4. Глава третья. Электронные и электромеханические сторожевые устройства.

Глава третья. Электронные и электромеханические сторожевые устройства

3. 1. Общие сведения

3. 1. ОБЩИЕ СВЕДЕНИЯ

В настоящее время некоторые промышленные производства занимаются изготовлением и установкой всевозможных сторожевых устройств различного назначения и конструктивного исполнения. Количество таких устройств сравнительно невелико, хотя и они часто повторяют друг друга по конструктивно-техническим решениям и электронным схемам. Многие сторожевые устройства, к сожалению, отличаются невысокими показателями качества и надежности и легко поддаются дешифрованию. Применяемые в подобных устройствах электронные схемы характеризуются сравнительной простотой и небольшим набором комплектующих ЭРЭ. Следует заметить, что погоня за максимальным, часто неоправданным снижением себестоимости этих изделий и получением наибольшей прибыли, которую извлекают малые, плохо оснащенные предприятия, кооперативы и т. д., делают сторожевые устройства малопригодными для выполнения своих функций. Сегодня можно встретить устройства с одним и тем же наименованием, но предназначенные для выполнения разных функций.

Много специальных устройств создано для охраны подвижных средств. Они устанавливаются на автомобили обычно частными кооперативами и мелкими акционерными обществами, которые, как правило, не несут полной ответственности за надежность и долговечность их эксплуатации. Злоумышленники легко овладевают автомашинами, оснащенными противоугонными системами низкого качества. Необходимо знать, что большинство этих изделий очень чувствительны к качеству изготовления источников питания, перепадам напряжения питающей сети, частоте и стабилизации тока.

В торговой сети в последнее время появляется все больше и больше разнообразных автономных источников питания, которые используются в качестве резервного электропитания сторожевых устройств. Некоторые фирмы рекламируют компактные и простые в эксплуатации источники питания с широким диапазоном выходной мощности от 0, 1 до 500 Вт и более и повышенным сроком службы. Например, время автономной работы аккумуляторов типа UPS PS20 при различной нагрузке и номинальной температуре окружающей среды 25 °С приведено в табл 3. 1.

Сегодня рынок насыщен новыми сторожевыми устройствами как отечественного, гак и зарубежного производства, обеспечивающими необходимое сервисное обеспечение на основе микропроцессорного управления. Но эти системы, как правило, очень дорогие и не могут быть повторены даже в хорошо оснащенных радиолюбительских лабораториях. К новым сторожевым системам можно отнести электронные устройства, датчики которых устанавливаются в охраняемых помещениях, а сигнал о несанкционированном вторжении передается от электронного блока через обычную электрическую сеть на ЦПУ, где постоянно высвечивается информация о состоянии объекта. В случае проникновения на любой из охраняемых объектов на центральном пульте возникают световой и звуковой сигналы тревоги с указанием номера помещения.

Промышленные сторожевые устройства, предназначенные для охраны банков, квартир, территорий вокруг зданий, автостоянок, оснащаются радиоэлектронными передатчиками, бесконтактными детекторами разбивания стекла, магнитными контактами, активными инфракрасными детекторами, источниками бесперебойного питания и противопожарными системами большой емкости, в том числе и адресными.

Рассматривая некоторые конкретные типы сторожевых устройств, предлагаемых к использованию, по приведенным в рекламных проспектах сведениям, можно сделать неправильные выводы и принять неточные решения, так как ни одно из этих изделий не подтверждается схемами электронных устройств и на них нет необходимой КД. Как правило, в рекламных проспектах и паспортах сторожевых устройств кратко указывается их назначение, но подробно расписываются второстепенные преимущества и даются общие сведения по установке и обслуживанию. Например, при установке противоугонной системы типа «Викинг-604» со всех выводных и монтажных проводников снимаются и уничтожаются все маркировочные знаки и обозначения, не указываются технические характеристики ни на основных, ни на вспомогательных блоках и устройствах системы, чем обеспечивается невозможность демонтажа, ремонта и регулировки этого изделия вне мастерской, где оно было смонтировано. Подобный «сервис» делает хозяина автотранспорта полностью зависимым от фирмы, в которую он обратился.

И еще необходимо отметить, что в названной и других противоугонных системах указывается: сторожевое устройство управляется автоматически по программе специальным ключом с встроенной в него микросхемой и должно обеспечивать: блокировку двигателя по трем шлейфам, автоматическое включение, выключение кодовым ключом, динамическое изменение кода в пределах до миллиарда комбинаций, невозможность сканирования, блокировку стартера и топливного насоса, использование сторожевого устройства с любыми типами сигнальных устройств.

Очевидно, что такая информация для специалистов и радиолюбителей не представляет какой-либо интерес даже для предварительной оценки, если нет сведений о составе функциональных узлов и блоков, их монтажных и принципиальных схем.

Некоторые сторожевые устройства промышленного производства, а также выпускаемые отдельными фирмами заслуживают нашего внимания, потому что имеют повышенные технические характеристики и улучшенные электрические параметры, но и они не свободны от указанных выше недостатков.

Например, универсальная тревожная система «Микрон» позволяет осуществлять радиоохрану магазинов, офисов, квартир, гаражей и т. д. на расстоянии до 1,5 км от ЦПУ в зависимости от условий расположения охраняемых объектов.

Основные электрические параметры и технические характеристики универсальной тревожной системы

Номинальная рабочая частота радиоканала, кГц ... 26 960 Чувствительность принимающего устройства, мкВ,

не менее............................ 10

Номинальное напряжение питающей сети

переменного тока, В.................... 220

Таблица 3.1, Время работы автономных источников питания постоянного тока типа PS20

3-11.jpg

Окончание табл. 3. 1

3-12.jpg

Номинальное напряжение автономного источника

питания постоянного тока, В............... 12

Номинальнаяя частота питающей сети переменного тока, Гц ..................... 50

Пределы изменения напряжении питающей сети

переменного тока, при которых сохраняется

работоспособнось системы, В .............. 198...240

Пределы изменения напряжения питающей сети

постоянною тока, В..................... 10... 14

Количество номеров абонентов, шт............ 1000

Мощносгь, потребляемая системой в период работы

при полной нагрузке, Вт.................. 500

Пределы изменения выходной мощности

сигнала тревоги, Bт ................... 1,2...2

Задержка подачи сигнала после cpaбатывания

системы, с ........................... 60...100

Количество охраняемых шлейфов, шт .......... .2

Продолжительность работы передатчика

после срабатывания системы, с ............. 10

Номинальный ток при полной нагрузке, А ....... 0,6

Номинальная емкость резервных источников

питания, А-ч .......................... 1,5

Вероятность безотказной работы системы

при риске заказчика в=0, 95, не менее........ 0, 93

Количество кодированных сигналов, шт......... 10 000

кпд, %, не менее........................ 90

Универсальная система сторожевой сигнализации «Роса» предназначена для установки как на стационарных, гак и на подвижных объектах. Эта система характеризуется значительным радиусом действия, мгновенной передачей информации или сигнала тревоги на ЦПУ, возможностью передачи информации на персональный приемник, возможностью охраны нескольких объектов одновременно, наличием резервного электропитания, электронным доступом к охраняемым объектам, возможностью контроля за состоянием охраняемого объекта, возможностью программирования сигналов контроля.

Рассматриваемая система включает в свой состав пульт централизованного наблюдения, абонентские комплекты для автомобилей, стационарных объектов и групповых объектов охраны. В свою очередь, в состав этих изделий входят персональный компьютер, БП, приемное устройство, антенный усилитель, антенна, программное обеспечение, электронные ключи, персональный приемник с зарядным устройством, блок передатчика с антенной, концентратор с системой доступа к электронным блокам.

Основные электрические параметры и технические характеристики электронного сторожевого устройства «Роса»

Диапазон рабочих частот, МГц, в пределах которых

устанавливается одна частота для конкретного

объекта охраны .................. 140...210

Чувствительность приемника у абонента, мкВ,

не более ...................... 0,5

Избирательность, дБ ................ 65. .70

Излучение гетеродина в антенне, нВт, не более .... 2

Мощность несущей частоты излучателя,Вт ...... . 4...6

Девиация частоты, кГц .................... 10,8...15,6

Номинальное напряжение питающей сети

переменного тока, В ................... 220

Номинальная частота питающей сети

переменного тока, Гц .................... 50

Номинальное напряжение автономного источника

питания постоянного тока, В ............... 12

Пределы изменения напряжения питающей сети

переменного тока, В ..................... 187...242

Пределы изменения частоты питающей сети

неременного тока, Гц ................... . 49,5...50,5

Пределы изменения напряжения автономного

источника питания постоянного тока, В ........ 10,8...15

Напряжение питания персонального переносного

приемника, В ........................ . 6,6...8,5

Непрерывное время работы персонального приемника

без подзарядки аккумулятора, ч ............. 12

Время работы резервного источника питания

при нормальной температуре, ч ............. 4

Общее число шлейфов, шт .................. 8

Время передачи тревожной сигнализации, с ...... 10

Время передачи одной радиопосылки, мс ........ 16

Срок службы устройства, ч, не менее .......... 5000

Вероятность безотказной работы системы при риске

заказчика в=0,9, не менее ............... .0,92

Ток, потребляемый устройством в ждущем режиме

работы, А, не более .................... .0,07

Сопротивление изоляции токоведущих частей

отдельных блоков системы относительно

металлического корпуса, МОм, не менее ....... 10

Помехозащищенность системы при воздействии

внешнего электромагнитного поля, дБ ......... 120

кпд, %, не менее ........................ 75

Условия эксплуатации:

температура окружающей среды, С ........ —10...+40

относительная влажность воздуха

при температуре 25 °С, % ............. . 90±3

Климатическое исполнение .................. УХЛ

Сторожевая автономная система «Оса» (изготавливается в Санкт-Петербурге фирмой «Аквасвязь») устанавливается для охраны квартир, офисов, сейфов, различных средств передвижения: автомобилей, яхт и др. Работает сторожевое устройство как в автономном, так и в режиме выдачи сообщений на ЦПУ.

