Выключатель АК63 разработан с целью замены выключателя АП—50, имеющего малую коммутационную способность. Выключатель имеет расцепители максимального тока на 0, 63... 63 А, 500 В переменного и 220 В постоянного напряжения, его коммутационная способность в 2, 5 раза больше, чем у выключателя АП50.

В отличие от выключателей АП50 выключатели АК63 имеют открытые выводы, для закрывания которых могут поставляться крышки. Открытые выводы, не соприкасающиеся с корпусом выключателя, имеют лучший теплоотвод, а при нагреве выводов не происходит выгорания корпуса выключателя.

Автоматические выключатели АЕ2000 разрабатывались с целью замены всех других выключателей на ток до 100 А. Они имеют величины на 25, 63 и 100 А с расцепителями максимального тока на 0, 6 А и выше, тепловыми и комбинированными расцепителями.

Выключатели серии АЕ1000 предназначены для защиты участков сетей жилых и общественных зданий. Они являются

Таблица 2. 25 АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ

2-93.jpg

Примечание: выключатели без расцепителя обозначаются цифрой 7 (например, А3114/7).

Продолжение табл. 2. 25

2-94.jpg

Окончание табл. 2.25

t11.jpg

однополюсными с расцепителями тепловыми, электромагнитными или комбинированными на токи 6, 10 и 16 А.

Расцепитель любого автоматического выключателя представляет собой блок, встроенный в корпус выключателя и предназначенный для отключения выключателя под действием тока, большего того, на который он настроен.

Действие теплового расцепителя основано на изменении формы биметаллической пластинки при протекании по ней тока нагрузки выключателя, большего номинального тока этого выключателя. Пластинка действует на механизм выключения выключателя.

Электромагнитный расцепитель состоит из электромагнитов, по катушкам которых проходит ток выключателя. Электромагниты приводятся в действие только при токе аварийной перегрузки, например, заклинивания механизма, или токе короткого замыкания, и воздействуют на механизм отключения выключателя.

Комбинированный расцепитель содержит расцепители обоих видов.

Для выключателя данной величины может быть несколько расцепителей, имеющих свои разные номинальные токи, которые могут регулироваться. Уставка на ток мгновенного срабатывания, или ток отсечки, означает, что при данном токе срабатывает электромагнитный расцепитель данного выключателя.

Предельная коммутационная способность означает предельный ток, который может отключить выключатель.

Магнитные пускатели

Магнитные пускатели предназначены для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором и другими приемниками энергии.

Включение магнитных пускателей может производиться вручную с помощью кнопочного поста и автоматически с помощью датчиков автоматики непосредственно или через промежуточные реле, с помощью блок-контактов других пускателей. Отключение пускателей производится вручную или при аварийных режимах с помощью реле тепловых или реле максимального тока, при отключении сблокированных с ними других пускателей, при действии устройств автоматики.

Данные некоторых пускателей приведены в табл. 2. 26. Пускатели типа ПМЕ и ПА в таблице только нереверсивные. У реверсивных пускателей данные те же, но они состоят из двух

пускателей, сблокированных механически и электрически против одновременного включения, а в обозначении типа реверсивных пускателей последняя цифра больше на два, например, ПМЕ—111 — нереверсивный, ПМЕ—113 — реверсивный.

Пускатели ПМЕ и ПА заменяются пускателями типов ПМЛ и ПАЕ — см. табл. 2. 27, 2. 28, 2. 29.

Таблица 2. 2 6 МАГНИТНЫЕ ПУСКАТЕЛИ

2-95.jpg

Таблица 2. 27 ДАННЫЕ ПУСКАТЕЛЕЙ ПМЛ И ТЕПЛОВЫХ РЕЛЕ РТЛ

2-96.jpg

Таблица 2.28 СТРУКТУРА УСЛОВНЫХ ОБОЗНАЧЕНИЙ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ

2-97.jpg

Таблица 2.2 9 ДАННЫЕ СИЛОВОЙ ЦЕПИ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ

2-98.jpg

Тепловые реле

Данные тепловых реле приведены в табл. 2. 30.

Таблица 2. 30 ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕПЛОВЫХ РЕЛЕ

2-99.jpg

Окончание табл. 2 30

2-910.jpg

Тепловые реле могут поставляться в блоке с пускателями или отдельно.

Тепловые реле предназначены для защиты от перегрузок асинхронных электродвигателей с короткозамкнутым ротором. Так как они не защищают от коротких замыканий и сами нуждаются в такой защите, то на ответвлении к электродвигателю перед пускателем ставится автоматический выключатель с электромагнитным расцепителем.

Чувствительным элементом у реле служит термобиметалл, по которому проходит ток. У реле на большие токи имеется нихромовый нагреватель для дополнительного нагрева биметалла.

Чувствительные элементы реле включаются в две фазы электродвигателя, контакты реле включаются в цепь катушки пускателя.

Реле максимального тока

Токовые реле, или реле максимального тока, применяются для защиты асинхронных электродвигателей с короткозамкнутым ротором от внезапных перегрузок при заклинивании приводимого механизма, например, дозатора муки, ротора дробилки и т. д.

В качестве максимального реле применяются электромагнитные реле с последовательным присоединением обмоток в цепь двигателя.

Технические данные некоторых реле приведены в табл. 2. 31.

Таблица 2. 31 МАКСИМАЛЬНЫЕ РЕЛЕ

2-911.jpg
Выбор электрических аппаратов для замены вышедших из строя

На практике приходится заменять электрические аппараты любого вида. Замена требуется, когда аппарат вышел из строя полностью или когда ремонт на месте не возможен.

С течением времени меняется ток, проходящий через аппараты с изменением нагрузки от приемников энергии, заменой электродвигателей и т. д., что также влечет за собой замену аппаратов.

В таких случаях необходимы рекомендации по выбору аппаратов.

Прежде всего, степень защиты аппарата должна соответствовать условиям той среды, где он будет работать.

Номинальный ток аппарата должен быть не меньше расчетного тока нагрузки, напряжение аппарата должно соответствовать напряжению сети, где он будет применяться.

Аппараты должны быть устойчивы к току короткого замыкания, который может через них проходить, а те аппараты, которые должны отключать этот ток, должны быть устойчивы при его отключении.

Номинальный ток плавкой вставки предохранителя должен быть не меньше расчетного тока цепи, т. е. Iв>Iр.

Плавкая вставка не должна перегорать при нормальных перегрузках на данном ответвлении, например, при пусковых токах двигателей.

Предохранители не желательно устанавливать на ответвлении к одному двигателю для защиты его от тока короткого замыкания, так как при перегорании одной вставки двигатель выйдет из строя при работе на двух фазах.

Ток вставки на ответвлении, где более одного двигателя,

Iв=( Iр + Iп)/2.5

где Iр — расчетный ток ответвления, Iп — пусковой ток наиболее мощного двигателя. При тяжелых условиях пуска в знаменателе вместо 2,5 нужно ставить 1,6...2.

Плавкие вставки, установленные последовательно в сети, должны работать селективно, т. е. должна перегорать вставка, установленная ближе к месту короткого замыкания, а не наоборот. Для этого практически нужно, чтобы ток вставки, расположенной ближе к месту короткого замыкания, был на одну-две ступени ниже по шкале номинальных токов вставок.

Для автоматических выключателей номинальный ток расцепителя должен быть не меньше расчетного тока цепи, т. е. Iн,расц>=Iр- Автоматический выключатель не должен отключать установку при нормальных перегрузках.

Ток уставки регулируемого теплового расцепителя должен быть равен 1,25 расчетного тока цепи, т. е. Iуст, тепл = 1.25Iр.

Ток уставки регулируемого электромагнитного расцепителя должен быть пропорционален току наибольшей кратковременной перегрузки:

Iуст.эл-магн=1.25Iпер

Автоматы для защиты асинхронных двигателей должны удовлетворять следующим условиям.

Для двигателей повторно-кратковременного режима при ПВ = 25% или длительного режима с легкими условиями пуска

/н, а >Iн.дв Для двигателей, работающих в напряженном повторно-кратковременном режиме и для двигателей с длительным режимом работы с тяжелыми условиями пуска Iн, а>1,5Iн дв, где Iн,а — номинальный ток автомата, Iн,дв — номинальный ток двигателя.

Ток уставки электромагнитного элемента должен соответствовать:

для двигателя с короткозамкнутым ротором

Iуст, эл-магн> (1.5...1,8)Iп, для двигателя с фазовым ротором

Iуст , эл-магн > (2,5...3)Iн,дв,

где Iп — пусковой ток двигателя.

Аппараты защиты по своей отключающей способности должны соответствовать току короткого замыкания при замыкании в ближайшей точке за аппаратом. Все аппараты должны быть защищены от замыканий внутри них предохранителями или автоматами.

Реле тепловое выбирают так, чтобы максимальный ток продолжительного режима реле с данным тепловым элементом был не менее номинального тока защищаемого двигателя, ток уставки реле был равен номинальному току защищаемого двигателя, запас регулировки тока уставки на шкале реле должен быть небольшим, особенно в сторону увеличения, т. к. при большом запасе регулировки в сторону увеличения возможно загрубление защиты, когда реле не будет работать.

Монтаж и наладка электрических аппаратов

Аппараты, имеющиеся в наличии для замены вышедших из строя, часто не подходят по месту установки. Прежде всего может не подходить расположение мест крепления. Тогда приходится на месте установки аппарата делать новые отверстия для крепления, исходя из имеющихся средств. В металле отверстия могут быть сделаны пробиванием, сверлением ручной или электрической сверлильной машиной, газовой или электрической сваркой, в дереве — сверлением буравами, сверлильной машиной, в стенах или перегородках из каменных материалов — шлямбурами или сверлильными машинами с применением сверл с твердыми наконечниками. При этом для ввертывания винтов в отверстия забиваются деревянные пробки.

Может случиться, что новый аппарат по размерам не подходит в данном месте. Тогда его нужно укрепить в другом доступном месте, применив для присоединения другие провода или кабели. В случае необходимости для установки аппарата можно установить дополнительное основание, раму или каркас.

При установке аппарата в новом месте нужно обеспечить его доступность для осмотра и ремонта, доступность винта зануления (заземления), свободное открывание крышки корпуса.

Следует учесть, что предохранители типов НПН и ПН2 не являются взаимозаменяемыми по способу установки, поэтому при их взаимной замене нужно менять и устройства их фиксации — контактные стойки.

Защитные реле монтируют на вертикальной панели обычно под тем пускателем, на отключение которого они воздействуют. Если пускатель смонтирован в отдельном ящике, где предусмотрено место для реле теплового, то оно монтируется там же.

Реле тепловые типа РТН монтируют зажимами цепи управления вверх. Реле типа ТРП—25 монтируют зажимами цепи управления вниз, а остальные реле этого типа — зажимами цепи управления вверх. Между металлическим основанием и корпусом реле ТРП—25 ставят изолирующую прокладку.

Не гарантируется срабатывание реле в нужный момент, если:

рядом с реле (особенно под ним) размещен аппарат или прибор, выделяющий дополнительное тепло (резистор, реостат),

реле смонтировано в верхних, наиболее нагреваемых частях ящиков и шкафов,

реле и защищаемый двигатель установлены в местах, где значительная разница температур окружающей среды.

После монтажа аппаратов производят их наладку, в которую входят внешний осмотр, проверка работы аппаратов без напряжения, проверка схем управления, сигнализации и блокировки, измерение сопротивления изоляции, опробование работы аппаратов и схем под напряжением.

Внешний осмотр

При внешнем осмотре проверяют:

завершение всех монтажных работ;

соответствие установленных аппаратов и приборов току нагрузки защищаемого электроприемника и условиям его работы;

соответствие напряжении обмоток реле и катушек аппаратов напряжению сети;

исправность тепловых элементов реле и соответствие их току защищаемого двигателя;

отсутствие вблизи реле теплового дополнительных источников нагрева;

отсутствие механических повреждений;

правильность установки аппаратов и надежность их крепления;

состояние всех контактов аппаратов, отсутствие пыли, грязи, ржавчины, особенно в местах прилегания якоря и сердечника магнитопровода;

целость заземляющей проводки от аппаратов до мест присоединения к общей сети заземления (зануления);

отсутствие прокладок, подвязок, ограничивающих ход подвижных деталей аппаратов при транспортировке;

отсутствие перекосов контактов и подвижных механических частей, их свободный ход;

наличие и исправность возвратных пружин подвижных систем;

наличие растворов и провалов у глазных контактов и блок-контактов (см. п. 2.9.9). Величины растворов и провалов должны соответствовать прикладываемой к аппарату инструкции.

У реверсивных пускателей проверяют работу механической блокировки против одновременного срабатывания двух контакторов.

Проверка аппаратов

Аппарат отсоединяется от электрической схемы и измеряется сопротивление изоляции его токоведущих частей. Если монтаж и наладку производит один и тот же электрик, то сопротивление изоляции можно измерять до присоединении аппарата к электрической- схеме.

Проверка аппаратов на механическую регулировку включает операции по проверке и устранению замеченных отклонений от нормы:

проверка плотности прилегания якоря к ярму;

проверка крепления демпферных витков;

при необходимости зачистка главных контактов и блок-контактов;

проверка отсутствия трения между контактами и дугогасительными камерами;

проверка крепления катушки;

проверка растворов и провалов главных контактов и при необходимости их регулировка, проверка одновременности замыкания главных контактов, проверка их нажатия.

При механической регулировке производится затяжка всех гаек, винтов, установка недостающих деталей.

Проверка электромагнитных элементов автоматов и токовых реле, тепловых элементов автоматов и тепловых реле производится при их нагрузке током на специальных стендах опытными специалистами. Этими же специалистами проверяются схемы управления, сигнализации и блокировки.

Влияние контактов и контактных соединений на работу электроаппаратов

Контакты определяют коммутационную способность аппарата, производящего коммутационные операции. Коммутационными операциями называются операции включения и отключения аппаратов. Операции имеют обозначение, например, О — отключение, В — включение.

Коммутационной способностью аппарата называется его способность произвести определенное число коммутационных операций при сохранении работоспособности. Например, для автомата коммутационными операциями являются О—ВО—ВО. Обычно рассматривается предельная коммутационная способность при верхнем пределе коммутируемого тока. Но аппарат может не коммутировать ток, по величине ниже некоторого предельного, и в этом случае существует интервал критических значений токов.

На коммутационную способность аппарата влияет и характер нагрузки коммутируемой цепи. В цепях, содержащих индуктивность и емкость, происходит накопление энергии на индуктивности и емкости, и при разрыве цепи контактами аппарата происходят перенапряжения, что выражается в повышенном искрообразовании от дуги. Поэтому в цепях с такой нагрузкой коммутационная способность контактов ниже.

Повторно-кратковременный режим работы электроприемника, управляемого данным аппаратом, отрицательно влияет на контакты, так как происходит частое возникновение дуги при пусковом токе, что увеличивает износ контактов.

Приведем определения некоторых величин, относящихся к контактам.