Основные электрические параметры и технические характеристики сторожевой автономной системы «Оса»

Номинальное напряжение питающий сети

переменного тока в стационарном режиме

работы, В ......................... 220

Номинальная частота питающей сети

неременного тока, Гц ................... 50

Номинальное напряжение автономною источника

электропитания постоянного тока, В ......... 12

Пределы изменения напряжения питающей сети

неременного тока, В .................... 187...242

Пределы изменения частоты питающейсети

переменного тока, Гц ................... 49,5...50,5

Пределы изменения напряжения автономного

источника питания постоянного тока, В ....... 10...15

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более ............. 12

Количество одновременно охраняемых объектов

при работе в автономном режиме, шт ........ 1

Количество охраняемых точек на одном объекте, шт . . 1...5 Сопротивление шлейфа, кОм, при нормальных

климатических условиях работы ............ 0,6...2,4

Время задержки срабатывания сторожевого

устройства, с, не менее .................. 15

Максимальный ток, потребляемый от сети

переменного тока в режиме передачи сигнала. А,

не более ............................ 2

Период подтверждения работоспособности

устройства, мин, не более ................ 1

Источник резервного электропитания устройства —

аккумулятор ......................... бСГ-1,6

Мощность, потребляемая системой от сети в режиме

вызова и передачи сигнала, Вт ............. 100

Ток, потребляемый внешней сиреной, мА ........ 350

Суммарный ток, потребляемый при полной

нагрузке. А, не более ................... 1

Время непрерывного звучания сирены, мин, не менее . 3 Срок службы, ч, не менее .................. 1000

Срок гарантии, мес ...................... 12

Вероятность безотказной работы устройства

при риске заказчика в= 0,9, не менее ........ 0,95

Сопротивление изоляции токоведущих частей

устройства, МОм, не менее ............... 15

кпд, %,не менее ....................... 80

Условия эксплуатации:

температура окружающей среды, °С ........ —10...+40

относительная влажность воздуха

при температуре 25 °С, % ............. 90±3

Электропитание электронных сторожевых устройств осуществляется, как правило, стабилизированном напряжением постоянного тока, которое вырабатывается вторичными БП или ХИТ. При этом к напряжению электропитания предъявляются достаточно жесткие технические требования. В каждом отдельном случае необходимо обеспечить оптимальные параметры выходного и входного напряжений, максимального тока нагрузки, коэффициентов;

стабилизации и пульсации, внутреннего сопротивления и некоторых других характеристик. Точный инженерный расчет таких стабилизаторов достаточно сложен и не всегда может быть квалифицированно выполнен домашним мастером. Поэтому в электронных схемах сторожевых ус тройств всегда предлагаются готовые решения, которых могут быть улучшены методом упрощенного анализа. Это касается в первую очередь выбора стабилизаторов на ОУ с различными выходными характеристиками.

Выходное напряжение, используемое для электропитания сторожевых устройств, укладывается в следующий ряд: 2; 3; 5; 6; 3; 9; 12,6; 15 В постоянного стабилизированного тока, отдельные значения которого могут плавно изменяться в строго определенных пределах. Ток нагрузки условно разделен на три группы с максимальными значениями до 0,025 А; до 0,8 А; до 2 А, при высоких значениях коэффициента стабилизации.

При монтаже простейших СИП применяются в общем случае такие элементы, как РЭ, управляющее устройство, выпрямительное устройство с ДН и фильтры.

Схемы ДН представлены на рис. 3.1.

В данных схемах элементами образцового напряжения служат стабилитроны VD5 и VD6. Для получения необходимых выходных параметров стабилизаторы питаются от двухполупериодного выпрямителя. В качестве емкостных фильтров применяются электролитические конденсаторы С1 и С2 любых типов, которые могут быть включены параллельно друг другу. В стабилизаторах напряжения используются три основные схемы включения РЭ (рис 3.2).

Порядок упрощенного построения СИП предусматривает следующую последовательность:

1. По номинальному току нагрузки, пользуясь схемой. приведенной на рис. 3.2, выбирается РЭ.

2. По заданному выходному напряжению стабилизатора выбирается схема усилительного элемента и схема

3-13.jpg

Рис. 3. 1. Схема делителя напряжения:

а — с двумя выходными напряжениями разной полярности, б - с одним выходным напряжением постоянного тока.

3-14.jpg

Рис. 3. 2. Схема включения регулирующего элемента:

а — на одном транзисторе; б — на трех транзисторах с дополнительным питанием; в — на одном составном транзисторе из трех транзисторов.

3-15.jpg

Рис. 3. 3. Схемы питания операционных усилителей, применяемых в стабилизаторах напряжения.

питания ОУ (рис. 3.3), если этот ОУ применяется в стабилизаторе напряжения.

3. Далее выбирается схема ДН (рис. 3.1) и на оснонании этих данных составляется полная электрическая схема СИП.

4. По данным, приведенным в табл.3.23.4, определяются номинальные значения основных параметров ЭРЭ схемы источника питания.

Таблица 3.2. Основные электрические параметры

вторичного источника электропитания, необходимые для выбора

элементов схемы

3-16.jpg

Таблица 3.3. Основные электрические параметры регулирующего элемента стабилизатора напряжения

3-17.jpg

Таблица 3. 4. Основные электрические параметры резисторов и конденсаторов, работающих в стабилизаторе напряжения

3-18.jpg

Примечание: сопротивления резисторов даны в Ом или кОм, которые обозначены буквой «к». Емкости конденсаторов даны в мкф.

На заключительном этапе упрощенного построения СИП выполняется работа по сборке и монтажу этого устройства. Но перед включением схемы в сеть переменного тока и, самое главное, перед подключением микросхемы типа СН необходимо убедиться, что входное напряжение на ней удовлетворяет требованию:

Uвх min<=Uвх<=Uвхmax.

Рис. 3.1. Схема делителя напряжения:

Изображение: 

Рис. 3.2. Схема включения регулирующего элемента:

Изображение: 

Рис. 3.3. Схемы питания операционных усилителей, применяемых в стабилизаторах напряжения.

Изображение: 

Таблица 3. 4. Основные электрические параметры резисторов и конденсаторов, работающих в стабилизаторе напряжения

Изображение: 

Таблица 3.1, Время работы автономных источников питания постоянного тока типа PS20 (окончание)

Изображение: 

Таблица 3.1, Время работы автономных источников питания постоянного тока типа PS20

Изображение: 

Таблица 3.2. Основные электрические параметры вторичного источника электропитания, необходимые для выбора элементов схемы

Изображение: 

Таблица 3.3. Основные электрические параметры регулирующего элемента стабилизатора напряжения

Изображение: 

3. 10. Быстроперестраиваемое сторожевое устройство

3. 10. БЫСТРОПЕРЕСТРАИВАЕМОЕ СТОРОЖЕВОЕ УСТРОЙСТВО

Это несложное электронное устройство от ранее рассмотренных отличается как кодированием, так и съемно-логическим решением. Цифровой блок построен на ИМС, которые обладают высокой экономичностью, что позволяет питать его и от автономного источника, и от сети переменного тока. Электронное сторожевое устройство широкого применения выполнено по принципу кодирования информации простым переключением контактов, которое осуществляется в любое время по желанию хозяина собственности. Поэтому данное изделие относится к числу электронных устройств автоматического действия с многотысячными вариантами шифрования. Рассматриваемый в составе сторожевой системы БЭ предназначен для установки на входных бронированных дверях жилых, производственных и хозяйственных помещений от вторжения посторонних лиц и злоумышленников, не знакомых с установленным в данный момент шифром.

Простота шифрования устройства и запоминания кода и достаточная ясность работы электронного быстроперестраиваемого сторожевого устройства позволяют использовать его для охраны гаражей, складских помещений и хозяйственных построек на приусадебных и садово-огородных участках. Многочисленные варианты кодирования не позволяют открыть устройство простым перебором (для открывания замка таким способом потребовалось бы несколько месяцев непрерывной работы). Механическая часть замка здесь не рассматривается.

Устойчивая и надежная работа сторожевого устройства обеспечивается от сети переменного тока напряжением 220 В, реже 127 В частотой 50 Гц или от аккумуляторной батареи с номинальным выходным напряжением постоянного тока 12 В. Подключается аккумуляторная батарея к малогабаритным приборным зажимным контактам Х2 и ХЗ, соблюдая полярность.

Принципиальная электрическая схема рассматриваемого сторожевого устройства, собранного на трех ИМС типа К176, приведена на рис. 3. 16. Как следует из схемы, в состав устройства входят устройство подключения к источникам электропитания, сетевой понижающий трансформатор питания Т1, два выпрямительных устройства, емкостный фильтр, стабилизатор напряжения, выполненный на биполярных транзисторах, кодирующее устройство, электронный блок счетно-решающего устройства и ИМ.

Входное устройство включает в свой состав электрический соединитель X1 типа «вилка», смонтированный с электрическим кабелем и обеспечивающий подключение сторожевого устройства к сети переменного тока; плавкие предохранители F1 и F2, защищающие входные цепи устройства от перегрузок и коротких замыканий, которые могут произойти из-за неправильной сборки и ошибок в монтаже схемы, а также из-за неисправных комплектующих ЭРЭ; индикаторную лампочку H1, сигнализирующую о готовности сторожевого устройства к работе; конденсаторы С1 и С2, обеспечивающие защиту от низкочастотных электромагнитных помех, которые проникают в сеть питания; два малогабаритных зажимных контакта Х2 и ХЗ, рассчитанных на подключение одного соединения.