Раствор контактов — кратчайшее расстояние между контактными поверхностями подвижного и неподвижного контактов в разомкнутом положении. Начальное нажатие контакта — нажатие пружин на контакт при разомкнутом положении контактов.

Конечное нажатие контакта — нажатие в момент окончания замыкания подвижного контакта с неподвижным.

Провал контакта — расстояние, на которое может сместиться место конечного касания подвижного контакта с неподвижным из положения полного замыкания, если будет удален жестко закрепленный контакт (подвижный или неподвижный). Значения вышеприведенных величин приведены в табл. 2. 32.

Таблица 2.32 ВЕЛИЧИНЫ РАСТВОРА И НАЖАТИЯ КОНТАКТОВ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

2-912.jpg

Раствор контактов в аппарате делается таким, чтобы не было затяжной дуги при отключении. Для исключения повторного замыкания контактов после удара механизма об упор при отключении раствор контактов делают не менее 2 мм.

На прохождение тока через контакты оказывает влияние переходное сопротивление в месте касания контактов, обусловленное наличием пленок окислов на поверхности контактов.

Большое значение в предотвращении образования пленок окислов имеет нажатие на контакты, так как оно препятствует проникновению воздуха в места контакта, разрушает пленки, снижает переходное сопротивление контактов и уменьшает их нагрев.

При наладке аппарата проверяют плотность крепления неподвижных контактов, плотность прилегания к ним подвижных контактов во включенном положении. Определение силы конечного нажатия контактов пускателя ПМЕ-211 показано на рис. 2. 6, а. Предварительно для безопасности отключается напряжение с контактов силовой цепи, потом к подвижному контакту присоединяется динамометр, например, с помощью лески, и пускатель включается. Предварительно под подвижный контакт ложится полоска тонкой бумаги. Подвижный контакт оттягивается с помощью динамометра по линии, перпендикулярной плоскости касания контактов, пока полоска бумаги не будет свободно выниматься, и в этот момент динамометр покажет силу нажатия контактов.

2-913.jpg

Определение силы начального нажатия контактов показано на рис. 2. 6, б. Полоска бумаги подкладывается под пластинчатую пружину над контактом, пускатель не включается, и контакт так же оттягивается через динамометр, пока не вынется полоска бумаги, и в этот момент определяется сила начального нажатия контакта.

Недостаточное начальное нажатие приводит к оплавлению и привариванию контактов, а чрезмерное нажатие — к нечеткому срабатыванию контактора пускателя.

При длительном прохождении тока через контакты они нагреваются тем больше, чем больше переходное сопротивление, а медные контакты также окисляются, поэтому аппараты с медными контактами для длительной работы не применяются. С увеличением нагрева контактов переходное сопротивление в месте касания контактов увеличивается до размягчения материала контактов. При размягчении увеличиваются площадки касания контактов, и сопротивление уменьшается. При достижении контактной точкой температуры плавления происходит дальнейшее уменьшение переходного сопротивления, уменьшается количество выделяемой теплоты и место контакта охлаждается, увеличиваются силы сцепления материала контактов. Если эти силы больше, чем разъединяющие силы при отключении аппарата, то его нельзя отключить, что говорит о приваривании контактов. Их можно разъединить только после снятия напряжения с аппарата механическим воздействием.

На работу аппаратов влияют различные контактные соединения, которыми они присоединяются к сети, и соединения проводников в сети.

На рис. 2. 7 показаны разборные контактные соединения;

а-г — алюминиевых проводников с выводами аппаратов, д — соединения алюминиевых шин, е-з — медных проводников с выводами аппаратов.

Особенностью алюминия является то, что он образует на поверхности деталей пленку, которая тугоплавка и обладает большим сопротивлением для тока. Поэтому перед соединением алюминиевые проводники защищаются под слоем кварцевазелиновой пасты, которая затем обтирается и проводники сразу соединяются.

Другой особенностью алюминия является текучесть при зажатии гайкой в зажиме, поэтому для присоединения кольца из провода применяются специальные шайбы — звездочки 3 при сечении провода до 10 мм2, при большей площади сечения применяются алюминиевые наконечники и тарельчатые шайбы 6. При отсутствии таких шайб может быть применена вторая гайка — контргайка.

С учетом отрицательного влияния соединений медь—алюминий на состояние контакта выводы аппаратов делают лужеными, а если они не луженые, то соединения медь—алюминий не применяются в сырых помещениях, если аппараты не герметичны.

2-914.jpg

Рис. 2.7. Разборные контактные соединения:

а) -д) присоединения алюминиевых проводников: а), б), в) — присоединения к плоским выводам электрических аппаратов; а) присоединение провода, согнутого на конце в кольцо: 1 — винт, 2 — шайба пружинная, 3 — шайба-звездочка; б), в) 4 — болт, 5 — гайка, 6 — шайба тарельчатая, 7 — шайбы, 8 — наконечники; г) присоединение к штыревому выводу: 9 — шпилька; д) соединение алюминиевых шин; е), ж) присоединение медных проводников к плоским выводам аппаратов; е) присоединение провода, согнутого на конце в кольцо: 1— винт, 2 — шайба пружинная, 3 — шайба; ж) 4— болт, 5 — гайка, 6 шайба пружинная, 7 — шайба; я) гнездовой зажим.

Для присоединения конца медного провода в виде кольца или с наконечником применяется шайба и пружинная шайба, а при отсутствии пружинной шайбы применяется контргайка.

На рис. 2.8 показаны неразборные соединения пайкой — а, прессованием — б,г, сваркой — в, д.

2-915.jpg

Рис. 2. 8. Неразборные соединения:

о) паяные соединения медных проводов. Подготовка к панке: 1 — проводов, 2 — присоединения провода к выводу; 1, 2 — готовые соединения; б) оконцевание трубчатым наконечником прессованием; в) оконцевание литым наконечником сваркой: 1 — вверху — наконечник после прессования, внизу — он же, покрытый изолентой, 2 — то же литой наконечник; г) соединение проводов прессованием. 3 — гильза; д) соединение проводов сваркой: 4 — форма; б)-д): 5 — изолента.

На рис. 2.9 показано разъемное контактное соединение для трехфазной сети. Такие соединения применяют для присоединение кабелей передвижных машин и инструментов к источнику питания. При этом для безопасности нужно помнить, что часть соединения, содержащая гнезда, присоединяется к источнику питания, стержень 1 для заземления или зануления всегда длиннее других, чтобы при соединении разъема этот стержень входил в гнездо первым, подготавливая цепь заземления или зануления, а при рассоединении выходил последним, когда силовая цепь уже рассоединена. Для предотвращения рассоединения разъема или ослабления контактов должен быть специальный замок, предотвращающий рассоединение.

На таком же принципе устроены разъемы для однофазной сети с двумя рабочими контактами и одним зануляющим или заземляющим, или просто с двумя контактами, в том числе и обычные розетки с вилками.

Нужно постоянно следить за контактами аппаратов, разъемов и соединений, так как от их состояния зависит надежность работы электроустановок.

Неисправности электрических аппаратов

Основные неисправности электрических аппаратов приведены в табл. 2.33.

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

2-916.jpg

Продолжение табл. 2.33

2-917.jpg

Продолжение табл. 2.33

2-918.jpg

Продолжение табл. 2.33

2-919.jpg

Продолжение табл. 2.33

2-920.jpg

Окончание табл. 2.33

2-921.jpg

Примечание. Несимметрия питающего напряжения обычно выражается в понижении напряжения одной из фаз. Причиной часто является сгорание зажима или перегорание предохранителя в сети до того места, где эта несимметрия ощущается. Место повреждения можно найти, измеряя напряжения в фазах относительно земли, двигаясь по направлению к питающему трансформатору. Если неисправность на участке другой службы, то об этом сообщается электрикам этой службы.

2-922.jpg

Рис. 2.10. Отсутствие касания контактов пускателя:

а) наличие препятствия между контактами; 6) контакты отпаялись от мостика.

2-923.jpg

Рис. 2.11. Неплотное прилегание якоря электромагнита пускателя:

1 — воздушный зазор.

2-924.jpg

Рис. 2.12. Неисправности кнопочного поста управления типа ПКЕ—222—2У2 — заклинивание кнопки «Ход» во включенном положении и замыкание неподвижных контактов кнопки «Стоп» по пластмассовому корпусу: 1 — место замыкания

2-925.jpg

Рис. 2.13. Автомат не отключается и его нельзя подготовить к включению — препятствие ходу рукоятки автомата при отводе ее назад.

2-926.jpg

Рис. 2.14. Нож рубильника не входит в контактную стойку.

t12.jpg

Рис. 2.9. Принцип ycтройства разъемною контактного соединения.

1 — зануляющий (заземляющий) стержень с гнездом, 2 — силовые стержни с гнездами, 3 — изоляционные распорные диски, 4 —- замок, 5 — жили кабеля, б — корпус половины разъема.

Рис. 2.10. Отсутствие касания контактов пускателя:

Изображение: 

Рис. 2.11. Неплотное прилегание якоря электромагнита пускателя:

Изображение: 

Рис. 2.12. Неисправности кнопочного поста управления типа ПКЕ—222—2У2 — заклинивание кнопки «Ход» во включенном положении и замы

Изображение: 

Рис. 2.13. Автомат не отключается и его нельзя подготовить к включению — препятствие ходу рукоятки автомата при отводе ее назад.

Изображение: 

Рис. 2.14. Нож рубильника не входит в контактную стойку.

Изображение: 

Рис. 2.6. Контакты пускателя ПМЕ-211

Изображение: 

Рис. 2.7. Разборные контактные соединения

Изображение: 

Рис. 2.8. Неразборные соединения

Изображение: 

Рис. 2.9. Принцип ycтройства разъемною контактного соединения.

Изображение: 

Таблица 2.23 ДАННЫЕ О РУБИЛЬНИКАХ И ПЕРЕКЛЮЧАТЕЛЯХ

Изображение: 

Таблица 2.24 ДАННЫЕ НЕКОТОРЫХ ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ

Изображение: 

Таблица 2.25 АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ (окончание)

Изображение: 

Таблица 2.25 АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ (продолжение)

Изображение: 

Таблица 2.25 АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ

Изображение: 

Таблица 2.26 МАГНИТНЫЕ ПУСКАТЕЛИ

Изображение: 

Таблица 2.27 ДАННЫЕ ПУСКАТЕЛЕЙ ПМЛ И ТЕПЛОВЫХ РЕЛЕ РТЛ

Изображение: 

Таблица 2.28 СТРУКТУРА УСЛОВНЫХ ОБОЗНАЧЕНИЙ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ

Изображение: 

Таблица 2.29 ДАННЫЕ СИЛОВОЙ ЦЕПИ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ

Изображение: 

Таблица 2.30 ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕПЛОВЫХ РЕЛЕ (окончание)

Изображение: 

Таблица 2.30 ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕПЛОВЫХ РЕЛЕ

Изображение: 

Таблица 2.31 МАКСИМАЛЬНЫЕ РЕЛЕ

Изображение: 

Таблица 2.32 ВЕЛИЧИНЫ РАСТВОРА И НАЖАТИЯ КОНТАКТОВ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Изображение: 

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ (окончание)

Изображение: 

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ (продолжение 1)

Изображение: 

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ (продолжение 2)

Изображение: 

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ (продолжение 3)

Изображение: 

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ (продолжение 4)

Изображение: 

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Изображение: 

2.10. Электрические машины

2.10. Электрические машины

2.10.1. Общие понятия

2.10.1. Общие понятия

Электрическая машина является электромеханическим преобразователем, в котором преобразуется механическая энергия в электрическую или электрическая энергия в механическую.

В зависимости от рода отдаваемого или потребляемого тока электрические машины разделяются на машины переменного и постоянного тока.

Машины переменного тока делятся на синхронные, асинхронные и коллекторные.

В синхронной машине поле возбуждения создается обмоткой, расположенной на роторе и питающейся постоянным током. Обмотка статора соединяется с сетью переменного тока. Обращенная схема, когда обмотка возбуждения расположена

на статоре, встречается редко. В синхронной машине обмотка, в которой индуцируется ЭДС и протекает ток нагрузки, называется обмоткой якоря, а часть машины с этой обмоткой называется якорем. Часть машины, на которой расположена обмотка возбуждения, называется индуктором.

Синхронные машины применяются в качестве генераторов и двигателей.

В асинхронной машине поле создается в обмотке статора и взаимодействует с током, наводимым в обмотке ротора.

Среди асинхронных машин коллекторными являются однофазные двигатели малой мощности.

Асинхронные машины применяются в основном в качестве двигателей.

Машина постоянного тока по своему конструктивному выполнению сходна с обращенной синхронной машиной, у которой обмотка якоря расположена на роторе, а обмотка возбуждения — на статоре. Большинство машин постоянного тока коллекторные. Они могут работать в качестве генераторов или двигателей.

По мощности электрические машины можно разделить на следующие группы.

Машины большой мощности:

коллекторные машины мощностью более 200 кВт;

синхронные генераторы мощностью более 100 кВт;

синхронные двигатели мощностью более 200 кВт;

асинхронные двигатели мощностью более 100 кВт при напряжении более 1000 В.

Машины средней мощности:

коллекторные машины мощностью 1...200 кВт;

синхронные генераторы мощностью до 100 кВт, в том числе высокоскоростные мощностью до 200 кВт;

асинхронные двигатели мощностью 1...200 кВт;

асинхронные машины мощностью 1...400 кВт при напряжении до 1000 В, в том числе двигатели единых серий от 0,25 кВт.

К группе машин малой мощности относятся следующие электрические машины, не входящие в первые две группы:

двигатели постоянного тока коллекторные и универсальные;

асинхронные двигатели, синхронные двигатели и др.

2.10.2. Асинхронные машины

2.10.2. Асинхронные машины

Схема асинхронной машины показана на рис. 2. 15. В схеме асинхронной машины и ее принципе действия есть сходство с трансформатором. Отличие заключается в том, что вторич ная обмотка размещается на вращающемся роторе и не связана с внешней сетью. На схеме рис. 2. 15, а эта обмотка состоит из стержней, замкнутых накоротко, что соответствует двигателю с короткозамкнутым ротором, а в двигателях с фазовым ротором она соединяется с внешними сопротивлениями — рис. 2. 15, б.

2-10-21.jpg

Рис. 2. 15. Схемы асинхронной машины:

а) асинхронный двигатель с короткозамкнутым ротором; 6) асинхронный двигатель с фазным ротором; 1 — обмотки статора, 2 — ротор с короткозамкнутыми стержнями, 2 обмотки фазного ротора, 3 — контактные кольца, 4— сопротивления в цепи фазного ротора.

Обмотка статора равномерно распределена по его окружности. Обмотки фаз статора соединяются в звезду или в треугольник.

При питании трехфазной обмотки статора трехфазным током, создается вращающееся магнитное поле, частота вращения которого

n1=60f1/p

где f1 — частота тока питающей сети, Гц, р — число пар полюсов обмотки статора.