Сетевой понижающий трансформатор питания Т1 самодельной конструкции изготавливается на броневом ленточном магнитопроводе типа ШЛ с одной катушкой, которая устанавливается на центральном стержне. Площадь активного поперечного сечения стали магнитопровода должна быть не менее 6 см2. Моточные данные сетевого трансформатора Т1 приведены в табл. 3.15. Первичная обмотка трансформатора имеет отвод от 1270-го витка для подключения к сети переменного тока напряжением 127 В. На выходе обмоток трансформатора действует переменное напряжение 6,3 В и 13 В. При изготовлении трансформатора необходимо обеспечить повышенную прочность электроизоляции между слоями обмоточного провода и между обмотками различными изоляционными материалами: лакотканью, изоляционны-

Таблица 3. 15. Моточные данные сетевого понижающего

трансформатора питания Т1, примененного

в быстро перестраиваемом сторожевом устройстве

3-101.jpg

ми лаками, конденсаторной бумагой и др. Намотка провода на катушку — рядовая, однослойная. Сетевой трансформатор обеспечивает расчетные значения выходных и выпрямленных напряжений постоянного тока, гальваническую развязку вторичных цепей сторожевого устройства от сети переменного тока высокого напряжения и необходимую электробезопасность при эксплуатации.

Первый выпрямитель предназначен для создания постоянного напряжения 13 В, обеспечивающего работу электронной части принципиальной схемы сторожевого устройства. Выпрямитель создан на двух выпрямительных диодах VD1, VD2, собранных по двухполупериодной схеме со средним выводом вторичной обмотки трансформатора. Выпрямитель по этой схеме характеризуется повышенной частотой пульсации выпрямленного напряжения, возможностью использования выпрямительных диодов с общим катодом (или анодом), что значительно упрощает их установку на общем радиаторе охлаждения, а также повышенным обратным напряжением на комплекте выпрямительных диодов и более сложной конструкцией сетевого трансформатора. Выпрямитель работа

ет на емкостный фильтр, собранный на конденсаторах СЗ—С5. Оксидныи электролитический конденсатор С5 имеет большую емкость.

С выпрямителя постоянное напряжение поступает на стабилизатор напряжения, собранный по компенсационной схеме и создающий высокий уровень стабилизации напряжения на нагрузке. Стабилизатор напряжения относится к нерегулируемым устройствам и имеет в своем составе устройство сравнения, РЭ, УПТ и устройство защиты от перегрузок и коротких замыканий в электронной схеме сторожевого устройства. В качестве РЭ в стабилизаторе применен транзистор VT4. Опорное напряжение снимается со стабилитрона VD9. Устройство защиты собрано на стабилитроне VD8, транзисторе VT1 и резисторах R3 и R4. Между базой и эмиттером транзистора VT1 действует разность напряжений. Величина этой разницы зависит от протекающего через резистор R4 тока нагрузки. В номинальном режиме работы через резистор R4 протекает ток нагрузки, и на нем падает очень небольшое напряжение, которое подается на базу транзистора VT1, а напряжение на эмиттере этого транзистора стабилизировано стабилитроном VD8, включенным в прямом направлении.

Быстроперестраиваемое сторожевое устройство состоит собственно из электромеханического замка, работающего от ИМ (электромагнита, соленоида, электромагнитного реле и др.), и управляющей электронной схемы, которая обеспечивает автоматическую подачу сигнала на открывание замка. Кодирование памяти электронной схемы осуществляется замыканием контактов девяти переключателей S6—S14 в соответствующие положения. Эти переключатели, как следует из схемы, имеют всего два положения: «выключено» и «включено». Положение «включено» соответствует сигналу «да» или высокому уровню логической единицы, а положение «выключено» — сигналу «нет» или низкому уровню логического нуля.

Работа сторожевого устройства, включающего в себя счетно-решающий электронный узел, основана на использовании принципа подсчета девятиразрядной кодовой комбинации цифр, которая, в свою очередь, представляет собой произвольное чередование логических уравнений «да» и «нет» (логическая единица или логический нуль). Девятиразрядный шифр вырабатывается

ИМС DA3, на выходе которой установлены импульсные диоды VD11-VD19 и однополюсные переключатели S6- S14. Набор шифра осуществляется двумя переключателями S4 и S5, которые имею переключающие группы контактов, не фиксируемых в нажатом положении. Команда на срабатывание ИМ в открывание дверей охраняемого объекта происходит только при правильном наборе шифра.

Собранный в составе БП узел защиты электронной схемы работает следующим образом. При коротком замыкании и перегрузках в выходных цепях, когда ток нагрузки превышает допустимый, падение напряжения на резисторе R4 открывает транзистор VT1, выключает стабилитрон VD9, и ток через регулирующий транзистор VT4 резко ограничивается. В результате этого нагрузка обесточивается и выключается. Защита электронного узла по данной схеме срабатывает при токе, не превышающем 0,5А, и может регулироваться изменением сопротивления резистора R4.

Выпрямленное и стабилизированное напряжение постоянного тока поступает на узел кодирования и дешифрования, собранный на трех ИМС DA1—DA3. При этом ИМС DA3 выполняет функцию счетчика-дешифратора. Декодирующее устройство содержит два двухполюсных переключателя S4 и S5, при помощи которых последовательно осуществляется дешифрование счетного узла. ИМС DA1 представляет собой RS-триггер, который срабатывает от первого замыкания контактов одного из переключателей S4, S5 и не реагирует на последующие ошибочные включения. ИМС DA2 представляет собой устройство, запрещающее дальнейший счет импульсов вводимого кода после первой ошибки в наборе. В том случае, когда набираемый шифр не совпал с установленным в любом разряде счетчика, на выходе второго триггера ИМС DA2 появляется высокий уровень логической единицы, который запрещает дальнейший счет. Но внешне это никак не проявляется. Последующие нажатия на любые кнопки переключателей S4 и S5 уже не изменяют состояние счетчика до тех пор, пока сторожевое устройство не будет возвращено в исходное положение. И каждое последующее нажатие на кнопки постоянно увеличивает время нахождения ИМС DA3 в состоянии, предшествующем ошибке в наборе шифра. После прекращения нажатий на кнопки

переключателей S4 или S5 по истечении временной задержки на выходе инвертора ИМС DA1 появляется высокий уровень логической единицы, переключающий триггер ИМС DA2 и счетчик ИМС DA3 в состояние низкого уровня логического нуля.

Необходимо также заметить, что в сторожевом устройстве предусмотрен узел задержки времени срабатывания, состоящий из электрической цепочки DA1, VD20, С5, R19, R20. При ошибке в наборе шифра это устройство позволяет повторить попытку только после определенно заданного интервала времени. Если начать повторный набор шифра до истечения времени этого интервала, то срабатывания сторожевого устройства и открывания механического замка не последует даже при правильном наборе. Это важное свойство сторожевого устройства может знать только хозяин.

В схему сторожевого устройства включен оптрон DU1, обеспечивающий передачу сигнала на срабатывание ИМ, полную гальваническую развязку между источником питания ИМ и электронной частью сторожевого устройства, а также дополнительную электробезопасность эксплуатации изделия в целом.

Работу сторожевого устройства контролируют с помощью индикаторной лампы H1 и светодиода VD10. При включении устройства в сеть переменного тока загорается индикаторная лампа H1, а при срабатывании механической части замка после правильного набора шифра — светодиод VD10 красного или зеленого цвета.

На принципиальной электрической схеме сторожевого устройства показано положение электронной схемы при всех отключенных контактах переключателей S6—S14, которое соответствует низкому уровню логического нуля, то есть набора нет. При правильном наборе шифра сигнал высокого уровня логической единицы с выхода ИМС DA3 (вывод 11) открывает ключевой транзистор VT2, что приводит к срабатыванию оптрона DU1, а вслед за ним — тиристора VD7, включающего электропитание исполнительного электромагнита или соленоида, и механический замок открывается.

Если за период временной задержки дверь охраняемого объекта не будет открыта, сторожевое устройство возвращается в исходное состояние, соответствующее нулевому состоянию второго триггера ИМС DA2 и счетчика-дешифратора ИМС DA3.

В быстропереcтраиваемом сторожевом устройстве применены следующие покупные и самодельные комплектующие ЭРИ и ЭРЭ: сетевой понижающий трансформатор питания Т1 типа ШЛ броневой конструкции; ИМС DA1 типа К176ЛА7, DA2 — К176ТМ2, DA3 К176ИЕ8; транзисторы VT1 типа МП42, VT2 — КТ315Г, VT3 — МП42, VT4 — П213; выпрямительные диоды VD1 типа Д226Д, VD2 Д226Д, VD3 VD6 - КД202Р, VD11-VD19 — КД522А, VD20 — КД522А, VD21 - КД105Б;

стабилитроны VD8 типа Д814Д, VD9 — Д814Д; тиристор VD7 типа КУ202Н; светодиод VD10 типа АЛ307А; оптрон DU1 типа АОУ103Б; ИМ К1 (электромагнит, соленоид или электромагнитное реле); индикаторная лампа Н1 типа МН-6,3-0,22 А; плавкие предохранители F1, F2 типа ПМ1-0.5 A, F3 — ПMl-0,25 A;

переключатели S1 типа П2Т-1-1, S2, S3 — П1Т-1-1, S4, S5 — МПЗ-1, S6—S14 — МТ1-2; конденсаторы С1 типа К40У-9-630В-0,033 мкФ, С2 — К40У-9-630В-0,033 мкФ, С5 — К50-6-25В-500 мкФ, С4 — К10-7В-50В-2200 пф, СЗ — К10-7В-50В-2200 пФ, С6 — К50-6-25В-500 мкФ, С7 — ЭТО-20В-1.5 мкФ; резисторы R1 типа ВСа-0,5-2,2 кОм, R2 — ВСа-1-2,4 кОм, R3 — ВСа-1-620 Ом, R4 — проволочный самодельный, намотан на резисторе ВСа-2-2 Ом нихромовым проводом диаметром 0,1 мм, R5 — ВСа-0,5-750 Ом, R6 — ВСа-0,25-470 Ом, R7 — СПЗ-1б-0,5Вт-2,2 к0м, R8 — ВСа-0,5-1,2 кОм, R9 — ВСа-0,25-10 кОм, R10 — ВСа-0,25-470 Ом, R11 — ВСа-0,5-4,3 к0м, R12 — ВСа-0,25-2,4 к0м, R13 — ВСа-2-10 к0м, R14 — ВСа-0,25-1 к0м, R15 — ВСа-0,125-100 к0м, R16 — ВСа-0,25-82 к0м, R17 — ВСа-0,125-27 к0м, R18 — ВСа-0,5-27 к0м, R19 — ВСа-0,125-27 к0м, R20 — ВСа-0,125-4,7 к0м, электрические соединители X1 типа «вилка» с электрическим кабелем длиной не менее 1,5 м, Х2, ХЗ — КМЗ-1.

При регулировке и ремонте электронной части сторожевого устройства некоторые ЭРИ и ЭРЭ могут быть заменены другими аналогичными элементами, не ухудшающими основные электрические параметры и эксплуатационные характеристики сторожевого устройства. Например, сетевой понижающий трансформатор питания Т1 можно заменить на унифицированный трансформатор типа ТПП, ТН, ТС или ТТ; конденсаторы типа К50-6 — на К50-3, К50-12, К50-16, К50-20; резисторы типа ВСа — на МЛТ, ОМЛТ, ВС, МТ, УЛИ, C1-4, C2-8; диоды типа Д226Д — на Д237А, Д237Е, КД202В, диоды типа Д202Р — на Д234Б, Д248Б, КД206В, диоды типа КД522А — на КД509А, КД510А, КД513А. Рекомендации по замене транзисторов рассмотрены выше, в первой главе.

Необходимо заметить, что выбор нового шифра осуществляется переключением контактов выключателей

S6—S14 в течение нескольких секунд, поэтому данное устройство относится к числу быстроперестраиваемых.

Изготавливается сторожевое устройство в виде двух самостоятельных блоков: БП и БЭ. Блок питания имеет максимальные размеры 130Х110Х80 мм, выполнен в виде прямоугольника с лицевой панелью, верхней и нижней крышками, в которых предусматриваются вентиляционные отверстия, расположенные в местах установки тепловыделяющих элементов. На лицевой панели БП устанавливаются индикаторная лампочка Н1,держатели предохранителей F1 и F2, клеммы Х2 и ХЗ, на которых действует постоянное стабилизированное напряжение 9 В, и ручки управления переключателями S2 и S3.

Блок электроники изготавливается в пластмассовом корпусе с размерами 140Х35Х50 мм. На верхней крышке корпуса располагаются: индикаторная лампочка (светодиод), ручки управления переключателей S6—S14, приборные малогабаритные зажимные контакты А и Б, контакты для подключения электропитания ИМ Х4 и Х5 к сети переменного тока и контакты Х6 и Х7 для подключения исполнительного устройства, которое устанавливается непосредственно на входной двери охраняемого объекта. Все комплектующие элементы БЭ монтируются на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1...1,5 мм.

При изготовлении лицевых панелей БП и БЭ сторожевого устройства необходимо вырезать много прямоугольных и круглых отверстий разного размера, которые выполняются по предварительной разметке, сделанной на миллиметровой бумаге и заранее наклеенной на лицевую панель.

Необходимо еще раз обратить внимание на правильность установки и пайки микросхем серии К176. При этом меры предосторожности не сводятся только к тому, чтобы защитить корпус микросхемы от недопустимых деформаций. Конструкция должна обеспечивать эффективный отвод тепла за счет конвекции воздуха или с помощью теплоотводящих элементов. Должно быть обеспечено высокое качество паяных соединений. И не менее важным обстоятельством при работе с микросхемами этой серии является необходимость соблюдения специальных мер защиты от повреждений статическим электричеством. Жало паяльника заземляется, на руку надевается заземляющий браслет в виде манжеты, а электропитание паяльника должно осуществляться только через понижающий сетевой трансформатор, обеспечивающий полную гальваническую развязку.Часто в распоряжении радиолюбителя имеются микросхемы, подходящие по функциональному назначению, но нет технической возможности для такой замены. В этом случае можно изготовить плату-переходник из фольгированного стеклотекстолита. Новую схему монтируют на этой плате, которую соединяют с печатной платой. При хранении ИМС, некоторых типов транзисторов (особенно полевого типа) выводы таких ЭРЭ закорачивают между собой, как правило, медным проводником или алюминиевой фольгой.

Примененные в устройстве микросхемы относятся к структурам КМОП, и поэтому вышеприведенная рекомендация для снятия статического электричества является особенно важной. При создании устройств с микросхемами, примененными в сторожевом устройстве, типы конденсаторов и значения их емкостей выбираются из расчета: емкость электролитического конденсатора на одну микросхему должна быть не менее 0,03 мкФ.

Создание электронных сторожевых устройств на ИМС со структурой КМОП сопряжено с необходимостью учитывать технологию их изготовления. Известно, что эти микросхемы подвержены губительному влиянию статического электричества. Опасное значение электрического потенциала составляет примерно +100 В постоянного тока. Пайку выводов этих микросхем следует начинать с выводов питания, но затем последовательность пайки может быть любой.

Дополнительно следует заметить, что микросхемы по технологическим приемам изготовления подразделяются на определенные типы, основными из которых являются микросхемы ТТЛ — транзисторно-транзисторной логики;

ТТЛШ — ТТЛ с диодами Шоттки; КМОП — микросхемы комплементарной структуры типа металл — окисел — полупроводник.

Основные электрические параметры и технические характеристики быстроперестраиваемого сторожевого устройства

Номинальное напряжение питающей сети

переменного тока, В .................. .220 или 127

Номинальная частота питающей сети

переменного тока, Гц ................ .50

Номинальное напряжение автономного источника

электропитания постоянного тока, В ........9

Коэффициент нелинейных искажении питающей сети

переменною тока, %, не более ............. 12

Пределы изменения напряжения питающей сети

переменного тока, В .................... 180.... .250 или 110... .140

Пределы изменения частоты питающей сети

переменного тока, Гц .................... 49,5... 50,5

Пределы изменения напряжения автономного

источника электропитания сторожевого устройства

постоянного тока, В ..................... 8.... 14

Напряжение на вторичной обмотке сетевого

трансформатора Т1 при номинальном напряжении

питающей сети 220 В, В .................. 26 (выводы 4 и 6)

Напряжения на выводах вторичных обмоток

трансформатора Т1 при изменении напряжения

питающей сети oт 180 до 250В, В:

4 и 5 ............................. 10,6...14,7

5 и 6 . ............................ 10,6...14,7

7 и 8 . ............................ 5,1... 7,1

Коэффициент стабилизации выпрямленного напряжения, не менее ................... 500

Амплитуда пульсации выпрямленного напряжения постоянного тока на выходе выпрямителя, мВ, не более ............................ 10

Номинальный ток питания ИМ замка. А, не более . . 0,5 Ток срабатывания защитного устройства в БП при коротком замыкании, А .......... 0,3

Мощность, потребляемая сторожевым устройством в ждущем режиме работы, мВт, не более . . . . . . 20

Время срабатывания сторожевого устройства

после правильного набора шифра, мс, не более . . 40

Мощность сетевого трансформатора, Вт . . . . . . . . 60

Время задержки в наборе шифра при ошибке, с . . . 3-20

Вероятность безотказной работы устройства

при риске заказчика в=0,9, не менее ......... 0,89

Срок службы устройства, ч, не менее .......... 7000

Помехозащищенность сторожевого устройства от ложных срабатываний при воздействии внешнего электромагнитного поля в полисе частот от 0,15 до 30 МГц, не менее . . . . . . . . . . . . . . . 60

Сопротивление изоляции токоведущих частей и проводников устройства между собой и металлическим корпусом, МОм, не менее . . . . . 5

кпд, %, не менее . . . . . . . . . . . . . . . . . . . . . . . . 85

Условия эксплуатации:

температура окружающей среды, °С . . . . . . . . —25...+-45

относительная влажность воздуха

при температуре окружающей среды 22 С, %, не более ......................... 90+-3

атмосферное давление воздуха, мм рт. ст...... 200... 900

 

t81.jpg

Рис. 3.16. Принципиальная схема быстроперестраиваемого сторожевого устройства.

Рис. 3.16. Принципиальная схема быстроперестраиваемого сторожевого устройства.

Изображение: 

Таблица 3.15. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в быстро перестраиваемом сторожевом у

Изображение: 

3. 11. Сторожевое устройство на электромагнитных реле

3.11. СТОРОЖЕВОЕ УСТРОЙСТВО НА ЭЛЕКТРОМАГНИТНЫХ PEЛE

Рассматриваемое устройство относится к группе релейных автоматов, предназначенных для управления электромеханическими замками, которые устанавливаются на дверях жилых и производственных здании. Особенностью данного устройства является то, что оно очень просто в изготовлении, не нуждается в сложной и длительной настройке, не имеет в своем составе ППП и элементов электроники, работает непосредственно от сети переменного тока напряжением 220 В частотой 50 Гц. Последнее обстоятельство предъявляет особые условия к монтажу и электропроводке сторожевого устройства, главными из которых являются требования по технике электробезопасности и пожаробезопасности.