Вращающийся магнитный поток Ф индуцирует в обмотках статора и ротора ЭДС E1 и E2. Под действием ЭДС E2, в обмотке ротора возникает ток I2 при взаимодействии которого с магнитным полем создается электромагнитный вращающий момент М. Величина ЭДС ,E2; и частота ее изменения f2 зависят от скорости пересечения магнитным полем статора Ф витков обмотки ротора. Частоту вращения поля ротора обозначим n2.

Частота пересечения магнитным полем статора обмотки ротора является относительной частотой поля статора относительно ротора и равна разности n1— n2. Если разность равна 0, то нет движения поля статора относительно ротора, нет ЭДС E2 и тока I2 и вращающего момента М. При увеличении разности n1 — n2 величины E2, l2, f2 и М увеличиваются.

Условием работы асинхронной машины является неравенство частот вращения поля статора и ротора, поэтому машина и называется асинхронной, т. е. несинхронной.

Относительная разность частот вращения поля статора и ротора

s=n1-n2/n1

называется скольжением. Выражение частоты вращения ротора через скольжение:

n2 =n1(1-s).

Асинхронные электродвигатели. Серии двигателей.

Первая серия асинхронных электродвигателей — серия А — была разработана в 1946-1949 гг. Она состояла из семи габаритов в диапазоне мощностей от 0,6 до 100 кВт. В серии предусмотрены защищенные двигатели типа А и впервые — закрытые обдуваемые типа АО. В серии был предусмотрен ряд модификаций по конструкции и характеристикам.

Обозначения в данной серии следующие.

Защищенное исполнение.

Оболочка чугунная — А, алюминиевая — АЛ.

Закрытое обдуваемое исполнение.

Оболочка чугунная — АО, алюминиевая — АОЛ.

Пример обозначения: А031-4, А032-4, где цифры обозначают:

3 — габарит, или наружный размер статора;

1 и 2 — длина машины;

4 — число полюсов.

Новая серия А2 была разработана в 1957-1959 гг. с учетом рекомендаций Международной электротехнической комиссии (МЭК). Серия состояла из девяти габаритов двигателей с высотами оси вращения от 90 до 280 мм, шкалы мощностей из 19 ступеней от 0,6 до 100 кВт.

Обозначения двигателей серии А2 такие же, как и серии А, только после А стоит цифра 2.

Для различных условий работы имеются модификации двигателей.

По исполнению двигатели могут быть в химостойком А02...Х, влагоморозостойком А02...ВМ, сельскохозяйственном А02...СХ исполнениях.

Другие модификации обозначаются:

П — двигатели с повышенным пусковым моментом;

С — с повышенным скольжением;

К — с фазным ротором.

Электродвигатели с повышенным скольжением предназначены для привода механизмов с большими массами и неравномерным ударным характером нагрузки, с большой частотой пусков и реверсов. Двигатели не имеют твердой шкалы мощностей.

2-10-22.jpg

Рис. 2.16. Схемы присоединения выводных концов многоскоростных электродвигателей для получения различных частот вращения:

Цифры под схемами показывают количество полюсов обмотки, получаемое при данной схеме. Буквы под схемами означают: А-Г— двухскоростные двигатели, Д, Е — трехскоростные двигатели, Ж — четырехскоростные двигатели.

Многоскоростные электродвигатели предназначены для привода механизмов со ступенчатым регулированием частоты вращения и не имеют твердой шкалы мощностей. Схемы включения многоскоростных электродвигателей приведены на рис. 2.16.

Цифры под каждой схемой означают число полюсов обмотки статора, которое соответствует данной схеме и определяет синхронную частоту вращения двигателя. Как известно, синхронная частота вращения двигателя, т. е. частота вращения магнитного поля статора

n=60f /p

где f= 50 Гц — частота сети, р — число пар полюсов.

По этой формуле можно определить синхронную частоту вращения двигателя для каждой схемы включения при известном числе пар полюсов, соответствующих данной схеме включения многоскоростного двигателя.

Номера подшипников двигателей данной серии приведены в табл. 2.34.

Таблица 2.34 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ А02

2-10-23.jpg

Примечание: способы монтажа: М10 — на лапах, М20 — на лапах и с фланцем, МЗ0 — с фланцем.

Электродвигатели серии 4А

На основе международных рекомендаций в странах — членах бывшего Совета экономической взаимопомощи (СЭВ) в 1969—1972 гг. были разработаны новые серии электродвигателей, а в СССР — серия 4А.

Серия включает все двигатели общего назначения мощностью до 400 кВт напряжением до 1000 В. В серии повышена мощность двигателей при тех же высотах оси вращения на 2...3 ступени по сравнению с двигателями серии А02 за счет применения новых материалов и рациональной конструкции. Впервые в мировой практике в серии были стандартизированы показатели надежности. Серия имеет модификации и специализированные исполнения. По степени защиты предусмотрены исполнения IP44 и IP23.

Пример обозначения типа двигателя:

4АН200М4УЗ,

где 4 — номер серии, А — асинхронный, Н — степень защиты IP23, для закрытых двигателей обозначение не дается, далее может быть буква А, означающая алюминиевые станину и щиты, х — алюминиевая станина и чугунные щиты, если станина и щиты чугунные, никакого обозначения не дается, 200 — высота оси вращения, мм, М или S, L — условная длина станины.

Далее возможны буквы А или В, обозначающие длину сердечника статора, отсутствие букв означает одну длину в установочном размере, 4 — число полюсов, У — для умеренного климата, 3 — категория размещения.

Специализированные исполнения двигателей по условиям окружающей среды:

тропического исполнения Т, буква ставится после числа полюсов, например, 4A132S2T2, категории размещения 2 и 5;

для районов с холодным климатом исполнения ХЛ, например, 4А132S2ХЛ2, категории размещения 2 и 5;

химически стойкого исполнения X, например, 2А90L2ХУ5, категории размещения 3 и 5;

сельскохозяйственного исполнения СХ, например, 4А160М4 СХУ2, категории размещения 1—5.

Технические данные некоторых двигателей серии 4А приведены в табл. 2.35.

Модификации двигателей:

двигатели с повышенным пусковым моментом;

с повышенным скольжением;

многоскоростные, с фазовым ротором, двигатели с встроенным электромагнитным тормозом.

Таблица 2.35 ТЕХНИЧЕСКИЕ ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ 4А

2-10-24.jpg

Приняты следующие классы изоляции обмоток двигателей:

высота оси вращения 56,63 мм — Е,

высота оси вращения 71...132 мм — В,

высота оси вращения 160...355 мм — F.

Номера подшипников двигателей показаны в табл. 2.36.

Таблица 2.36 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ 4А

2-10-25.jpg

Унифицированная серия асинхронных двигателей Интерэлектро АИ

Серия разработана в рамках международной организации Интерэлектро, объединявшей электротехников стран — бывших членов СЭВ. Координатором работ по созданию серии был СССР.

Разработаны и выпускаются различные модификации двигателей в зависимости от условий среды и назначения.

Двигатели выполняются в основном со степенями защиты IР54 или IР44, а при высотах осей вращения 200 мм и более — со степенью защиты IР23.

Конструктивное исполнение машин обозначается буквами IМ с четырьмя цифрами. Первая цифра обозначает группу конструктивных исполнений:

1 — на лапах, с подшипниковыми щитами;

2 — на лапах, с фланцем на щите или щитах;

3 — без лап, с подшипниковыми щитами и с фланцем на одном щите.

Вторая и третья цифры обозначают способ монтажа, четвертая — исполнение конца вала.

Двигатели серии имеют ряд мощностей диапазоном от 0,025 до 400 кВт, ряд высот осей вращения — от 45 до 355 мм.

Двигатели с высотами осей вращения до 71 мм выполняются на напряжение 380 В, остальные — 380 и 660 В при частоте 50 Гц, в экспортном исполнении — 60 Гц.

Обозначения двигателей серии

Пример базового обозначения:

АИР100М4,

где АИ — серия, Р — вариант увязки мощности с установочными размерами (может быть обозначение С), 100 — высота оси вращения, М — длина корпуса по установочным размерам, 4 — число полюсов.

Пример основного обозначения:

АИРБС100М4НПТ2,

где АИР100М4 — базовое обозначение, Б — закрытое исполнение с естественным охлаждением без обдува, С — с повышенным скольжением, Н — малошумные, П — с повышенной точностью установочных размеров, Т — для тропического климата, 2 — категория размещения. Пример полного обозначения:

АИРБС100М4НПТ2 220/380 В, 60 IМ2181, КЗ-11-3, F100,

где 60 — частота сети, 1М2181 — исполнение по способу монтажа и концу вала, КЗ—11—3 — исполнение выводного устройства и количество штуцеров, F100 — исполнение фланцевого щита. Буквы IM — первые буквы английских слов International Mounting, означающих монтаж по международным нормам. Данные некоторых двигателей серии приведены в табл. 2.37.

Типы и номера подшипников для двигателей серии АИ приведены в табл. 2.38.

Выбор электродвигателей

Тип, мощность и частота вращения двигателя для данного механизма обычно известны по паспорту установленного на нем двигателя, а если неизвестны, то потребная мощность двигателя рассчитывается по специальным формулам для каждого механизма.

Таблица 2.37 ТЕХНИЧЕСКИЕ ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ АИ

2-10-26.jpg

Таблица 2.38 ПОДШИПНИКИ-ДВИГАТЕЛЕЙ СЕРИИ АИ

2-10-27.jpg

Частота вращения двигателя должна быть равна частоте. вращения, необходимой для приводимого механизма, если их валы соединяются непосредственно, или должна быть больше потребной частоты вращения механизма с учетом уменьшения ее редуктором, установленным между валами двигателя и механизма.

Для выбора электродвигателя надо знать режим работы механизма, который он будет приводить в движение, и условия среды, в которой будут работать механизм с двигателем.

Могут быть следующие режимы работы в соответствии с режимами работы приводимых механизмов.

S1 — номинальный режим работы, при котором двигатель работает достаточно длительно с номинальной мощностью при достижении установившейся температуры.

S2 —- кратковременный режим с длительностью периода неизменной номинальной нагрузки 10, 30, 60 и 90 мин.

S3 — повторно-кратковременный режим с продолжительностью включения ПВ = 15, 25 и 60%, продолжительность одного цикла принимается равной 10 мин.

S4 — повторно-кратковременный с частыми пусками, с ПВ = 15, 25, 40 и 60%, с числом включений в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5; 4; 6,3 и 10, где коэффициент инерции F — отношение момента инерции нагрузки к моменту инерции ротора двигателя.

S5 — повторно-кратковременный с частыми пусками и электрическим торможением с ПВ = 15, 25, 40 и 60%, с числом включений в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5; 4.

S6 — перемежающийся, с ПВ = 15, 25, 40 и 60%, продолжительность одного цикла 10 мин.

S7 — перемежающийся с частыми реверсами при электрическом торможении, с числом реверсов в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5; 4.

S8 — перемежающийся с двумя или более частотами вращения, с числом циклов в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5 и 4.

Зная потребные мощность и частоту вращения двигателя, можно его выбрать по каталогу с ближайшей большей мощностью по сравнению с расчетной, но выбирать нужно из двигателей такого исполнения, которое соответствует условиям внешней среды, где будет установлен двигатель, и режиму работы механизма.

Если нет двигателя в исполнении, соответствующем внешней среде, то приходится применять двигатель в нормальном исполнении, но тогда нужно принять меры для защиты его от влияния внешней среды (будка, навес, обертка целлофаном и т. д.), при этом важно не нарушить нормального охлаждения двигателя при работе.

Монтаж двигателей

Двигатель небольшой мощности, поступающий вместе с механизмом, обычно установлен на раме и соединен передачей с механизмом.

Двигатели большой мощности для транспортировки снимаются и перевозятся отдельно. Для них также готово место на механизме или специальная рама, которая укрепляется болтами, приваривается и заливается бетоном. Монтаж двигателя в

таких случаях заключается в установке его на подготовленное место, что делается силами собственного электрохозяйства или при большом объеме работ силами специализированных монтажных организаций. При этом двигатель укрепляется, присоединяется к механизму через имеющуюся передачу и присоединяется к электрической сети. Остальные работы выполняются при наладке.

При монтаже двигателя прежде всего обращается внимание на положение осей валов двигателя и механизма. Если валы соединяются непосредственно, то их оси должны лежать на одной линии. Это лучше всего проверить по положению торцовых частей полумуфт: если они параллельны, то оси лежат на одной линии, при этом также должны совпадать боковые части полумуфт. Положение оси двигателя при креплении его на лапах можно регулировать подкладками под лапы около болтов крепления. При фланцевом креплении двигателя правильное положение осей обеспечивается равномерной затяжкой болтов крепления. Для предупреждения откручивания гаек и ослабления крепления двигателя под гайки подкладываются сначала обычные плоские шайбы, а на них пружинные. При отсутствии пружинных шайб могут применяться вторые гайки — контргайки.

Замена двигателей

Замена двигателей производится, когда они выходят из строя и снимаются для капитального ремонта. Сама замена не сложна, если готов такой же двигатель для замены. Но в электрохозяйстве может быть установлено множество двигателей различных типов и мощностей, поэтому для каждого двигателя может не быть такого же для замены.

Но при наличии соответствующего двигателя для замены могут быть сложности, так как на валу двигателя может быть деталь для передачи вращения — шкив, звездочка, шестерня и т. д., и может оказаться, что ее не снять имеющимися средствами. В таком случае можно заменить только статор двигателя, оставив ротор с деталью для передачи вращения старым, вместе с передним щитом двигателя.

Меняется только статор и в том случае, если вал двигателя имеет специальную конструкцию — удлиненный или с двумя рабочими концами, и нет двигателя с таким валом.

Для двигателя с фланцевым креплением, не имеющего лап, можно установить статор с лапами, если они не будут мешать монтажу.

Если у вышедшего из строя двигателя со сгоревшей изоляцией обмотки имеются дефекты подшипников, то можно заменить его статор при одновременной замене подшипников. При наличии дефектов вала и вышедшем из строя статоре меняется весь двигатель.

При исправном статоре и вышедших из строя подшипниках или неисправном вале меняются подшипники или весь вал с подшипниками, взятый со старого двигателя такого же типа.

При отсутствии взаимозаменяемых деталей двигателя приходится менять весь двигатель.

При отсутствии для замены двигателя той же серии можно его заменить двигателем другой серии, при этом полезно знать взаимозаменяемые двигатели разных серий. В табл. 2.39 приводятся пары взаимозаменяемых двигателей серии А02 и 4А с одинаковыми диаметрами концов валов и окружностями крепления фланцев фланцевых двигателей.

Таблица 2.39 ВЗАИМОЗАМЕНЯЕМЫЕ ДВИГАТЕЛИ

2-10-28.jpg

У последней пары двигателей не совпадают диаметры окружностей отверстий крепления фланцев. У двигателей серии 4А буквы S, М или L, М обозначают условные длины статора, при которых диаметры валов одинаковы, указаны число полюсов обмотки статора, при которых диаметры валов одинаковы.

У остальных близких по мощности и частоте вращения двигателей диаметры валов не совпадают. При этом не следует пытаться заменить только статор, потому что у разных серий двигателей, хотя они близки по параметрам, статоры разные.