Схемно-конструктивное решение этого устройства позволяет устанавливать его только в тех помещениях и на объектах, где имеется возможность подключения к сети переменного тока, поэтому область применения устройства несколько ограничена, а его релейный блок требует постоянного осмотра и наблюдения за его состоянием. Не менее важной особенностью релейного автомата является то, что он позволяет очень быстро устанавливать любой код, без каких-либо перепаек и монтажа перемычек, так как не содержит разъемных соединений и приборных контактов. Весь монтаж осуществляется электрическим кабелем с двойной изоляцией, сопротивление постоянному току которого должно быть не менее 50 МОм. Монтажные соединения между контактами релейного блока должны производиться только многожильным проводом пайкой, например припоем ПОС-60.

Принципиальная электрическая схема сторожевого устройства на электромагнитных реле без применения ППП приведена на рис. 3.17. Устройство состоит из релейного блока, включающего семь электромагнитных реле типа МКУ-48, кодирующего узла и дешифратора.

Основным блоком устройства является блок электромагнитных реле, который изготавливается в металлическом или пластмассовом корпусе. На верхней крышке этого блока собирается узел кодирования, выполненный из семи перекидных переключателей с фиксированным положением контактных пар. Релейный блок и узел кодирования представляют собой единую сборочную конструкцию, которая устанавливается на стене охраняемого помещения и вдали от входной двери, так как соединяется с сетью питания и блоком управления двумя двужильными проводами. На боковых поверхностях релейного блока необходимо предусмотреть вентиляционные отверстия, не снижающие механической прочности конструкции.

В качестве кодирующих переключателей S3—S9 рекомендуется использовать двухполюсные переключатели типа МТ1, П1Т-1-1.

Дешифратор изготавливается в виде прямоугольной пластмассовой конструкции, в которой монтируются кнопочные переключатели S2, S10—S16. Устанавливается дешифратор на входной двери и соединяется с релейным блоком и сетью электропитания монтажным проводом и электрическим многожильным кабелем. В качестве кнопочных переключателей используются малогабаритные кнопки КМ, предназначенные для коммутации электрических цепей с активной нагрузкой постоянного тока от 0, 0005 до 3 А и напряжением от 0, 5 до 250 В и имеющие износостойкость не менее 10 000 циклов переключении типа КМ1-1.

Для изготовления сторожевого устройства использованы следующие комплектующие ЭРИ и ЭРЭ: переключатели S1 типа П1Т-1-1 или П2К с контактами на размыкание, S2 — кнопка звонковая, работающая на замыкание контактов только при нажатии на нее, S3—S9 — МТ1, S10—S16 — КМ1-1 или КП-1, S17 — КМ1-1, КП-1, МТ1; ЭМ1 типа ЭП 41/33 или самодельный, конструкция которого рассмотрена выше; электрический звонок ВА1 любого типа с электропитанием от сети переменного тока напряжением 220 В частотой 50 Гц; электромагнитные реле К.1—К.7 типа МКУ-48 или любые другие реле также с питанием от сети переменного тока напряжением 220 В, имеющие контактные пары, которые работают на замыкание и на размыкание; плавкий предохранитель F1 любого типа на ток срабатывания 1 А; электрический соединитель X1 типа «вилка».

Как следует из принципиальной схемы, код сторожевого устройства состоит из семи цифр 1—7, принцип кодирования которых заключается в следующем. Контакты переключателей S3—S9 устанавливаются в такое положение, чтобы при нажатии соответствующих кнопок срабатывали реле и своими контактами замыкали электрическую цепь питания ИМ ЭМ1. В положении контактов переключателей, показанных на схеме, набран код 1345.

Набор шифра производится в любое время и по желанию хозяина объекта ручками переключателей. В зависимости от положения пар контактов переключателей можно подать сигнал на срабатывание ИМ при нажатии одной, двух, трех и т. д. кнопок S10—S16 — это зависит от положения ручек управления переключателей S3—S9.

После того как собран блок реле с кодирующим узлом, рекомендуется у всех ручек управления переключателей S3—S9 сделать гравировку или надписи цифрами от 1 до 7, в порядке возрастания номеров. Если переключателю S3 присвоена цифра 1, то S4 — цифра 2, S5 — цифра 3 и т. д. Такие же номера необходимо выгравировать или сделать надписи у кнопок дешифратора, установленного на входной двери охраняемого объекта.

Срабатывает сторожевое устройство следующим образом. Сначала нажимается первая кнопка, соответствующая переключателю S10, и переменное напряжение сети подается на обмотку первого реле К1, которое контактами К1.1 самоблокируется, а контактами К. 1. 2 подключит обмотку ИМ к контактам 1 и 3 переключателя S3. Затем необходимо нажать кнопку под номером 3 для того, чтобы сработало реле КЗ и своими контактами КЗ.1 заблокировало питание, а контактами КЗ. 2 обеспечило дальнейшую подготовку цепи ИМ к подаче электропитания.

Если нажать вторую кнопку и подать напряжение питания на обмотку реле К2, то произойдет самоблокировка питания этого реле контактами К2. 1 и размыкание контактов К2. 2, которые разорвут электрическую цепочку, и ни при каком дальнейшем наборе цифр кода ИМ не получит питания.

Для того чтобы сторожевое устройство сработало, необходимо последовательно нажать кнопки 4 и 5, контакты которых позволят замкнуть цепь питания ИМ ЭМ1. Блокировочная кнопка S2 подает напряжение питания на электрический звонок и имеет обычную схему включения. Вторая блокировочная кнопка S1 возвращает схему сторожевого устройства в исходное положение. Эту кнопку можно установить скрытно или на входной двери. При скрытном положении кнопки ее контакты должны быть разомкнуты и включаются только в момент перед дешифровкой. В этом случае сторожевое устройство в ждущем режиме находится в обесточенном состоянии, но открыть входную дверь невозможно. Если кнопка переключателя устанавливается на входную дверь, то при открывании двери контакты этого переключателя разрываются, а при закрывании двери вся система возвращается в исходное состояние и готова к приему нового посетителя.

Радиолюбители должны заинтересоваться установкой и размещением еще одной дополнительной кнопки S17, с помощью которой можно управлять сторожевым устройством на значительном расстоянии от входной двери. Ее можно установить и внутри объекта и снаружи, но обязательно в укромном месте. С ее помощью можно подавать напряжение питания на ИМ и приводить его сердечник в действие.

Рациональная компоновка конструктивных элементов сторожевого устройства и выполнение требований эстетики и эргономики позволит домашнему мастеру изготовить всё устройство компактным и удобным в эксплуатации. Одно главное требование: верхняя лицевая планка, на которой укрепляются кнопки дешифратора и которая выступает над поверхностью двери, должна быть выполнена из стали толщиной не менее 4 мм, а сами кнопки должны быть глубоко утоплены и не иметь люфта в отверстиях.

Правильно собранное сторожевое устройство в налаживании и регулировке не нуждается и начинает работать сразу же после установки на место.

Основные электрические параметры

и технические характеристики сторожевого устройства

на электромагнитных реле

Номинальное напряжение питающей сети

переменного тока, В..................... 220

Номинальная частота питающей сети

переменного тока, Гц.................... 50

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более.............. 10

Пределы изменения напряжения питающей сети

переменного тока, %, не более.............. ±10

Пределы изменения частоты питающей сети

переменного тока, %, не более.............. ±1

Напряжение срабатывания реле, В............ 187

Напряжение отпускания реле, В.............. 63

Сопротивление изоляции токоведущих элементов

между собой и корпусом устройства, МОм...... 10

Суммарное время нахождения обмоток реле

под напряжением, ч, не более............... 100

Количество одновременно охраняемых объектов, шт. 1 Срок службы устройства, ч, не менее........... 5000

Вероятность безотказной работы, не менее....... 0, 92

кпд, %, не менее........................ 80

Максимальная мощность устройства, Вт........ 100

Условия эксплуатации:

температура окружающей среды, °С ........ —40...+50

относительная влажность воздуха при температуре 35 °С, % не менее................ 95+ -3

атмосферное давление воздуха, мм рт. cт...... 200... 900

 

t91.jpg

Рис. 3.17. Принципиальная схема сторожевого устройства на семи электромагнитных реле.

Рис. 3.17. Принципиальная схема сторожевого устройства на семи электромагнитных реле.

Изображение: 

3. 12. Сторожевое устройство на трех триггерах

3.12. СТОРОЖЕВОЕ УСТРОЙСТВО НА ТРЕХ ТРИГГЕРАХ

Сторожевое устройство, выполненное на ППП, предназначено для автоматического открывания механического замка, имеющего пружинную защелку. Замок устанавливается на входных дверях охраняемых объектов и срабатывает при правильном наборе установленного кода. Открывание дверей осуществляется после набора закодированного числа, состоящего из трех цифр от 1 до 10. Срабатывание устройства обеспечивается в строго определенной последовательности, так же, как срабатывают триггеры.

Принципиальная электрическая схема сторожевого устройства приведена на рис. 3.18, которая включает в себя следующие функциональные узлы, блоки и электрические цепи: входное устройство, сетевой понижающий трансформатор питания Т1, выпрямительное устройство, ИМ, кодирующее устройство и дешифратор, электронный автомат, собранный на ППП, выходные цепи, соединяющие устройство с механическим замком и дешифратором.

Подключение сторожевого устройства к сети переменного тока производится с помощью электрического соединителя X1 типа «вилка», смонтированного с электрическим кабелем. Работает сторожевое устройство от сети переменного тока напряжением 220 В частотой 50 Гц. Плавкие предохранители F1 и F2, установленные на входе, защищают устройство от коротких замыканий и перегрузок, возникающих иногда из-за допущенных при монтаже ошибок или из-за неисправных комплектующих элементов. Предохранители рассчитаны на ток срабатывания 1 А.