Если диаметр вала двигателя не совпадает с диаметром отверстия насаживаемой на этот вал детали, то его нужно привести в соответствие с этой деталью или наоборот.

Если диаметр вала больше, то его можно обточить на токарном станке, а потом сделать новую шпоночную канавку. При этом если двигатель помещается на токарном станке без разборки, то его можно не разбирать.

Отверстие детали, насаживаемой на вал, можно рассверлить или расточить и сделать новую шпоночную канавку.

Если диаметр вала меньше, чем отверстие насаживаемой на него детали, то можно напрессовать на него или запрессовать в отверстие насаживаемой детали втулку и сделать в ней шпоночную канавку. Если из-за малой разницы размеров вала и отверстия втулку выточить нельзя, то можно ее сделать из листового железа.

Близкие по техническим данным двигатели разных серий имеют разные высоты осей вращения.

Допустим, высота оси вращения нового двигателя больше высоты оси вращения старого. Если при этом оси двигателя и вала механизма находятся на одной линии, то нужно опускать раму двигателя, если позволяют условия. При невозможности опустить раму двигателя нужно поднимать механизм, приводимый в движение этим двигателем, на величину разницы высот осей вращения двигателя и механизма.

Если высота оси вращения нового двигателя меньше, чем старого, то можно подложить под него подкладки или поднять его раму.

Если оси двигателя и механизма параллельны, то новый двигатель можно сдвинуть параллельно в плоскости рамы или с самой рамой.

Как правило, у двигателей разных серий с близкими по значению мощностями и частотами вращения не совпадают расстояния между отверстиями крепления на лапах, а у некоторых и на фланцах. В таких случаях на раме просверливаются новые отверстия. Если размеры рамы не позволяют сделать этого, то к раме можно приварить дополнительные плоскости для отверстий.

При сильном расхождении мест крепления старого и нового двигателя можно применить промежуточную плиту из толстого листового железа, в которой сделать отверстия для креплений к ней двигателя и отверстия для крепления плиты к старой раме.

При обработке отверстия детали, насаживаемой на новый двигатель, важно знать диаметр рабочего конца вала нового двигателя. В табл. 2.40 показаны диаметры рабочих концов валов двигателей серии 4 А при данных высотах осей вращения. При этом для двигателей с высотой оси вращения до 132 мм диаметры концов валов для всех частот вращения одинаковы, а с высотами оси вращения 160 мм и более двигатели с частотой вращения 3000 об/мин имеют меньшие диаметры концов валов, чем двигатели на другие частоты вращения.

Таблица 2.40 ДИАМЕТРЫ (d) РАБОЧИХ КОНЦОВ ВАЛОВ ДВИГАТЕЛЕЙ СЕРИИ 4А В ЗАВИСИМОСТИ ОТ ВЫСОТ ОСЕЙ ВРАЩЕНИЯ (h)

2-10-29.jpg

Подготовка двигателей к включению в сеть и к работе

После монтажа нового двигателя вместе с новым механизмом или после замены двигателя производится его подготовка к включению с целью выявления неисправностей и дефектов монтажа не только двигателя, но и электрического и механического оборудования, с ним связанного.

При больших объемах работ подготовка к включению производится при наладке электрического и механического оборудования силами специализированных пуско-наладочных организаций по специальной программе.

При подготовке двигателей к включению и к работе производится:

внешний осмотр;

проверка схемы соединения обмоток;

измерение сопротивления изоляции

пробный пуск двигателя;

проверка работы двигателя на холостом ходу и под нагрузкой.

Внешний осмотр

При внешнем осмотре проверяются:

соответствие данных паспорта электродвигателя проекту, механизму и условиям окружающей среды в месте работы двигателя;

отсутствие механических повреждений корпуса, коробки выводов, вентилятора охлаждения;

отсутствие повреждений подводящих проводов (нарушений изоляции, скрытых под изоляцией обрывов и изломов);

возможность вращения вала от руки, отсутствие заеданий и торможений; вращение ротора проверяется воздействием на деталь, установленную на валу или, при ее недоступности, на вентилятор двигателя. Если ротор двигателя не вращается, то нужно отсоединить механизм, так как причина может быть в нем. Если ротор двигателя, отсоединенного от механизма, не вращается, то это означает, что он заклинен. Заклинивание может произойти при падении двигателя при неосторожной погрузке или разгрузке, от ржавчины в воздушном зазоре между статором и ротором в результате хранения в условиях повышенной влажности, от ржавчины в подшипниках при плохой смазке и наличии сырости. При заклинивании ротора двигатель должен быть разобран, найдена и устранена причина заклинивания;

наличие заземляющих проводников от электродвигателя до места присоединения к сети заземления.

Проверка схемы соединения обмоток

Большинство двигателей в коробках зажимов имеют шесть выводов, соответствующих началам и концам их фазных обмоток. Обозначения выводов электрических машин, соответствующие стандарту, показаны в табл. 2.45, 2.46.

Обычно выводы всех фаз обмотки статора двигателя расположены в коробке зажимов согласно рис. 2.17, а. Такое расположение дает возможность получить соединение фазных обмоток статора в звезду при соединении горизонтально перемычками нижних зажимов и в треугольник при соединении вертикальных пар зажимов (рис. 2.17, б, в).

В некоторых двигателях обмотки фаз статора соединены в звезду и в коробке зажимов находятся только выводы С1, С2 и С3.

Следует учесть, что выводные концы обмоток фаз двигателя одеваются на шпильки и прижимаются гайками, которые

могут быть слабо затянуты, поэтому нужно проверять крепление выводных концов их пошатыванием. При слабом креплении этих концов нужно отсоединять подводящие провода и перемычки и затягивать гайки крепления выводных концов обмотки двигателя.

2-10-210.jpg

Рис. 2.17. Выводы обмоток статора трехфазного асинхронного электродвигателя:

а) схема присоединения начал и концов обмоток к зажимам колодки в выводной коробке; б) схема включения обмоток статора в звезду и соединение выводных зажимов; в) схема включения обмоток статора в треугольник и соединение выводных зажимов.

Измерение сопротивления изоляции

Об измерении сопротивления изоляции рассказано в гл. 5. Величина сопротивления изоляции электродвигателя согласно ПУЭ не нормируется, но в стандарте указано, что величина сопротивления изоляции электрических машин должна быть не менее 1 кОм на 1 В номинального напряжения машины.

Пробный пуск двигателя

Электродвигатель включают на 2...3 с и проверяют:

направление вращения;

работу вращающихся частей двигателя и вращающихся и движущихся частей механизма;

действие пусковой аппаратуры.

При любых признаках неисправности электрической или механической части двигатель останавливается и неисправности устраняются.

Нужное направление вращения механизма бывает на нем обозначено стрелкой. Нужно также помнить, что при правильном направлении вращения рабочих колес турбомашин (насосов, вентиляторов и т. д.) их лопатки загнуты назад относительно направления вращения.

Правильное направление вращения двигателей транспортирующих машин (транспортеров, шнековых и ковшовых подъемников и др.) определяется по движению их рабочих органов.

Для изменения вращения двигателя достаточно отсоединить от зажимов два провода, подводящих напряжение к двигателю, поменять их местами и снова присоединить. Обычно это делается на выходе пускового аппарата.

Кратковременное включение повторяют 2—3 раза, увеличивая продолжительность включения.

Проверка электродвигателя на холостом ходу и под нагрузкой

Проверку электродвигателя на холостом ходу производят при отсоединенном механизме. Если отсоединить механизм нельзя, то проводится проверка при ненагруженном механизме. Продолжительность проверки — 1ч.

При этом проверяют нагрев подшипников, корпуса двигателя, наличие вибрации, характер шума подшипников.

При ненормальном шуме подшипников и их перегреве двигатель приходится разбирать и устранять причину. При невозможности устранить причину ненормальной работы подшипника он заменяется.

При повышенном нагреве корпуса двигателя (большем, чем у других нормально работающих двигателей) он останавливается и производится проверка прилегания контактов в аппаратах, через которые подводится напряжение к двигателю, проверка плотности затягивания зажимов проводов, начиная от выводных концов в коробке двигателя.

При исправности цепи, подводящей напряжение к двигателю, и его повышенном нагреве он должен отправляться в капитальный ремонт. Перед этим у него должно быть проверено соответствие обозначений выводных концов фазных обмоток, измерено сопротивление обмоток постоянному току, что делается при наладке опытными специалистами.

О других неисправностях и их устранении можно узнать ниже по табл. 2.44, далее рассказано об устранении вибраций.

. После проверки двигателя на холостом ходу начинается его проверка под нагрузкой. При нормальной работе двигателя в течение 20...30 мин с механизмом далее продолжается его обкатка вместе с механизмом не менее 8 ч. При этом прирабатываются подвижные детали механизмов, проверяется на нагрев электрооборудование, выявляются его слабые места. Режим обкатки определяется механиками, производившими монтаж технологического оборудования.

Способы пуска в ход асинхронных двигателей

Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д.

На практике применяются следующие способы пуска:

непосредственное присоединение к сети — прямой пуск;

понижение напряжения при пуске;

включение сопротивления в цепь ротора в двигателях с фазовым ротором.

Прямой пуск

Прямой пуск применяется для двигателей с короткозамкнутым ротором. Для этого они проектируются так, чтобы пусковые токи, протекающие в обмотке статора, не создавали больших механических усилий в обмотках и не приводили к их перегреву. Но при прямом пуске двигателей большой мощности в сети могут возникать недопустимые, более 15%, падения напряжения, что приводит к неустойчивой работе пусковой аппаратуры (дребезжание), подгоранию контактов и практически к невозможности пуска. Такие явления могут быть в маломощной сети или при большом удалении от подстанции пускаемого двигателя.

Прямой пуск двигателя от маломощной сети

В маломощной сети условия пуска двигателя ухудшаются для самого двигателя, ухудшается работа уже включенных двигателей и ламп накаливания, поэтому должны быть ограничения по мощности двигателя в зависимости от вида нагрузки сети и количества пусков двигателя.

Существуют следующие ограничения мощности двигателя.

Трансформатор, питающий чисто силовую сеть:

20% мощности трансформатора при частых пусках;

30% мощности трансформатора при редких пусках.

Трансформатор имеет смешанную нагрузку:

4% мощности трансформатора при частых пусках;

8% мощности трансформатора при редких пусках.

Электростанция малой мощности — 12% мощности электростанции.

В маломощных сетях следует ограничивать число пусков сравнительно мощных двигателей, при затруднении их пуска по возможности отключать другие двигатели.

Пуск при пониженном напряжении

Этот способ пуска применяется для двигателей средней и большой мощности при ограниченной мощности сети. Рассмотрим некоторые способы понижения напряжения при пуске.

Переключение обмотки статора двигателя с пусковой схемы звезда на рабочую схему треугольник

Для лучшего понимания способа пуска разберем схемы соединения обмоток двигателей и влияние этих схем на величину фазного напряжения двигателя при заданном линейном напряжении.

Обмотки двигателей могут соединяться звездой или треугольником. Тип соединения определяет соотношение между напряжением на зажимах двигателя и напряжением на фазах его обмотки, т. е. номинальным напряжением двигателя. Напряжение на зажимах двигателя измеряется между его зажимами и называется линейным, и на фазе обмотки — между ее началом и концом и называется фазным. Как известно, при соединении треугольником напряжения линейное и фазное равны, а при соединении звездой линейное напряжение больше фазного в 3^-0.5 раз.

Двигатель может иметь в коробке зажимов три или шесть концов. При наличии шести концов возможно соединение двигателя звездой или треугольником в зависимости от напряжения сети, к которой будет присоединяться двигатель, и его номинального напряжения.

Если номинальное напряжение двигателя 220 В, то при линейном напряжении сети 380 В его нужно соединять звездой, а при линейном напряжении сети 220 в — треугольником. При номинальном напряжении двигателя 380 В и линейном напряжении сети 380 В двигатель нужно соединять треугольником, а при линейном напряжении сети 660 В — звездой.

Как соединять выводные концы двигателя при различных схемах соединения его обмоток, видно из схем соединение обмоток, показанных на рис. 2.17, б, в, где указаны стандартные обозначения концов и начал фазных обмоток двигателя.

Если в коробке зажимов двигателя имеется три вывода обмоток с зажимами, то он имеет определенную схему соединения обмоток в зависимости от напряжения, на которое он рассчитан.

Схема пуска двигателя включением на пусковую схему звезда и с переключением на рабочую схему треугольник показана на рис. 2.18.

2-10-211.jpg

Рис. 2.18. Схема пуска трехфазного асинхронного электродвигателя включением на пусковую схему «звезда» и с переключением на рабочую схему «треугольник»:

SB1— кнопка КМЕ4201 (красная); SB2— кнопка КМЕ4201 (черная); КМ2.1, КМ2.2— пускатель ПМА-3100У4, 220 В; КТ1 — промежуточное реле РПЛ2204, 220 В, пневмоприставка ПВЛ1104; М2 — электродвигатель А02-72-2,30 кВт, 2910 об/мин;

QF2 —выключатель автоматический АЕ2046, 63 A; SF2 —выключатель автоматический А63, 4 A; QS1 —выключатель пакетный ПВЗ—100.

Перед пуском двигателя включаются выключатели QS1, QF2 и SF2. При нажатии на кнопку SB2 включается пускатель КМ2.1, соединяющий концы фазных обмоток двигателя в звезду. Одновременно включается реле времени КТ1, замыкая контакт КТ1.3, шунтирующий контакты кнопки SB2. С выдержкой времени, необходимой для разгона двигателя, отключается контакт КТ1.1 реле времени, отключая пускатель КМ2.1, и включается контакт КТ1.2, включающий пускатель КМ2.2, переключающий концы фазных обмоток двигателя на треугольник, и двигатель продолжает работать.

Так как при пуске двигателя при подключении по схеме звезда фазное напряжение обмотки уменьшается в 3^0.5 раз по

сравнению со схемой треугольник, то фазные токи также уменьшаются в 3^-0.5 раз, которые равны линейным токам при этой схеме. Но при схеме треугольник, являющейся рабочей в данном случае, фазные токи меньше линейных в 3^-0.5 раз, а при пусковой схеме звезда получается еще уменьшение фазных токов в 3^-0.5 раз, и в результате линейные токи, равные фазным при пусковой схеме звезда, уменьшаются в 3 раза.

После разгона двигателя обмотка его статора переключается на нормальную схему треугольник, поэтому схема пуска двигателя кратко называется схемой пуска переключением со звезды на треугольник.

2-10-212.jpg

Рис. 2.19. Схема пуска трехфазного асинхронного электродвигателя с помощью тиристорного регулятора напряжения (ТРН).

Пуск электродвигателя с помощью тиристорного регулятора напряжения

Схема включения двигателя с помощью тиристорного регулятора напряжения представлена на рис. 2.19. В регуляторе напряжения в каждый фазный провод включаются встречно-параллельно два тиристора, один из которых работает условно в положительный полупериод напряжения сети, а другой в отрицательный. Регулирование напряжения на выходе регулятора осуществляется изменением времени включения каждого тиристора относительно момента, когда ток должен переходить с одного из трех тиристоров на другой (базовая точка), путем подачи на тиристор управляющего импульса, что дает возможность изменять время протекания тока через тиристор в течение полупериода напряжения сети и напряжение на его выходе, подаваемое на нагрузку, в данном случае на двигатель. Это напряжение не является синусоидальным, и его можно представить как среднее напряжение, которое можно менять, изменяя продолжительность работы тиристора в течение

полупериода. Время включения тиристора относительно базовой точки выражается в градусах и называется углом регулирования [7]. Изменяя угол регулирования тиристоров, можно получить необходимое напряжение для плавного пуски двигателя.

Пуск электродвигателя с фазовым ротором

Схема включения двигателя с фазовым ротором и получаемые при пуске механические характеристики показаны на рис. 2.20. Двигатель имеет контактные кольца, которые позволяют включать в цепь ротора при пуске добавочные сопротивления R1 и R2. В начале пуска включены обе ступени сопротивлений, при этом получается наибольший пусковой момент Мп1, разгон происходит по механической характеристике 1, частота вращения увеличивается, но не достигает номинальной и в точке б происходит отключение первой ступени сопротивлений R1 контроллером при замыкании контактов К1.1 и К1.2. При постоянной частоте вращения происходит увеличение пускового момента до Мп1 и снова разгон по характеристике 2 с более высокой частотой вращения. В точке г отключается вторая ступень R2 сопротивлений контактами К2.1 и К.2.2 и происходит переход на естественную механическую характеристику 3. Далее работа двигателя происходит при номинальной частоте вращения nн и при номинальном моменте Мн.

2-10-213.jpg

Рис. 2.20. Включение асинхронного электродвигателя с фазовым ротором: а) схема включения; б) механические характеристики при пуске; R1, R2 — ступени сопротивлений, К1.1, К1.2, К2.1, К2.2 — контакты переключателя.

При пуске двигателя происходит не только уменьшение пусковых токов, но и увеличение пускового момента, что важно для двигателей, которые включаются под нагрузкой (различные транспортные приспособления и машины).

Работа трехфазного двигателя в однофазной сети

На практике может потребоваться применение трехфазного двигателя в однофазной сети, например, при выходе из строя двигателя стиральной машины или другой бытовой машины, когда замены нет, а есть трехфазный двигатель.

Одна из схем такого применения показана на рис. 2.21, где к двум вершинам треугольника подводится напряжение сети, равное 220 В, а к третьей — пусковая емкость Сп через контакт выключателя, замыкающийся на время пуска двигателя для создания пускового момента, и рабочая емкость Ср, включаемая на все время работы двигателя. Соединение обмоток двигателя треугольником предпочтительнее, так как при этом к фазной обмотке двигателя подводится напряжение, равное напряжению сети, большее, чем при соединении звездой, и получается большой крутящий момент.

2-10-214.jpg

Рис. 2.21. Применение трехфазного двигателя в однофазной сети: Q — выключатель неавтоматический, имеющий средний контакт с самовозвратом, Сп, Ср — емкости пусковая и рабочая.

При напряжении сети 220 В и частоте сети 50 Гц рабочая емкость, мкф,

Ср = 66Рн, где Pн. — номинальная мощность двигателя, кВт.

Пусковая емкость, мкф

Сп = 2Ср = 132Рн.

Если двигатель запускается без пусковой емкости, то ее можно не применять.

Средства защиты электродвигателей

Основные причины выхода двигателей из строя

Защита электродвигателей означает их автоматическое отключение пуско-защитными аппаратами с целью предотвращения выхода из строя при увеличении токов в обмотках выше допустимых. Выход из строя двигателя в большинстве случаев означает полное или частичное обугливание изоляции его обмотки при нагреве обмоточного провода большим током. Большой, свыше номинального, ток в обмотке двигателя появляется при длительной перегрузке его механизмом, при заклинивании механизма, а также при несимметрии напряжений в питающих проводах, зависящих от состояния сети, т. е. при аварийных режимах в сети. Одно из первых мест среди аварийных режимов занимает обрыв фазного провода в цепи питания двигателя. Обрыв может быть на линиях высокого и низкого напряжений, при обгорании контактов или зажимов в аппаратах высокого и низкого напряжений, при повреждении кабелей или проводов питания двигателей, обгорании зажимов на самом двигателе.

При обрыве фазного провода двигатель не запускается или при работе он останавливается и его обмотка обугливается.

Защита электродвигателей осуществляется аппаратами, которые рассмотрены в п. 2.9, поэтому не будем возвращаться к их конструкции и принципу действия, а рассмотрим особенности защиты двигателей различными аппаратами и действенность этой защиты.

Реле тепловые

Распространенной защитой электродвигателей является защита тепловыми реле, которые монтируются в корпусах пускателей, если пускатели устанавливаются отдельно, или шкафах и на щитах. Правильно подобранные тепловые реле защищают двигатель от перегрузки, заклинивания, потери фазы, хотя предназначены они для защиты от перегрузки.

Недостаток защиты тепловыми реле заключается в том, что трудно подобрать реле из имеющихся в наличии для каждого двигателя так, чтобы ток теплового элемента реле соответствовал току двигателя. Также следует учесть, что тепловые реле сами требуют защиты от тока короткого замыкания.

Если соответствуют друг другу токи двигателя и уставки реле, это не значит, что реле надежно сработает, так как имеется разброс параметров реле с уставкой на один и тот же ток, поэтому реле нужно регулировать на специальном стенде, что не всегда возможно из-за отсутствия стендов и грамотных специалистов.

Защита реле тепловыми показана на рис. 11.8, где ККЗ — тепловые элементы реле в силовой цепи двигателя и контакты реле в его цепи управления.

Реле максимального тока (максимальные реле)

Максимальные реле применяются для защиты двигателей механизмов, которые могут заклиниваться во время работы, например, дозаторов, транспортеров. Эти реле могут защитить двигатель и от потери фазы. Защита с помощью реле максимального тока показана на рис. 11.8, где ККЗ — обмотка реле в силовой цепи двигателя и контакты реле в цепи управления двигателя.

Автоматические выключатели (автоматы)

Автоматы применяются для защиты двигателей, так как имеют расцепители максимального тока и тепловые расцепители, по принципу работы соответствующие максимальным и тепловым реле. Следует учесть, что не все автоматы имеют расцепители и поэтому не все они могут защитить двигатель от перегрузки. В схеме защиты автоматы обычно устанавливаются перед пускателем (рис. 11.8), где автомат QF2 служит для включения и отключения проводов и аппаратов, расположенных за ним по ходу электроэнергии в направлении двигателя, для защиты этих проводов и аппаратов от тока короткого замыкания и двигателя от тока короткого замыкания и перегрузки.

Устройства встроенной тепловой защиты (УВТЗ)

Устройство отключает пускатель электродвигателя, когда температура обмоток двигателя становится больше допустимой для данного типа изоляции обмоток двигателя. Устройство состоит из электронного блока и датчиков. Датчики устанавливаются в лобовых частях обмотки двигателя (по одному на каждую фазу). Температурными датчиками служат полупроводниковые термосопротивления — позисторы. Схема внешних соединений при данном виде защиты показана на рис. 2.22. При повышении температуры обмотки двигателя увеличивается сопротивление встроенного резистора Rк, которое воздействует на электронную схему электронного блока, в результате чего размыкаются контакты 2-3 реле, находящегося в электронном блоке, и отключают катушку пускателя К.

2-10-215.jpg

Рис. 2.22. Схема внешних соединений устройства встроенной тепловой защиты электродвигателя (УВТЗ):

QF— выключатель автоматический, SB1, SB2— контакты кнопки управления, К- пускатель магнитный, Rk — датчик температуры, 1, 2, 3, 4, 5, 6 — зажимы в цепи устройства.

Недостатком данного вида защиты является то, что с датчиками выпускаются не все двигатели, и датчики могут устанавливаться в условиях ремонтных мастерских, поэтому при замене двигателей может не оказаться двигателей с датчиками, защита данного вида будет бездействовать, и придется устанавливать другую. При данном виде защиты приходится отдельно приобретать специальные электронные блоки и датчики.

Защита реагирует не на причину аварийного состояния двигателя — большой ток, а на последствия этого состояния — нагрев обмотки двигателя, поэтому она может быть неэффективной с учетом инерции процессов.

Фазочувствительное устройство защиты (ФУЗ)

Как следует из названия, в данной защите контролируется не ток двигателя, а угол сдвига фаз между линейными токами двигателя, величина которого при аварийном режиме будет отличаться от величины его в нормальном состоянии.

Угол сдвига фаз между токами в трехфазной сети в нормальных условиях равен 120°, а при обрыве в одном фазном проводе угол сдвига фаз между токами в исправных проводах становится равным 180°. Значит, если контролировать изменение угла сдвига фаз между токами в проводах, подводящих ток к электродвигателю, то двигатель можно защитить от последствий обрыва фазного провода.

2-10-216.jpg

Рис. 2.23. Схема, поясняющая принцип действия фазочувствительного устройства защиты электродвигателей (ФУЗ):

Т1, Т2 — трансформаторы, К1 — реле.

Принцип действия устройства показывает простейшая схема на рис. 2.23. В схеме имеется датчик в виде моста из диодов VD1—VD4 и резисторов R1—R4. Для получения сигнала, принимаемого датчиком, формируются два напряжения U1, и U2 с определенным углом сдвига фаз между ними, который учитывается датчиком. Для получения этих напряжений применяются трансформаторы Т1 и Т2, включаемые в цепь питания двигателя. К датчику через вторичные обмотки трансформаторов присоединено реле К1, которое своими контактами

К1.1 отключает магнитный пускатель двигателя при аварийное режиме.

При невозможности запускания или заклинивания двигателя, обрыве фазного провода токи нагрузки и измеряемые напряжения U1 и U2 увеличиваются, ток в катушке реле возрастает и становится больше тока срабатывания реле, и оно срабатывает, отключая двигатель.

Технические данные некоторых устройств ФУЗ представлены в табл. 2.41.

Неисправности и отказы асинхронных двигателей с учетом неисправностей в цепи их питания и перегрузок показаны в табл. 2.44.

Таблица 2.41 ТЕХНИЧЕСКИЕ ДАННЫЕ УСТРОЙСТВ ФУЗ-М

2-10-217.jpg

Рис. 2.15. Схемы асинхронной машины:

Изображение: 

Рис. 2.16. Схемы присоединения выводных концов многоскоростных электродвигателей для получения различных частот вращения:

Изображение: 

Рис. 2.17. Выводы обмоток статора трехфазного асинхронного электродвигателя:

Изображение: 

Рис. 2.18. Схема пуска трехфазного асинхронного электродвигателя включением на пусковую схему «звезда» и с переключением на рабо

Изображение: 

Рис. 2.19. Схема пуска трехфазного асинхронного электродвигателя с помощью тиристорного регулятора напряжения (ТРН).

Изображение: 

Рис. 2.20. Включение асинхронного электродвигателя с фазовым ротором:

Изображение: 

Рис. 2.21. Применение трехфазного двигателя в однофазной сети:

Изображение: 

Рис. 2.22. Схема внешних соединений устройства встроенной тепловой защиты электродвигателя (УВТЗ):

Изображение: 

Рис. 2.23. Схема, поясняющая принцип действия фазочувствительного устройства защиты электродвигателей (ФУЗ):

Изображение: 

Таблица 2.34 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ А02

Изображение: 

Таблица 2.35 ТЕХНИЧЕСКИЕ ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ 4А

Изображение: 

Таблица 2.36 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ 4А

Изображение: 

Таблица 2.37 ТЕХНИЧЕСКИЕ ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ АИ

Изображение: 

Таблица 2.38 ПОДШИПНИКИ-ДВИГАТЕЛЕЙ СЕРИИ АИ

Изображение: 

Таблица 2.39 ВЗАИМОЗАМЕНЯЕМЫЕ ДВИГАТЕЛИ

Изображение: 

Таблица 2.40 ДИАМЕТРЫ (d) РАБОЧИХ КОНЦОВ ВАЛОВ ДВИГАТЕЛЕЙ СЕРИИ 4А В ЗАВИСИМОСТИ ОТ ВЫСОТ ОСЕЙ ВРАЩЕНИЯ (h)

Изображение: 

Таблица 2.41 ТЕХНИЧЕСКИЕ ДАННЫЕ УСТРОЙСТВ ФУЗ-М

Изображение: 

2.10.3. Синхронные машины

2.10.3. Синхронные машины

Схема синхронной машины показана на рис. 2.24. Синхронная машина отличается от асинхронной тем, что ток в обмотке ротора появляется не при вращении ее в магнитном поле статора, а подводится к ней от постороннего источника постоянного тока. Статор синхронной машины выполнен так же, как и асинхронной, и на нем обычно расположена трехфазная обмотка. Обмотка ротора образует магнитную систему с тем же числом полюсов 2р, что и у статора. Она создает магнитный поток возбуждения и называется обмоткой возбуждения. Вращающаяся обмотка ротора соединяется с внешней

цепью источника постоянного тока с помощью контактных колец и щеток. При вращении ротора с частотой n2 его магнитное поле возбуждения наводит в статоре ЭДС E1, частота которой

f1=p*n2/60

При подсоединении обмотки статора к нагрузке протекающий по ней ток будет создавать магнитный поток, частота вращения которого

n1=60f1/p

Из сравнения этих выражений видно, что п1 =n2 т. е. магнитные поля статора и ротора вращаются с одинаковой частотой, поэтому такие машины называются синхронными.

2-10-31.jpg

Рис. 2.24. Схема синхронной машины:

В — обмотка возбуждения, Uв — напряжение В цепи возбуждения

Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор.

Обмотка якоря в синхронной машине — обмотка, в которой индуцируется ЭДС и к которой присоединяется нагрузка.

Индуктор в синхронной машине — часть машины, на которой расположена обмотка возбуждения.

В схеме на рис. 2.24 статор является якорем, а ротор — индуктором, но может быть и обращенная схема, в которой статор — индуктор и ротор — якорь.

Синхронная машина может работать генератором или двигателем.

В машине с неподвижным якорем применяются две разновидности ротора: явнополюсный ротор имеет явно выраженные полюсы, неявнополюсный ротор не имеет явно выраженных полюсов.

Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами.

Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели.

Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения. Данные некоторых таких генераторов приведены в табл. 2.42. Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Неисправности синхронных машин приведены в табл. 2.44.

Таблица 2.42 СИНХРОННЫЕ ЯВНОПОЛЮСНЫЕ ГЕНЕРАТОРЫ ДЛЯ АВТОНОМНЫХ ЭНЕРГЕТИЧЕСКИХ СИСТЕМ

2-10-32.jpg

Рис. 2.24. Схема синхронной машины

Изображение: 

Таблица 2.42 СИНХРОННЫЕ ЯВНОПОЛЮСНЫЕ ГЕНЕРАТОРЫ ДЛЯ АВТОНОМНЫХ ЭНЕРГЕТИЧЕСКИХ СИСТЕМ

Изображение: 

2.10.4. Машины постоянного тока

2.10.4. Машины постоянного тока

Схема машины постоянного тока показана на рис. 2.25. Обмотка якоря 2 расположена на роторе и представляет собой замкнутую многофазную обмотку, подключенную к коллектору, состоящему из коллекторных пластин 3, изолированных друг от друга, и щеток А и В. Коллектор связывает обмотку якоря с внешней цепью нагрузки при работе машины генератором или с сетью питания при работе двигателем. Обмотка возбуждения располагается на полюсах статора и присоединяется к независимому источнику постоянного тока или к якорю. Магнитный поток возбуждения Фв этой обмотки неподвижен в пространстве.