Во входной цепи установлен емкостный фильтр, собранный на конденсаторах С1 и С2 и защищающий устройство от низкочастотных помех, которые проникают в электрическую сеть от работы различных электротехнических устройств и механизмов. Включение и выключение

электропитания осуществляется с помощью двухпозиционного переключателя S1, о чем сигнализирует неоновая лампа H1.

В качестве сетевого понижающего трансформатора питания Т1 выбран унифицированный трансформатор ТПП, все типоразмеры которого применяются для питания ycройств на ППП. Особенностью трансформаторов типа ППП является низкие напряжение, действующее на вторичных обмотках. Конструкция трансформатора способна противостоять механическим и климатическим воздействиям, указанным в первой главе справочника. Она способна сохранять работоспособность при повышенной влажности и во всех случаях температурных воздействий обеспечивать необходимый запас электрической прочности изоляции обмоток с учетом категорий размещения трансформатора. Изготавливается трансформатор на ленточном магнитопроводе типономинала ШЛМ25Х25, который рассчитан на уменьшенный расход медного обмоточного провода.

Вместо покупного трансформатора можно применить самодельный, изготовленный на магнитопроводе типа Ш25Х25 или УШ25Х32 по данным, которые приведены в табл. 3.16. На выводах вторичных обмоток покупного трансформатора действует переменное напряжение при подключенной нагрузке следующих значений: 11 и 12 — 4,98 В; 13 и 14 — 4,98 В; 15 и 16 — 20 В; 17 и 18 — 20 В;

19 и 20 — 1,34 В; 21 и 22 — 1,34 В. Мощность трансформатора равна 57 Вт.

Сетевой понижающий трансформатор выполняет функции трансформации напряжения, гальванической развязки вторичных цепей от сети электропитания, обеспечения расчетного значения выпрямленного напряжения постоянного тока и безопасной эксплуатации сторожевого устройства.

При изготовлении самодельного трансформатора необходимо особое внимание обратить на качество обмоточного провода, при этом сопротивление изоляции должно быть не менее 20 МОм.

При намотке провода на катушку используется рядовая укладка с изоляцией каждого слоя друг от друга. В качестве изоляционного материала используется кабельная бумага или тонкая лакоткань. Наиболее прочная изоляция должна быть выполнена между первичной обмоткой, экраном и вторичной обмоткой. Самодельный транс-

Таблица 3. 16. Моточные данные сетевою понижающего трансформатора питания Т1, примененного в сторожевом устройстве на трех триггерах

3-121.jpg

форматор можно изготовить по упрощенной схеме, выполнить одну первичную обмотку с выводами 2 и 9, рассчитанную на подключение к сети переменного тока напряжением 220 В. Затем намотать один слой экранного провода с изоляцией между слоями и намотать одну вторичную обмотку, на которой при холостом ходе должно действовать переменное напряжение 26 В. Сопротивление изоляции между всеми токоведущими элементами и магнитопроводом должно быть не менее 10 МОм при относительной влажности воздуха до 90% при температуре 25 °С.

Выпрямительное устройство собрано на четырех диодах VD1-VD4 и конденсаторе СЗ, который является фильтром, сглаживающим пульсации выпрямленного напряжения постоянного тока. Выпрямитель выполнен по однофазной двухполупериодной мостовой схеме, которая характеризуется как положительными, так и отрицательными параметрами. К положительным относятся: повышенная частота пульсации на выходе выпрямителя постоянного тока, достаточно низкое обратное напряжение на комплекте выпрямительных диодов, полное использование габаритной мощности сетевого трансформатора. Котрицательным — повышенные потери и более низкий кпд по сравнению с другими выпрямительными схемами, невозможность установки диодов на одном металлическом теплоотводе без изоляционных прокладок, повышенный расход комплектующих ЭРЭ и более высокая стоимость изготовления. На выходе выпрямителя в точках А и Б под нагрузкой действует постоянное напряжение 24 В.

Далее по схеме в устройстве собран электронный блок на девяти транзисторах биполярного типа. Все транзисторы устанавливаются на печатную плату, за исключением транзистора VT1. В устройстве использованы транзисторы малой мощности, которые относятся к ППП третьего поколения, являются наиболее дешевыми по стоимости комплектующими ЭРЭ данного типа.

В составе электронного блока сторожевого устройства работают три транзисторных триггера и один усилитель тока. Первый триггер выполнен на транзисторах VT8 и VT9, второй — на транзисторах VT5 и VT6, третий — на транзисторах VT3 и VT4. Двухкаскадный усилитель тока собран на транзисторах VT1 и VT2.

Транзисторные триггеры относятся к классу полупроводниковых автоматических устройств, которые характеризуются тем, что могут сохранять длительное время одно из двух своих крайних состояний устойчивого равновесия и скачкообразно переключаться по электрическому сигналу из одного крайнего состояния в другое. В исходном состоянии сторожевого устройства транзисторы VT9, VT6 и VT4 триггеров открыты и потенциал на их коллекторах равен нулю. При включении электропитания это положение транзисторов достигается за счет заряда конденсатора С4 через резистор R17.

Порядок срабатывания сторожевого устройства при дешифровке установленного кода определяется подачей сигналов на триггеры. В данном случае первый триггер всегда срабатывает первым при замыкании контактов соответствующего кнопочного переключателя. Второй триггер срабатывает после первого триггера также после замыкания контактов кнопочного переключателя и зависит от установленного шифра. Третий триггер срабатывает вслед за вторым триггером.

На принципиальной схеме (рис. 3.18) показан установленный шифр 492. Первая цифра кода 4 определена номером кнопочного переключателя S4, контакты которого соединены через перемычку между соединителями Х8 и Х9 с базой транзистора VT8 первою триггера. Таким образом, первый триггер (транзисторы VT8 и VT9), перемычка между электрическими соединителями Х8 и Х9 и переключатель S4 определяют первую цифру будущего кода. Если установить перемычку между соединителями Х8 и любым другим соедини гелем, например с Х15, то первая цифра кода будет 7. Вторая цифра кода определяется цепочкой S9, Х19, Х18, база транзистора VT5. Третья цифра кода зависит от соединений элементов база транзистора VT7, резистор R9, база транзистора VT3, электрические соединители Х4, Х5 и перемычка между ними, переключатель кнопочный S2. Итак, рабочими контактами соединителей являются Х8, Х18 и Х4, остальные контакты соединителей Х2, Х6,Х10,Х12, Х14, Х16, Х20 — холостые, они соединены между собой параллельно. При монтаже сторожевого устройства возможны другие варианты соединений указанных контактов соединителей.

В составе устройства предусмотрен электромагнит, включенный в коллекторную цепь транзистора VT1 и рассчитанный на работу от постоянного тока напряжением 24 В. Срабатывает электромагнит ЭМ1 только после правильного набора трехзначного кода. При нажатии на кнопку S4, соответствующую первой цифре установленного кода, на базу транзистора VT8 подается отрицательный потенциал рабочего напряжения, который приводит к отпиранию этого транзистора. В это же время транзистор VT7 и выпрямительный диод VD6 закрываются. Следовательно, первый триггер после нажатия на кнопку S4 переключился в другое состояние. Теперь, если будет правильно нажата вторая кнопка S9, второй триггер также перейдет во второе устойчивое состояние. При нажатии на кнопку S2 переключится и третий триггер, то есть транзистор VT4 закроется, сработает усилитель тока, так как транзисторы VT2 и VT1 откроются. Это состояние триггеров и усилителя тока позволит в автоматическом режиме подать напряжение на электромагнит, который сработает и откроет замок входной двери. Для того чтобы вернуть сторожевое устройство в исходное состояние, необходимо разорвать цепь электропитания или переключателем S1 или дополнительным переключателем, устанавливаемым на входной двери (на схеме не указан).

При изготовлении устройства использованы следующие комплектующие ЭРИ и ЭРЭ: транзисторы VT1 типа П214, VT2 — МП25, VT3 - VT9 — МП42; сетевой понижающий трансформатор питания Т1 типа ТПП269 127/220-50; электрические соединители X1 типа «вилкам с электрическим кабелем, Х2 Х21 — КМЗ-1 приборные; плавкие предохранители F1 и F2 типа ПМ 1-1 А; индикаторная лампа Н1 типа ТН-0,2; выпрямительные диоды VD1-VD4 типа Д226Б, VD5-Д9Б, VD6-Д9Б; конденсаторы С1 типа МБМ-II-750В-0,01 мкФ,С2 МБМ-11-750В-0,01 мкФ, СЗ К50-6-50В-200 мкФ, С4 — К53-1А-6В-0.5 мкФ;

резисторы R1 типа МЛТ-2-390 кОм, R2 — МЛТ-0,25-91 кОм, КЗ - МЛТ-0,25-300 Ом, R4 — МЛТ-0,25-1 кОм, R5 — МЛТ-0,25 6,8 кОм, R7 — МЛТ-0,25-10 кОм, R8 — МЛТ-0,25-3,9 кОм, R9 — МЛТ-0,25-750 Ом, R10 — МЛТ-0,25-10 кОм, R11 — МЛТ-0,25 3,9 кОм, R 12 - МЛТ-0,25-10 кОм, R13 — МЛТ-0,25-3,9 к0м,R14 — МЛТ-0,25-10 кОм,R15 — МЛТ-0,25-3,9 к0м,R16— МЛТ-0,25-10 кОм, R17 — МЛТ-0,25-3,9 кОм, R18 — МЛТ-0,25-10 кОм; переключатели S11 типа П2Т-1-1, S2—S10 — КМ1-1;

электромагнит ЭМ1 или соленоид самодельной конструкции.

При сборке и регулировке сторожевого устройства можно произвести замену некоторых ЭРЭ. Например, электрические переключатели типа КМ1-1 можно заменить на переключатели типа КП-1, КП-2, ТВ2-1; резисторы типа МЛТ — на ВС, ВСа, МТ, БЛП, С2-10, С2-ЗЗН, Р1-4; конденсаторы типа К50-6 — на К50-3, К50-12, К50-16, К50-20. О замене транзисторов рассказано в первой главе.