2-10-41.jpg

Рис. 2.25. Схема машины постоянного тока:

1 — обмотка возбуждения, 2 — обмотка якоря, 3 — пластины коллектора, А, В — щетки, Фв — магнитный поток возбуждения.

При вращении обмотки якоря в неподвижном магнитном . поле в ней индуцируется ЭДС с частотой

f2=p*n/60

Коллектор осуществляет согласование частоты f2 с частотой сети постоянного тока f1 = 0, т: е. преобразует переменную ЭДС, индуцированную в обмотке якоря, в постоянную ЭДС между щетками А и В коллектора, и во внешней цепи протекает постоянный ток.

При холостом ходе машины магнитный поток создается только обмоткой возбуждения. При работе машины под нагрузкой обмотка якоря создает свой магнитный поток.

Реакция якоря машины постоянного тока — воздействие магнитного поля якоря на магнитное поле машины. В результате реакции якоря магнитное поле машины искажается, что ведет к искрению под щетками. Кроме того, под действием реакции якоря магнитный поток машины при насыщенной магнитной цепи уменьшается, что приводит к уменьшению ЭДС по сравнению с ее значением при холостом ходе.

Для исключения этого явления делают некоторые изменения в конструкции машины, но действенной мерой является применение компенсационной обмотки, которая располагается в пазах главных полюсов и включается последовательно в цепь якоря таким образом, чтобы ее намагничивающая сила была направлена встречно с намагничивающей силой якоря и компенсировала ее действие. Компенсационная обмотка применяется в машинах средней и большой мощности.

Генераторы постоянного тока

Свойства генераторов зависят от способа питания их обмоток возбуждения, и в зависимости от этого они подразделяются на группы:

1 — генераторы с независимым возбуждением, обмотка возбуждения которых получает питание от независимого источника — рис. 2.26;

2-10-42.jpg

Рис. 2.26. Схема генератора независимого возбуждения:

Е — ЭДС генератора, U — напряжение на зажимах генератора, Iа,Iв,Iнагр — токи в цепях якоря, возбуждения и нагрузки, Rнагр — сопротивление нагрузки. грв — сопротивление регулирующего реостата в цепи возбуждения.

2 — генераторы с параллельным возбуждением, обмотка возбуждения которых присоединяется параллельно обмотке якоря — рис. 2.27;

3 — генераторы с последовательным возбуждением, обмотка возбуждения которых включается последовательно с обмоткой якоря — рис. 2.28;

4 — генераторы со смешанным возбуждением, у которых применяются обмотки параллельная и последовательная — рис. 2.29.

2-10-43.jpg

Двигатели постоянного тока

Свойства двигателей, как и генераторов, различаются в зависимости от способа включения обмотки возбуждения. Применяются двигатели с последовательным возбуждением — рис. 2.30, с параллельным возбуждением — рис. 2.31, со смешанным возбуждением — рис. 2.32.

Новым поколением двигателей постоянного тока являются двигатели серии 4П. Они различаются:

1 — по регулировочным свойствам — с нормальным регулированием частоты вращения — до 1 : 5, и с широким регулированием — до 1 : 1000;

2-10-44.jpg

Рис. 2.30. Схема двигателя с последовательным возбуждением:

Rп — сопротивление регулирующего реостата цепи последовательного возбуждения.

2-10-45.jpg

2 — по типу конструкции:

закрытые со степенью защиты IР44;

защищенные со степенью защиты IР23;

3 — по условиям эксплуатации:

нормальным, соответствующим значениям климатических факторов внешней среды УХЛ4 и в части воздействия механических факторов внешней среды — группе М1;

тяжелым условиям эксплуатации (УХЛЗ и М8), соответствующим работе во вспомогательных механизмах металлургического производства и др.

Для большинства двигателей номинальное напряжение — 110 и 220 В, диапазон частот вращения — 750...4000 об/мин. Разновидности двигателей серии 4П показаны в табл. 2.43. Применяются также двигатели серий 2П и П. Неисправности и отказы двигателей постоянного тока показаны в табл. 2.44.

Микромашины

Примером микромашин могут служить универсальные коллекторные двигатели, которые широко применяются в устройствах автоматики и в бытовых машинах. Питание двигателей может осуществляться как от источников переменного однофазного тока, так и от источников постоянного тока. По принципу устройства двигатель сходен с двигателем последовательного возбуждения. Отличие заключается в конструкции магнитной системы и в том, что катушки его обмотки возбуждения состоят из двух секций с промежуточными выводами — рис. 2.33. Секционирование обмотки делается потому, что при работе на переменном токе из-за падения напряжения в индуктивном сопротивлении обмоток частота вращения двигателя оказывается меньше, чем на постоянном токе. Для выравнивания скоростей при работе на постоянном токе включаются все витки обмотки возбуждения, а при работе на переменном токе только часть их.

2-10-46.jpg

Рис. 2.33. Схема универсального коллекторного микродвигателя:

В1,В2 — обмотки возбуждения.

Таблица 2.43 РАЗНОВИДНОСТИ ДВИГАТЕЛЕЙ СЕРИИ 4П

2-10-47.jpg

Рис. 2.25. Схема машины постоянного тока

Изображение: 

Рис. 2.26. Схема генератора независимого возбуждения

Изображение: 

Рис. 2.27-29 Схема генератора с постоянным возбуждением

Изображение: 

Рис. 2.30. Схема двигателя с последовательным возбуждением

Изображение: 

Рис. 2.31. Схема двигателя с паралельным возбуждением

Изображение: 

Рис. 2.33. Схема универсального коллекторного микродвигателя

Изображение: 

Таблица 2.43 РАЗНОВИДНОСТИ ДВИГАТЕЛЕЙ СЕРИИ 4П

Изображение: 

2.10.5. Неисправности и отказы электрических машин

2.10.5. Неисправности и отказы электрических машин

Большинство неисправностей и отказов электрических машин разного принципа действия приведены в табл. 2.44. Многие неисправности один электрик устранить не в состоянии, поэтому подробно устранение таких неисправностей не приводится. При выходе из строя обмотки машина отправляется в капитальный ремонт (имеется в виду, что размеры и вес машины позволяют ее перевозить обычным транспортом). Также приведены некоторые сведения по устранению часто встречающихся неисправностей — вибраций и снижения сопротивления изоляции.

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН

2-10-51.jpg

Продолжение табл. 2.44

2-10-52.jpg

Продолжение табл. 2.44

2-10-53.jpg

Продолжение табл. 2.44

2-10-54.jpg

Продолжение табл. 2.44

2-10-55.jpg

Продолжение табл. 2.44

2-10-56.jpg

Продолжение табл. 2.44

2-10-57.jpg

Окончание табл. 2.44

2-10-58.jpg

Устранение вибраций электрических машин

Электрические машины часто подвергаются вибрации со стороны механизмов, связанных с ними, например, колес турбомашин-вентиляторов, дымососов и т. д.При этом ослабляется крепление двигателей и рабочих машин, выходят из строя подшипники и другие детали двигателей и рабочих машин. Часто пытаются устранить это явление усилением крепления двигателя и рабочей машины, установкой машины на пружины, но это не помогает.

Дело в том, что в данных случаях причиной бывает неуравновешенность рабочего колеса машины относительно его оси из-за того, что в какой-то его части сосредоточена масса больше, чем в противоположной, и эта часть с большой массой всегда оказывается внизу, если колесо вращать от руки, а потом дать возможность остановиться.

Устранить явление можно привариванием к колесу в более легкой части, которая оказывается наверху, уравновешивающего груза. Если есть возможность, лучше всего приварить болт, а потом на него накручивать гайки, пока эта часть будет не на верху, а в разных местах при нескольких остановках при вращении от руки. После этого гайки нужно приваривать к болту — рис. 2.34.

2-10-59.jpg

Рис. 2.34. Уравновешивание рабочего колеса дымососа.

Вибрация возможна и при вертикальном положении оси

колеса.

В таком случае колесо вместе с двигателем нужно снять и установить в горизонтальном положении на опорах для балансировки тем же способом.

Сушка электрических машин

Увлажнение изоляции электрических машин может произойти из-за условий внешней среды, в которых находится машина во время транспортировки, хранения, монтажа или эксплуатации. Поэтому необходимо проверять сопротивление изоляции электрических машин перед их монтажом, после работы на открытом воздухе или в помещении с повышенной влажностью перед новым сезоном работы в этих условиях (сельское хозяйство), после перерывов в работе и периодически в сроки, устанавливаемые ответственным за электрохозяйство. Величину допустимого сопротивления изоляции ГОСТ рекомендует принимать равной одному килоому на один вольт рабочего напряжения машины, и для машин, рассчитанных на напряжение до 1000 В, нормой считается 500 кОм.

Распространенными способами сушки электрических машин являются сушка нагревом от внешнего источника тепла и нагревом током, протекающим в обмотке машины.

Сушка внешним нагревом производится с разборкой машины. Разборка машины необходима не только для улучшения сушки и сокращения ее времени, но и для полного удаления влаги и ржавчины из зазора машины при сильном ее увлажнении.

Простейшим способом сушки внешним нагревом является нагрев лампами накаливания, помещаемыми внутрь статора машины на лист железа или асбеста. Лучше брать две лампы, мощность которых зависит от мощности двигателя, например, при мощности двигателя 30 кВт можно взять две лампы мощностью по 300 Вт, для двигателя 75 кВт — две лампы по 500 Вт, для двигателя 110 кВт — две лампы 1000 Вт.

Вместо ламп накаливания внешний нагрев может осуществляться также с помощью трубчатых электронагревателей — ТЭН соответствующих размеров и Мощности, устанавливаемых внутрь статора на теплостойкую подкладку.

Нагрев машины может быть также струей горячего воздуха от воздухонагревателя, например, электрокалорифера, в сушильном шкафу или около мощного источника тепла. Приносит пользу сушка на свежем воздухе под лучами солнца летом.

Сушка нагревом обмотки машины током, протекающим в ней, производится при наличии подходящего источника тока, при этом машина не разбирается. Данный метод пригоден при несильной увлажненности изоляции, когда не видно на обмотке капель влаги. При этом при сушке трехфазного двигателя его ротор затормаживается, при фазном роторе кольца ротора соединяются вместе. К обмотке статора подводится трехфазный ток такого напряжения, чтобы в обмотке получить ток, равный примерно 0,5Iн (/н — номинальный ток двигателя). Для поддержания такого тока напряжение сушки может быть равным 0,1Uн (Uн — номинальное напряжение двигателя). Для сушки могут применяться трехфазные трансформаторы с вторичным напряжением 36 В, изготовляемые промышленностью, например, типа ТСЗ-2,5/1, с помощью которого может быть высушен двигатель мощностью от 30 кВт. Для сушки двигателей мощностью от 30 до 55 кВт нужно два таких трансформатора, соединенных параллельно.

При отсутствии трехфазного трансформатора сушка двигателя может производиться с помощью сварочного трансформатора. При этом, если двигатель имеет шесть выводных концов, то обмотки его фаз соединяются последовательно. Присоединение однофазного напряжения к трем выводным концам при соединении обмоток двигателя звездой или треугольником дает неравный ток в обмотках двигателя, при этом при соединении звездой нужно соединять вместе два выводных зажима. Поэтому при трех выводных концах обмоток двигателя нужно периодически пересоединять провода к разным зажимам двигателя (рис. 2.35).

2-10-510.jpg

Рис. 2.35. Схема сушки асинхронного электродвигателя от трансформатора 36 В:

о) двигатель имеет шесть выводов обмоток; 6) двигатель имеет три вывода и соединен звездой; в) двигатель имеет три вывода и соединен треугольником; б1)~б3), в1)-в3) — последовательность периодических пересоединений при подводе тока.

Обозначение выводов обмоток электрических машин

Для присоединения к сети новых электрических машин или доставленных из ремонта надо знать назначение выводных концов их обмоток. Выводные концы электрических машин маркируются путем выбивания знаков на наконечниках выводных концов обмоток, а если наконечники малы, то на металлических кольцах у наконечников, или надписями на пластмассовых кольцах у наконечников.

Маркировка выводов электрических машин приведена а табл. 2.45 и 2.46.

Таблица 2.45 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

2-10-511.jpg

У многоскоростных машин много выводных концов в коробках зажимов в соответствии с количеством частот вращения, на которые они рассчитаны при соответствующем соединении выводных концов. Нужную частоту вращения можно получить, соединив выводные концы согласно рис. 2.16.

Таблица 2.46 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

2-10-512.jpg

Рис. 2.34. Уравновешивание рабочего колеса дымососа.

Изображение: 

Рис. 2.35. Схема сушки асинхронного электродвигателя от трансформатора 36 В:

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН (окончание)

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН (продолжение 1)

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН (продолжение 2)

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН (продолжение 3)

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН (продолжение 4)

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН (продолжение 5)

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН (продолжение 6)

Изображение: 

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН

Изображение: 

Таблица 2.45 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

Изображение: 

Таблица 2.46 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

Изображение: 

2.11. Осветительные установки

2.11. Осветительные установки

Общие сведения

Осветительной установкой называется электроустановка, состоящая из источника света вместе с арматурой и пуско-регулирующей аппаратурой.

Источник света устанавливается в арматуре, имеющей детали его крепления и защиты от внешней среды, защиты глаз человека от прямых лучей света. Совокупность этих деталей составляет светильник. Он имеет также петли крепления его в нужном месте.

Источниками света являются лампы накаливания и люминесцентные лампы различной конструкции.

Параметрами источников света являются номинальное напряжение, номинальная мощность, световой поток.

Электрические лампы накаливания

Принцип действия лампы накаливания основан на свечении спирали в стеклянной колбе, заполненной инертным газом.

Лампы накаливания изготовляются на напряжение от единиц до сотен вольт и на мощности от долей ватта до киловатт.

Параметры некоторых ламп накаливания приведены в табл. 2.47.

Таблица 2.47 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ИСТОЧНИКОВ СВЕТА

2-111.jpg

Так как температура спирали зависит от напряжения сети, к которой присоединяется лампа, то срок службы лампы в

основном определяется величиной напряжения сети. В сетях, где возможны колебания напряжения, лампы быстро выходят из строя. Более надежными являются лампы на повышенное напряжение до 240 В.

Таблица 2.48 НЕКОТОРЫЕ ПУСКО-РЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ГАЗОРАЗРЯДНЫХ ЛАМП

2-112.jpg

На практике может быть превышено и это напряжение, например, при замыкании на корпус оборудования другой фазы, к которой лампа не присоединена. Так как лампа присоединяется к фазному и нулевому проводу, связанному с корпусом оборудования, то она оказывается включенной кратковременно на две фазы, что приводит ее к перегоранию.

Так же отрицательно действуют плохие зажимы и контакты в цепи лампы, которые приводят к колебаниям тока в лампе. Отрицательно действуют на лампы всякие перенапряжения в сети, частые включения и отключения самих ламп.

Неисправности осветительных установок с лампами накаливания приведены в табл. 2.49.

Принцип действия ЛЛНД основан на дуговом разряде в

парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали.

Таблица 2.49 НЕИСПРАВНОСТИ ОСВЕТИТЕЛЬНЫХ УСТАНОВОК

2-113.jpg

Окончание табл. 2.49

2-114.jpg

В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора.

Применяются ЛЛНД с различной цветностью, которую можно получить с помощью люминофора — галофосфата кальция в зависимости от цветовой температуры лампы. Цветовой температурой называется температура абсолютно черного тела, при которой цвет его излучения совпадает с цветом излучения самого тела.

ЛД — лампы дневного цвета, имеющие цветовую температуру 6500 К, соответствующую цветовой температуре голубого неба без солнца (К — Кельвин. Т= t+ 273, где Т— температура в К, t — температура в °С).

ЛХБ — лампы холодно-белого цвета с цветовой температурой 4800 К, соответствующей цветовой температуре дневного неба, покрытого тонким слоем белых облаков.

ЛБ — лампы белого цвета с цветовой температурой 4200 К, соответствующей цветовой температуре яркого солнечного дня.

ЛТБ — лампы тепло-белого цвета с цветовой температурой 2800 К, соответствующей цветности излучения ламп накаливания.

В обозначениях ламп с улучшенной цветностью в конце добавляется буква Ц, например, лампы ЛДЦ.

Пускорегулирующие аппараты со стартерным зажиганием для ламп ЛЛНД

Стартерный пускорегулирующий аппарат (ПРА) состоит из дросселя и стартера, иногда могут применяться компенсирующие конденсаторы. Дроссель служит для стабилизации р .жима работы лампы.

При зажигании лампы стартер не размыкает свои контакты в течение времени, необходимого для разогрева электродов лампы до температуры термоэлектронной эмиссии, быстро размыкает контакты после разогрева электродов, поддерживает контакты разомкнутыми во время горения лампы.

На рис. 2.36, б представлена схема устройства стартера тлеющего разряда. Он представляет собой баллон из стекла, наполненный инертным газом, в котором находятся металлический и биметаллический электроды, выводы которых соединены с выступами в цоколе для контакта со схемой лампы При включении лампы согласно схемы рис. 2.36 а на электро-

2-115.jpg

Рис 2.36. Стартерное зажигание люминесцентной лампы:

а) схема включения: EL — лампа, VL — стартер, LL — дроссель; 6} схема стартера 1 — контакты, 2 — металлический электрод, 3 — баллон, 4 — биметаллический электрод, 5 — цоколь; в) диаграмма изменения напряжения на лампе и тока в лампе при зажигании: Uс — напряжение сети,Uимп — импульс напряжения, зажигающий лампу, Uтл — напряжение тлеющего разряда, Iтл — ток тлеющего разряда, Iпуск — пусковой ток, Iр — рабочий ток; tтл — период тлеющего разряда, t1 — момент замыкания контактов стартера, tзам — период замыкания контактов стартера, t2 — момент появления импульса напряжения на электродах лампы, tпуск— общая длительность пускового режима лампы.

ды лампы и стартера подается напряжение сети Uс, которое достаточно для образования тлеющего разряда между электродами стартера. Поэтому в цепи протекает ток тлеющего разряда стартера Iтл = 0,01...0,04 А. Тепло, выделяемое при протекании тока через стартер, нагревает биметаллический электрод, который выгибается в сторону другого электрода. Через промежуток времени тлеющего разряда tтл = 0,2...0,4 с контакты стартера замыкаются — момент t1 на рис. 2.36, в, и по цепи начинает течь пусковой ток Iпуск. величина которого определяется напряжением сети и сопротивлениями дросселя и электродов лампы. Этого тока не достаточно для нагревания электродов стартера, и биметаллический электрод стартера разгибается, разрывая цепь пускового тока. Предварительно пусковой ток разогревает электроды лампы. Благодаря наличию в цепи индуктивности, при размыкании контактов стартера в цепи возникает импульс напряжения в момент времени t2 -зажигающий лампу. Время разогрева электродов лампы составляет 0,2...0,8 с что в большинстве случаев недостаточно, и лампа может не загореться с первого раза, и весь процесс

может повториться. Общая длительность пускового режима лампы Iпуск составляет 5...15 с. Длительность пускового импульса при размыкании контактов стартера составляет 1...2 мкс, что недостаточно для надежного зажигания лампы, поэтому параллельно контактам стартера включают конденсатор емкостью 5...10 пф.

Параметры некоторых ЛЛНД приведены в табл. 2.47, а ПРА — в табл. 2.48. Отказы установок с ЛЛНД перечислены в табл. 2.49. Обозначения типов ПРА расшифровываются следующим образом (табл. 2.50):

Таблица 2.50 РАСШИФРОВКА ОБОЗНАЧЕНИЙ ТИПОВ ПРА

2-116.jpg
Дуговые ртутные лампы высокого давления (ДРЛ)

При повышении давления в лампе и плотности тока разряд в ней становится более интенсивным по излучению. Наряду с излучением в видимой области спектра получается излучение в ультрафиолетовой области. При использовании такого разряда в источниках света требуется исправление его цветности путем преобразования ультрафиолетового излучения в красное.

Для получения такого излучения используются трубчатые кварцевые лампы, называемые в данном случае горелками. Горелка представляет собой кварцевую трубку с впаянными по концам катодами на больший ток, чем при разряде низкого

давления. С целью облегчения зажигания впаиваются дополнительные электроды зажигания в один или оба конца трубки, соединенные с противоположным катодом через добавочное сопротивление R — рис. 2.37. Из-за малого расстояния между основным и дополнительным электродами между ними происходит разряд при включении лампы, приводящий к ионизации газа в трубке. Когда сопротивление столба разряда в трубке станет меньше добавочного сопротивления в цепи дополнительного электрода, начинается разряд между основными электродами. Такие горелки применяются в лампах ДРЛ. Так как работа горелки зависит от действия внешней среды, то она размещается внутри колбы лампы, покрытой изнутри люминофором, который поглощает ультрафиолетовое излучение и превращает его в видимое красное. Внешняя колба лампы наполняется инертным газом. Время, в течение которого происходит установление нормального режима работы лампы, называемое временем разгорания, составляет 7...10 мин. Повторное зажигание лампы возможно только после ее остывания.

2-117.jpg

Рис. 2.37. Схема конструкции горелки лампы ДРЛ:

1 — основной электрод, 2 — электрод зажигания, 3 — вводы, R — добавочное сопротивление.

Рассмотренные лампы требуют для своей работы ПРА. Лампа с горелкой и нитью накала в колбе не требует специальных устройств для включения и может прямо включаться в сеть. Такие лампы называются ртутно-вольфрамовыми.

Параметры ламп ДРЛ приведены в табл. 2.47, а ПРА для них — в табл. 2.48. Неисправности установок с люминесцентными лампами перечислены в табл. 2.49.

Рис 2.36. Стартерное зажигание люминесцентной лампы

Изображение: 

Рис. 2.37. Схема конструкции горелки лампы ДРЛ

Изображение: 

Таблица 2.47 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ИСТОЧНИКОВ СВЕТА

Таблица 2.48 НЕКОТОРЫЕ ПУСКО-РЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ГАЗОРАЗРЯДНЫХ ЛАМП

Изображение: 

Таблица 2.49 НЕИСПРАВНОСТИ ОСВЕТИТЕЛЬНЫХ УСТАНОВОК (окончание)

Изображение: 

Таблица 2.49 НЕИСПРАВНОСТИ ОСВЕТИТЕЛЬНЫХ УСТАНОВОК

Изображение: 

Таблица 2.50 РАСШИФРОВКА ОБОЗНАЧЕНИЙ ТИПОВ ПРА

Изображение: 

2.12. Датчики систем автоматического регулирования

2.12. Датчики систем автоматического регулирования

Состояние машин и установок можно контролировать не только человеком, но и специальными устройствами, называе

мыми чувствительными элементами или датчиками. Сигнал от датчика подается на устройство сравнения вместе с заданным сигналом, сигнал разности подается на усилитель, и этот усиленный сигнал действует на исполнительный органа изменяющий состояние регулируемого объекта.

В электроустановках датчик воздействует на электрическую цепь, включая или выключая ее, изменяя электрическое сопротивление или вырабатывая электричество.

Всегда важно выбрать место установки датчика. Например, в системе водяного отопления от электрокотла датчик температуры ставится на выходе ее из котла, чтобы подавать сигнал на включение и отключение нагревательных элементов котла для поддержания температуры воды на выходе котла соответствующей заданной. При установке датчика в других местах котел может не отключиться даже при аварийных режимах работы, например, при отсутствии циркуляции воды и перегреве котла.

Датчики температуры

Термопреобразователи сопротивления (термометры сопротивления) применяются для передачи сигнала о температуре объекта на расстоянии от объекта до показывающего прибора, т. е. для дистанционного измерения температуры. Их принцип работы основан на свойстве металлов изменять удельное сопротивление при изменении температуры. Схема термопреобразователя сопротивления показана на рис. 2.38.

2-121.jpg

Рис. 2.38. Схема термопреобразователя сопротивления

1 — чувствительный элемент, 2 — провода, 3 — корпус, 4 — штуцер крепления корпуса, 5 — клеммы, 6 — штуцер для вывода проводов.

Чувствительный элемент термопреобразователя состоит из проволоки, намотанной на каркас. В зависимости от материала проволоки различаются термопреобразователи сопротивления медные (ТСМ) и платиновые (ТСП). Размер каркаса чувствительного элемента от 60 до 100 мм. Каркас вставляется в конец корпуса защитной арматуры, а на другом конце корпуса имеется головка с зажимами для проводов, идущих от чувствительного элемента. На корпусе имеется штуцер для его крепления на технологическом оборудовании.

Термопреобразователи различаются монтажной длиной — расстоянием от штуцера до конца, в котором находится чувствительный элемент, которая может меняться от 80 до 3150 мм.

Пределы измеряемой температуры термопреобразователя

от -200 до 600 -С.

Термоэлектрические преобразователи (термопары) служат также для дистанционного измерения температуры. Их принцип действия основан на использовании ЭДС, получаемой от двух спаянных концов разного металла, если их спай и свободные концы находятся при разных температурах.

Термоэлектрические преобразователи обозначаются в зависимости от применяемых сплавов: хромель—копель — ТХК, хромель—алюмель — ТХА, платинородий—платина — ТПП, платинородий (30% родия) — платинородий (6% родия) —

ТПР.

Термоэлектрический преобразователь устроен аналогично

термопреобразователю сопротивления. Длина его монтажной части до 10 м, пределы измеряемой температуры — от -50 до

1800 °С.

Особенность применения термоэлектрических преобразователей заключается в необходимости компенсации температуры холодных концов спая. Если температура холодных концов, равная температуре окружающего воздуха, будет изменяться, а температура измеряемой среды будет неизменной, то значения термо-ЭДС будут также изменяться. Неизменность показаний прибора достигают электрической компенсацией влияний температуры в месте установки прибора, воспринимающего термо-ЭДС. Для этого термоэлектрический преобразователь присоединяют к вторичному прибору специальными компенсационными проводами (табл. 2.51).

Манометрические термометры применяются для дистанционного измерения температуры. Их принцип действия основан на зависимости между температурой и давлением жидкости или газа при постоянном объеме. Схема манометрического

термометра показана на рис. 2.39.

Прибор состоит из термобаллона, соединенного капилляром с вторичным прибором — манометром. В манометре капилляр соединяется с трубчатой пружиной, которая скручиваемся или раскручивается в зависимости от давления жидкости

или газа в системе манометра, зависящего от температуры измеряемой среды, куда помещен термобаллон. Пружина действует на механизм манометра, воздействующий на показывающие и регулирующие устройства (стрелки, самописцы, контакты).

Таблица 2.51 ДАННЫЕ ТЕРМОЭЛЕКТРОДНЫХ ПРОВОДОВ

2-122.jpg

Манометрические термометры могут быть газовые, жидкостные и конденсационные, самопишущие, сигнализирующие и показывающие. К последним относятся газовые типа ТГП—100, конденсационные типа ТКП—100. Пределы измерения различных типов приборов от —50 до 600 °С, длина капилляра от 1,6 до 40 м.

Терморезисторы широко применяются в устройствах автоматики. Они встраиваются в обмотки электродвигателей, если применяется устройство температурной защиты, являются датчиками в регуляторах температуры.

2-123.jpg

Рис. 2.39. Схема манометрического термометра:

1 — пружина манометрическая, 2 — стрелка показывающая, 3 — ось, 4 — механизм передаточный, 5 — капилляр, 6 — термобаллон.

Биметаллические элементы являются датчиками температурами. Их принцип действия основан на свойстве пластинки,

сваренной иэ двух разных металлов, изгибаться из-за разного удлинения этих металлов при нагревании. Биметаллические

элементы применяются в приборах для регулирования температуры различных сред, в защитных тепловых реле, применяемых в бытовых приборах и в промышленных установках

Датчики давления

Для измерения давления в различных средах широко применяются манометры. Чувствительными элементами манометры являются плоские или гофрированные мембраны, мембранные коробки, сильфоны и различного рода манометрические пружины.

В системах автоматики применяются электроконтактактные

манометры типов ЭКМ-1У, ЭКМ-2У, ВЭ-16Р6 с пределами измерения от 0,1 до 160 МПа. Схема электроконтактного манометра показана на рис. 2.40.

2-124.jpg

Pиc. 2.40. Электрическая схема электроконтактного манометра.

1 — стрелка, 2 — шкала, 3 — зажимы выводов, связанные с неподвижными контактами и стрелкой, 4 — контакты подвижные

Датчики уровня

Датчики уровне служат для контроля уровня жидкостей в резервуарах и для подачи сигналов о регулировании этого

уровня.

Электродный датчик имеет короткий и длинный электроды, укрепленные в коробке зажимов. Короткий электрод является контактом верхнего уровня, а длинный — нижнего уровня. Датчик соединяется проводами со станцией управления.

двигателем насоса. Касание коротким электродом воды приводит к отключению пускателя насоса, понижение уровня воды ниже длинного электрода приводит к включению насоса.

Электродные датчики применяются и в других установках, кроме насосных, например, в системе подкачки воды в парогенераторах.

Поплавковое реле применяется в отапливаемых резервуарах. Одна из конструкции этого реле состоит из коромысла, на конце которого подвешены на тросе один над одним два поплавка. Верхний поплавок представляет собой емкость дном вверх, а нижний — емкость дном вниз. Ось коромысла заходит в корпус, где кулачками переключает тумблер, включающий или отключающий двигатель насоса.