Основные электрические параметры и технические характеристики сторожевого устройства на трех триггерах

Номинальное напряжение питающей сети

переменного тока, В .................... .220

-Номинальная частота питающей сети

переменного тока, Гц ................... .50

Номинальное напряжение постоянного тока

на выходе выпрямителя под нагрузкой, В ....... 24

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более .............. 12

Пределы изменения напряжения питающей сети

переменного тока, В ..................... 187...242

Пределы изменения частоты питающей сети

переменного тока, % .................... ± 1

Пределы изменения напряжения постоянною тока

для питания электронной схемы, В .......... .22...26

Максимальный ток, на выходе выпрямителя, А .... 1,5

Ток, потребляемый устройством во время

срабатывания устройства. А, не более ........ .0,5

Количество одновременно охраняемых объектов, шт. 1

Время срабатывания устройства после набора

правильного кода, мс, не более ............. 0,8

Количество колируемых знаков, шт............ 3

Количество вариантов набора кода, шт, более..... 100 000

Срок службы, ч, не менее .................. 5000

Вероятность безотказной работы при риске заказчика в=0,95, не менее ............... 0,95

Сопротивление изоляции между токоведущими элементами и металлическим корпусом, при нормальных условиях эксплуатации, МОм, не менее ........ 5

Помехозащищенность устройства при воздействии

внешнею электромагнитного поля, дБ, не менее . . 100

Мощность сетевого понижающего трансформатора

питания Т1,Вт, не менее ................. 57

Ток, потребляемый устройством в режиме ожидания, мА, не более......................... 40

Условия эксплуатации:

температура окружающей среды, С........ —35...+ 45

относительная влажность воздуху при температуре 25 °С, не более..................... 95±3

атмосферное давление воздуха, мм рт. ст...... 200... 1000

t101.jpg

Рис. 3.18. Принципиальная схема сторожевого устройства на трех триггерах.

 

Рис. 3.18. Принципиальная схема сторожевого устройства на трех триггерах.

Изображение: 

Таблица 3.16. Моточные данные сетевою понижающего трансформатора питания Т1, примененного в сторожевом устройстве на трех тригге

Изображение: 

3. 13. Электромеханическое сторожевое устройство на элекромагнитных реле

3. 13. ЭЛЕКТРОМЕХАНИЧЕСКОЕ СТОРОЖЕВОЕ УСТРОЙСТВО НА ЭЛЕКТРОМАГНИТНЫХ РЕЛЕ

Это сторожевое устройство относится к классу изделий дискретной автоматики, основу которых составляют электромеханические контакты, управляющие электромагнитным ИМ. Как правило, такие изделия представляют собой единую сторожевую систему, в которой подача напряжения на ИМ и его включение в действие происходят лишь при условии, что замыкания всех промежуточных контактов осуществляются точно в заданной последовательности. А включение ИМ в данном варианте устройства приводит к перемещению сердечника электромагнита и связанных с ним защелки или стопора ригеля механического замка, устанавливаемого на входной двери.

Сторожевое устройство предназначено для установки на входных дверях жилых домов и производственных объектов, а также на внутренних дверях офисов, складов, цехов, лабораторий и т. д. Устройство, смонтированное на внутренних дверях, разрешает свободный вход в помещение лицам, знающим зашифрованное число, и в любом случае предупреждает об открывании двери и наборе шифра. Попытки посторонних посетителей открыть замок простым перебором цифр не могут привести к положительному результату, так как количество вариантов шифра насчитывает десятки тысяч.

Устройство включает в свой состав очень маленькую номенклатуру комплектующих ЭРИ и ЭРЭ, и все они рассчитаны на жесткие условия эксплуатации. При правильной технологии изготовления и монтаже элементов как внутри блоков, так и всей наружной проводки устройство может эксплуатироваться в условиях УХЛ и ХЛ, при температуре окружающей среды до —35 °С и 45 °С, при относительной влажности воздуха при температуре 25 °С до 95% и при пониженном атмосферном давлении до 200 мм рт. ст.

Работает сторожевое устройство непосредственно от сети переменного тока напряжением 220 В частотой 50 Гц, и звонковая кнопка находится при замыкании контактов под высоким напряжением. Вторичный источник электропитания изготавливается в единой конструкции с релейным автоматом.

Принципиальная электрическая схема электромеханического сторожевого устройства на электромагнитных реле приведена на рис. 3. 19. Подключение устройства к сети электропитания осуществляется с помощью электрического соединителя X1 типа «вилка» или прямым подключением электрического кабеля к однофазной сети. В последнем случае электрический соединитель X1 из схемы исключается. На входе устройства установлены плавкие предохранители, защищающие его от коротких замыканий и перегрузок в цепях устройства. Для исключения ошибок и как следствие коротких замыканий необходимо использовать только проверенные комплектующие элементы и монтажные провода, сопротивление изоляции которых в нормальных условиях эксплуатации не менее 50 МОм.

В конструкции сторожевого устройства можно выделить такие узлы, как БП с релейным автоматом, входные цепи с электрическим звонком и емкостным фильтром, пульт управления и дешифратор, устанавливаемый на входной двери. Конденсатор С/ обеспечивает защиту от помех, проникающих в сеть питания как от работы внешних источников, так и от работы релейного переключателя при замыкании и размыкании контактов. Конденсатор сравнительно небольшой емкости устанавливается параллельно первичной обмотке сетевого трансформатора Т1

и рассчитан на напряжение 750 В. Характерной особенностью данного устройства является его высокая экономичность, так как в режиме ожидания оно не потребляет электроэнергии. Схема его включения содержит переключатели S1, S2 и S12 с разомкнутыми контактами. Одновременно необходимо обратить внимание на включение и работу электрического звонка. Как следует из схемы, электрический звонок включен автономно и его работа зависит от положения контактов переключателей S1 S2 и S12. Это условие изменится, если будет выбран другой шифр.

В положении, указанном на схеме, шифр устройства — 0987. Количество цифр в коде определяется количеством рабочих реле КЗ—Кб.

Для электропитания электромагнитных реле и ИМ в устройстве собрано выпрямительное устройство, на выходе которого действует постоянное напряжение 32 В под нагрузкой. Для понижения высокого сетевого напряжения применен сетевой понижающий трансформатор питания Т1 стержневой самодельной конструкции. Изготавливается трансформатор на магнитопроводе типа ПЛ или П с двумя катушками по данным, приведенным в табл. 3.17. Активная площадь поперечного сечения стержней магнитопровода должна быть не менее 5 см2. Магнитопровод стержневой конструкции трансформатора выполняется П-образной формы и имеет два стержня с катушками. На каждом стержне помещается половина витков первичной и половина витков вторичной обмоток. Они соединяются между собой последовательно, так, чтобы намагничивающие силы этих полуобмоток совпадали по направлению. Стержневые трансформаторы обладают значительно меньшей чувствительностью к внешним магнитным полям, так как знаки ЭДС помех, наводимых в двух катушках трансформатора, равны по величине, но противоположны по знаку, поэтому взаимно уничтожаются. Эти трансформаторы по сравнению с броневыми имеют меньшую индуктивность рассеяния (на каждой катушке только половина витков, и поэтому толщина катушки меньшая), меньшее внешнее электромагнитное поле (магнитодвижущая сила в отдельных катушках имеет равный знак).

Сетевой трансформатор обеспечивает полную гальваническую развязку между вторичными цепями устройства и первичной сетью электропитания высокого напряжения,

Таблица 3. 17 Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электромеханическом сторожевом устройстве на электромагнитных реле

3-131.jpg

расчетное значение выпрямленного напряжения постоянного тока и более высокую электробезопасность.

Параллельно вторичным обмоткам сетевого трансформатора включен индикатор, который сигнализирует о срабатывании первого реле сторожевого устройства. Он выполнен на светодиоде VD1, VD2, R1. После замыкания контактов переключателя S1 и наборе установленного шифра на вторичной обмотке трансформатора Т1 появляется переменное напряжение около 30...35 В. Сразу же вспыхивает световой сигнализатор включения устройства.

Выпрямитель собран на четырех диодах средней мощности (на ток от 1 до 10 А) по классической однофазной двухполупериодной мостовой схеме, которая по сравнению с другими известными схемами выпрямителей характеризуется рядом положительных и отрицательных параметров: повышенной частотой пульсации выпрямленного напряжения постоянного тока; пониженным обратным напряжением на комплекте выпрямительных диодов;

достаточно высоким коэффициентом использования габаритной мощности сетевого трансформатора питания Т1;

повышенными потерями и более низким кпд; большим расходом диодов и вследствие этою повышенной стоимостью изготовления; невозможностью установки диодов на металлическом радиаторе охлаждения без изоляционных прокладок. Примененная схема выпрямителя наиболее распространена в радиолюбительской практике вследствие своей простоты, высоких электрических выходных параметров и надежной эксплуатации.

Выпрямитель работает на емкостную нагрузку (емкостный фильтр) на электролитическом конденсаторе С'2, который является фильтром, сглаживающим пульсации напряжения на выходе выпрямителя.