При снижении уровня воды конец коромысла опускается под действием веса поплавков и воды в нижнем поплавке, кулачок коромысла включает насос, воздействуя на тумблер.

При повышении уровня воды поплавки поднимаются, коромысло под действием противовеса поднимает конец с тросом и переключает тумблер на остановку насоса.

Электроконтактные манометры также применяются как датчики уровня, так как каждый уровень воды соответствует определенному ее давлению. При этом шкала манометра должна иметь достаточно большие деления, чтобы установить пределы давления на включение и отключение насоса с помощью подвижных контактов на приборе.

Для определения уровня сыпучих материалов в бункерах служат мембранные датчики уровня, которые крепятся в отверстии стенки бункера. В них мембрана воздействует на контакты, замыкая или размыкая цепь управления загрузочными или разгрузочными устройствами.

Датчики освещенности и пламени

Для включения и отключения уличного освещения применяются фотореле, датчиком освещенности с которыми применяются фотосопротивления ФСК—Г1. Они представляют собой герметические корпуса с окном со стеклом для освещения фотосопротивления, которое находится внутри. Наружу выведены два контакта для припайки проводов.

Для контроля пламени в топках на жидком топливе применяются фотореле — приборы контроля пламени, датчиками которых являются фотоголовки ФСК—6, внутри которых за стеклом находятся два фоторезистора.

Механические контактные датчики

Принцип работы датчиков такой же, как кнопочных постов, только переключаются они не вручную, а различными выступающими деталями механизмов, действующими на штоки и педали, несущие подвижные контакты. Широкое распространение имеют конечные выключатели, сигнализирующие о положении различных механизмов, служащие для их остановки или изменения направления движения. Конечные выключатели, имеющие малые габариты, называются микропереключателями.

Бесконтактные датчики перемещения

Пример конструкции датчика показан на рис. 2.41, о, его принципиальная схема — на рис. 2.41, б. Датчик состоит из генератора и усилителя на транзисторах. На генератор воздействует внешняя стальная пластина, связанная с движущейся частью объекта регулирования, например, с цепью транспортера. При введении в зазор корпуса датчика металлической пластины между базовой и коллекторной обмотками трансформатора происходит уменьшение коэффициента обратной связи генератора, вызывающее срыв генерации. В усилителе нормально закрытый выходной транзистор открывается, что дает сигнал на срабатывание реле и блока управления. Детали датчика залиты в компаундную смолу, поэтому он является водозащищенным и выдерживает экстремальные температуры производственных условий.

2-125.jpg

Рис. 2.41. Бесконтактный датчик перемещения типа КВД—6:

о) общий вид: 1 — пластина металлическая на контролируемом механизме, 2 провода для присоединения к пульту управления; 6) принципиальная схема.

Неисправности датчиков

При выборе датчиков нужно учитывать соответствие условий внешней среды и напряжения, при которых они будут работать, исполнению датчиков. Датчик также должен иметь запас по измеряемому параметру. Например, если термоэлектрический преобразователь поместить в среду с большей температурой, чем та, которая указана на его корпусе или в его документации, то он выйдет из строя. Следует иметь в виду, что при выходе из строя системы регулирования температуры может быть перегрев объекта регулирования и выход из строя термоэлектрического преобразователя.

Для подключения термоэлектрических преобразователей к измерительным приборам применяют специальные термоэлектродные провода с двумя жилами из специально подобранных металлов и сплавов, которые в интервале температур от 0 до 100 С развивают такую же термо-ЭДС, как и соответствующий преобразователь. Плюсовая жила провода должна присоединяться к плюсовому термоэлектроду, а минусовая — к минусовому. Данные по термоэлектродным проводам приведены в табл. 2.51.

Неисправности термоэлектрического преобразователя при работе вместе с конечным прибором приведены в табл. 2.52.

В манометрах органом, воспринимающим давление, являются мембраны, коробки, сильфоны и трубки, и надежность манометра зависит от герметичности этих устройств.

В системе регулирования уровня воды с помощью электроконтактных манометров может быть неустойчивая работа и подгорание контактов манометра, промежуточных реле и пускателя. Причина в том, что стрелка манометра, с которой связан подвижный контакт, не сразу устанавливается в положение равновесия при переключении насоса из-за колебаний давления в системе, которое воспринимает стрелка. Колебание стрелки, несущей подвижный контакт, приводят к включению и выключению насоса, что приводит снова к колебаниям, которые могут быть незатухающими, что может вывести из строя двигатель насоса.

Для обеспечения устойчивости могут быть механические и электрические корректирующие устройства.

Механическое корректирующее устройство может быть в виде успокоителя — демпфера в трубке, подводящей воду к манометру, но оно не всегда эффективно.

Если электрическое корректирующее устройство не предусмотрено схемой, то оно может быть сделано в виде цепочки последовательно соединенных конденсатора и резистора, присоединенных параллельно контактам манометра. Эти детали можно расположить в любом удобном месте, например, в пульте управления, присоединив к соответствующим точкам схемы. Величины емкости и сопротивления можно подобрать опытным путем.

Таблица 2.52 НЕИСПРАВНОСТИ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ПРИ РАБОТЕ С ПРИБОРОМ

2-126.jpg

Примечание: ремонт всех приборов производится специализированными организациями.

Чтобы полностью исключить влияние неустойчивого включения контактов манометра на работу системы, можно применить задержку их влияния на систему с помощью реле времени. Для этого размыкающий контакт реле времени включается параллельно контактам манометра. Реле времени включается сразу после касания контактов манометра, потом происходит задержка времени включения размыкающего контакта, пока стрелка манометра не успокоится, после чего контакт реле времени размыкается.— рис. 2.42.

Датчики уровня поплавковые, электродные и мембранные при низкой температуре являются неработоспособными. Первые два вмерзают в воду и требуют обогрева, которое не всегда возможно осуществить. Мембрана датчика уровня для сыпучих материалов при низкой температуре также не работает и выходит из строя, поэтому и хранить их нужно при положительной температуре.

2-127.jpg

Рис. 2.42. Коррекция системы автоматического управления насосом с электроконтактным манометром:

о) цепь RC, присоединенная параллельно контактам манометра; б) размыкаемые контакты реле времени, присоединенные параллельно контактам манометра.

Если в воде, где применяется электродный датчик, много минеральных частиц, то они осаждаются на электродах и детали крепления электродов, что приводит к нарушению работы системы автоматики, и нужна чистка датчика. При повышенной температуре на электродах осаждается также накипь, что требует более частой чистки.

В корпусах фотосопротивлений и фотоголовок активный элемент защищен стеклом, через которое он освещается. Стекло может загрязняться, а у датчиков пламени топок покрываться сажей, поэтому стекло датчиков нужно периодически чистить.

На датчик может влиять посторонний свет, нарушая работу установки. Например, освещение датчика наружного освещения ночью вызывает отключение наружного освещения. Освещение может быть фарами машин, от близко расположенного светильника, от снежной поверхности. Для защиты от случайного освещения можно применить козырек из жести, влияние снежного покрова можно устранить регулировкой переменного резистора в цепи фотореле.

На работу контактных механических датчиков влияют условия среды. Сырость, агрессивная среда приводят к окислению контактов и всех металлических деталей, так что датчик трудно разобрать для ремонта, и приходится его заменять. При понижении температуры при наличии сырости все подвижные детали смерзаются и заклиниваются, и датчик перестает работать. Запыленность также ведет к отказу датчиков.

Всех этих недостатков лишены бесконтактные датчики перемещения. Они также безопасны, так как электронное устройство имеет малое напряжение питания — 12 В.

Pиc. 2.40. Электрическая схема электроконтактного манометра

Рис. 2.38. Схема термопреобразователя сопротивления

Рис. 2.39. Схема манометрического термометра

Рис. 2.41. Бесконтактный датчик перемещения типа КВД—6

Изображение: 

Рис. 2.42. Коррекция системы автоматического управления насосом с электроконтактным манометром

Изображение: 

Таблица 2.51 ДАННЫЕ ТЕРМОЭЛЕКТРОДНЫХ ПРОВОДОВ

Таблица 2.52 НЕИСПРАВНОСТИ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ПРИ РАБОТЕ С ПРИБОРОМ

Изображение: 

2.13. Провода и кабели

2.13. Провода и кабели

Влияния внешней среды

Надежная работа проводов и кабелей зависит от их правильного выбора по условиям внешней среды и току нагрузки. Провода и кабели в электроустановках предназначены для определенных способов прокладки, которые следует учитывать. Как правило, изолированные провода не прокладываются незащищенными и должны прокладываться в трубах, лотках и коробах, под штукатуркой. Кабели в местах, где возможно их механическое повреждение, прокладываются в трубах. Это относится и к бронированным кабелям, потому что броня и герметичные оболочки могут повредиться при различных ударах, например, при задевании перемещаемым грузом. Следует также учитывать, что провода и кабели могут повредиться и в трубах от действия воды и агрессивных жидкостей, действующих на изоляцию. Вода, попавшая в трубы с проводами и кабелями с резиновой изоляцией, ухудшает состояние изоляции, что может привести к замыканию между проводами, жилами кабелей или их замыканию на металл трубы. Обычно выходят из строя провода с резиновой изоляцией в хлопчатобумажной оплетке.

При замерзании воды в трубах лед может разорвать провода и кабели. Для предотвращения попадания воды в трубы с проводами или кабелями все отверстия в трубах нужно заделывать водонепроницаемой мастикой.

Кроме воды, на резиновую изоляцию влияют нефтепродукты, например, печное топливо, смазочные масла, что приводит к разбуханию резиновой изоляции и утрате ею всех необходимых свойств. Поэтому при возможности действия этих продуктов лучше применять кабели или провода с пластмассовой изоляцией.

Отрицательная температура приводит к отвердеванию изоляции, особенно пластмассовой, что приводит к ее растрескиванию и отколу при изгибе проводов. Это нужно учитывать при монтаже проводов и кабелей и при выборе кабелей для передвижных механизмов.

Перегрузка током проводов и кабелей приводит прежде всего к обгоранию изоляции у мест присоединения проводов к аппаратам или к электроприемникам. Возможно не только обгорание изоляции проводов, но и деталей корпусов, к которым крепятся токоведущие части, что приводит к выходу из строя аппаратов и панелей коробок зажимов электроприемников. Устранить это явление можно только заменой проводов или кабелей.

При перегрузке током могут загореться и сами провода и кабели.

Выбор проводов и кабелей

При выборе проводов и кабелей надо учитывать условия внешней среды в месте их прокладки, напряжение, при котором они будут работать, и ток нагрузки.

При выборе проводов и кабелей по длительно допустимому току его величину можно приблизительно определить по величине тока на 1 кВт мощности электродвигателя.

Как известно, номинальная мощность двигателя, кВт,

2-131.jpg

Эти приблизительные значения тока нагрузки можно принять, так как нельзя подобрать кабель или провод, имеющий точно такой длительно допускаемый ток, какой получается при точном расчете, и сечение проводов и кабелей выбирается с запасом.

Провода и кабели выбираются по известному току нагрузки по таблицам длительно допустимого тока нагрузки. При этом учитывается также допустимый способ прокладки проводов и кабелей.

Длительно допустимые токи нагрузки для некоторых распространенных в применении проводов и кабелей приведены в табл. 2.53 и 2.54, способы прокладки проводов и кабелей — в табл. 2.55.

Таблица 2.53 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ*

2-132.jpg

* Для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми (А) и медными (М) жилами.

Принятое сечение жил проводов и кабелей должно быть не менее значений, приведенных в табл. 2.56.

Отказы проводов и кабелей

Надежность проводов и кабелей обусловлена их надежностью после изготовления, монтажа и условиями окружающей среды при эксплуатации. Во время монтажа кабели могут быть повреждены при неосторожном обращении. При изготов

лении кабели и провода наматываются на барабаны или укладываются в бухты. При отматывании кабели с жесткой изоляцией собираются в кольца, и если их растянуть, не расправляя, то будет перегиб кабеля или излом. Кабель а этом месте будет ненадежным, поэтому его применять нельзя. Могут быть и другие повреждения изоляции и токоведущих жил при монтаже, некоторые уменьшают надежность при эксплуатации.

Таблица 2.54 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ*

2-133.jpg

* Для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных (А), и для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке бронированных и небронированных (М).

Через поврежденную изоляцию к токоведущим жилам может проникать влага, содержащая агрессивные примеси, или воздух с агрессивными газами, приводящие к коррозии металла провода. В таких условиях особенно сильно происходит коррозия алюминия, что может привести к полному обрыву жилы. В таких случаях лучше всего заменить провод или кабель, а если он большой длины, то приходится вставлять новый участок провода или кабеля. Если провод или кабель

Таблица 2. 55 СПОСОБЫ ПРОКЛАДКИ ПРОВОДОВ И КАБЕЛЕЙ

2-134.jpg

Окончание табл. 2. 55

2-135.jpg

недоступен для замены, то он отсоединяется, а новый прокладывается в доступном месте.

Для соединения кабелей с приемниками электроэнергии, аппаратами и с другими кабелями производится разделка их концов. При этом производится отделение жил кабелей от общей изоляции и изолирование их отдельно с помощью изолирующих полихлорвиниловых лент, клеев и других составов или заливка мест разделки кабелей с помощью специальных муфт и воронок разогретой массой или холодной затвердевающей массой. При этом разделку кабелей с пластмассовой изоляцией нельзя производить заливкой разогретой массой, так как при высокой температуре может повредиться изоляция.

Как показывает практика, места разделки кабелей являются слабыми по надежности, так как в этих местах происходит замыкание с перегоранием жил. Происходит это тогда, когда применен не соответствующий материал или разделка произведена небрежно. Места разделки кабелей должны быть под наблюдением и защищены от различных вредных воздействий.

Следует учитывать возможность повреждения проводов и кабелей грызунами, которые повреждают любую изоляцию. Например, крысы сгрызают изоляцию до металла провода.

Насекомые также не все безобидны. Осы хотя и не повреждают изоляцию, но вьют гнезда в ящиках и шкафах, при открывании которых электриком они могут помешать ему в ответственный момент.

Таблица 2.56 НАИМЕНЬШИЕ СЕЧЕНИЯ ТОКОПРОВОДЯЩИХ ЖИЛ ПРОВОДОВ И КАБЕЛЕЙ В ЭЛЕКТРОУСТАНОВКАХ

2-136.jpg

Мухи, забираясь между контактами и в зазоры, могут нарушать работу аппаратов.

При возможности повреждения изоляции грызунами провода и кабели должны прокладываться в трубах, коробах и каналах с заделкой мест их ввода различными мастиками и растворами, например, цементным.

При наличии насекомых места ввода проводов и кабелей в корпуса аппаратов и шкафы нужно уплотнять заводскими уплотнениями или замазывать различными составами,

Таблица 2. 55 СПОСОБЫ ПРОКЛАДКИ ПРОВОДОВ И КАБЕЛЕЙ (окончание)

Изображение: 

Таблица 2. 55 СПОСОБЫ ПРОКЛАДКИ ПРОВОДОВ И КАБЕЛЕЙ