Как следует из схемы, релейный автомат с устройством кодирования и дешифрации собран на электромагнитных реле К1—К6, одно из которых является ИМ. Установка нового шифра производится следующим образом. На шифровальном поле, где собраны малогабаритные приборные клеммы Х2—Х43, металлическими перемычками соединяются соответствующие контакты рабочих реле, переключателей S3—S12 и вилки, подключаемые к соединителям с нечетными обозначениями приборных клемм (Х5, X11...Х43). На схеме вилки, подключенные к контактам обмоток рабочих реле, обозначены цифрами 1—4. Первой при наборе шифра подключается вилка с номером 1. Если необходимо набрать шифр 1479, то клемму (цифра 1) с проводником, идущим от реле К6, подключают к соединителю Х7, клемму от реле К5 — к Х19, клемму от реле К4 с цифрой 3 — к соединителю Х31. клемму от реле КЗ — к соединителю Х39. Последовательно соединяют Х5, Х17, Х29, Х37 с точкой А и положительным выводом источника питания. Далее так же последовательно соединяют выводы Х9, Х13, Х21, Х25, Х38 и Х41 с контактом 2 реле К2.1. Завершается кодирование параллельным соединением контактов X11, Х15, Х23, Х27, Х35, Х43 с обмоткой реле К.2, которое обеспечивает сброс при неправильном наборе кода.

После подключения устройства к сети переменного тока переключателем S1 нажимают одновременно на две кнопки, включающие питание звонка S2 и первого рабо чего реле (К6—S12). При шифре, показанном на схеме, срабатывает первое реле К16 замыкая свои контакты К6.1, блокирующие питание реле, и контакты К6.2, подготавливающие срабатывание второго рабочего реле К5. Это реле сработает после замыкания контактов 1 и 2 переключателя S11. При нажатии на кнопку этого переключателя срабатывает вторая цифра кода 9. Контакты К5.1 самоблокируют питание реле К5, а контакты К5.2 подготавливают следующее реле к очередному срабатыванию. После замыкания контактов переключателя S10 срабатывает реле К4, его контакты К4.1 самоблокируют питание реле К4, а контакты К4.2 подготавливают реле КЗ к работе. Таким образом, к этому моменту правильно набрана третья цифра кода. Далее замыкают контакты переключателя S9, срабатывает реле КЗ. Его контакты КЗ.1 самоблокируют питание этого реле, а контакты КЗ.2 подключают электромагнит ЭМ1 к выпрямителю постоянного тока. Итак, при последовательном нажатии на кнопки переключателей S12, S11, S10, S9 был набран ранее установленный код 0987.

Новый шифр 1479 может быть правильно набран при последовательном нажатии на кнопки переключателей S3, S6, S9, S11.

При изготовлении сторожевого устройства использованы следующие комплектующие ЭРИ и ЭРЭ: выпрямительные диоды VD2 типа КД105Б, VD3—VD6 — Д242Б; светодиод VD1 типа АЛ307А; сетевой понижающий трансформатор стержневой конструкции Т1; предохранители F1, F2 типа ПМ-1-1 А; звонок электрический бытовой ВА1 любого типа с электропитанием от сети переменного тока напряжением 220 В; конденсаторы С1 типа МБМ-11-750В-0.1 мкФ, С2 — К50-6-50В-50 мкФ; электрические соединители X1 типа «вилка», Х2—Х43 — КМЗ-1; электромагнитные реле РЭС-10 (паспорт РС4.529.031-03).

Необходимо заметить, что при нажатии на кнопку S2 при замкнутых контактах переключателя S1 напряжение переменного тока будет подано на сетевой понижающий трансформатор питания и электрический звонок ВА1. После отпускания кнопки S2 устройство обесточится и придет в исходное состояние. Если при нажатии на кнопку S2 контакты переключателя S1 разомкнуты, то работать будет только электрический звонок в обычном режиме. После того как был правильно набран установленный код и замок откроется, трансформатор Т1 отключится от сети нажатием любой нерабочей кнопки. При неправильном наборе шифра и ошибке в порядке набора кода сторожевое устройство не сработает, а при нажатии на нерабочую кнопку, например S3, сработает реле К2, которое своими контактами К2.1 разорвет цепь питания электромагнитных реле и возвратит все устройство в начальное положение. Все ранее правильно набранные цифры кода будут сброшены.

При изготовлении сторожевого устройства можно произвести замену некоторых комплектующих ЭРЭ. Можно применить электромагнитные реле типа РЭС-10 (паспорт РС4.529.031-16, РС4.524.313, РС4.529.031-11), РЭС-22;

можно применить унифицированный сетевой понижающий трансформатор стержневой конструкции типа ТС-40-5 или типа ТПП208-127/220-50, ТПП307-127/220-50 ТПП270-127/220-50.

Конструктивно сторожевое устройство рекомендуется выполнить в виде двух самостоятельных сборочных единиц: устройства дешифрования и БП с шифровальными контактами. Электрический звонок работает в обычном режиме и устанавливается традиционным способом. Изменения в монтаже питания звонка показаны на схеме.

Основные электрические параметры сторожевого устройства приведены ниже. Условия эксплуатации обеспечиваются конструкцией устройства и должны отвечать требованиям для УХЛ.

Конструкция дешифратора сторожевого устройства включает в свой состав: малогабаритные переключатели S2—S12 и индикаторное устройство. Все остальные элементы схемы собраны в БП и соединены с дешифратором монтажными проводами. Дешифратор располагается на входной двери таким образом, чтобы обеспечивался доступ только к кнопкам управления, имеющим максимально утопленные контакты, которые не могут быть демонтированы и вскрыты. Конструктивные решения дешифраторов общеизвестны, широко применяются в кодовых замках, которые используются на входных дверях большинства общественных помещений и жилых зданий.

Следует еще раз обратить внимание мастеров-радиолюбителей на то, что, выполняя работы, связанные с электричеством, необходимо помнить основные правила безопасности.

Основные электрические параметры и технические характеристики электромеханического сторожевого устройства на электромагнитных реле

Номинальное напряжение питающей сети

переменного тока, В .................... 220

Номинальная частота питающей сети

переменного тока, Гц.................... 50

Номинальное напряжение питания электромагнитных

реле постоянным током, В................. 32

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более.............. 10

Пределы изменения напряжения питающей сети

переменного тока, В..................... 200... 240

Пределы изменения частоты питающей сети

переменного тока, Гц.................... 49, 5... 50, 5

Номинальное напряжение на выводах обмоток

сетевого трансформатора, В:

1 и 1', 2 и 2' ....................... .110

3 и 3', 4 и 4' ....................... .16

Количество одновременно охраняемых объектов, шт .1

Количество цифр в наборе кода, шт ........... .4

Срок службы, ч, не менее .................. .10 000

Вероятность безотказной работы устройства

при риске заказчика в=0,92, не менее ........ .0,98

Сопротивление изоляции между токоведущими частями

и металлическим корпусом, МОм, не менее .... .15

Помехозащищенность устройства при воздействии

внешнего электромагнитного поля, дБ, не менее . .110

кпд, %, не менее ....................... 96

t111.jpg

Рис. 3.19. Принципиальная схема электромеханического сторожевого устройства на электромагнитных реле.

 

Рис. 3.19. Принципиальная схема электромеханического сторожевого устройства на электромагнитных реле

Изображение: 

Таблица 3.17 Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электромеханическом сторожевом устро

Изображение: 

3. 2. Исполнительные устройства и датчики передачи инормации о проникновении на охраняемый объект

3. 2. ИСПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА И ДАТЧИКИ ПЕРЕДАЧИ ИНФОРМАЦИИ О ПРОНИКНОВЕНИИ НА ОХРАНЯЕМЫЙ ОБЪЕКТ

После срабатывания многих типов сторожевых устройств и систем включаются звуковые, световые или электромеханические сигнализаторы, которые устанавливаются на охраняемом объекте или ЦПУ и являются составной частью электронной схемы. По этому принципу создано большинство существующих сторожевых устройств.

В условиях города наибольшую эффективность при охране объектов, особенно частных автомашин, можно достичь только при применении дублирующих устройств охраны и сигнализации, которые могут передавать информацию о вторжении на охраняемый объект на расстоянии до десятка километров. К таким устройствам относятся миниатюрные УКВ ЧМ передатчики, извещатели охранные объемные радиоволновые для подвижных средств и извещатели охранно-пожарные для стационарных объектов.

Из существующих и применяемых в качестве дополнительных источников информации рекомендуются следующие типы: "Штифт", «Лемур», «Аргус-2», "Аргус-2М", "Фобос", «Нева», «Рубин», «Сигнал», «Адемко», "Адемко-998" , "Фотон-4", «Дип-3»,«ИПД-01»,«Волна»,«Риф-М»,«ИПР-1»,«Эхо-2»,«СМК-1»,«СМК-3»,«Окно-2М»,Рубеж-3», «Вектор-2», «Вектор-3» и многие другие изделия.

Например, охрана закрываемых помещений может осуществляться с помощью извещателя сторожевой сигнализации типа «Волна-5», который относится к группе объемных радиоволновых устройств. Данное устройство, используемое в качестве датчика, предназначено для обнаружения лиц, проникающих в охраняемое закрытое помещение, и формирования тревожного извещения. Охранный извещатель «Волна-5» обеспечивает:

обнаружение посторонних лиц, вторгшихся в охраняемое помещение;

практически 100-процентное отсутствие ложных срабатываний в помещениях с интенсивной вентиляцией и быстрыми потоками воздуха;

установку нескольких извещателей в одном закрытом охраняемом помещении;

полуавтоматическую регулировку дальности действия в пределах заданных значений;

возможность работы с другими системами и датчиками обнаружения посторонних лиц.

Следует заметить, что большинство охранных извещателей, в том числе и типа «Волна-5», работают наиболее эффективно, если постороннее лицо попадает в центр зоны обнаружения. В данном случае сама зона обнаружения представляет собой замкнутый объем электромагнитных волн, излучаемых рассматриваемым датчиком, который действует на расстоянии до 16 м в горизонтальной и вертикальной плоскостях.

Основные электрические параметры и технические характеристики охранного извещателя " Волна-5"

Номинальное напряжение питающей сети

переменного тока. В................. 220

Номинальная частота питающейсети

переменного тока, Гц .................. 50

Номинальное напряжение автономного источника

питания постоянного тока, В ............... 9

Оптимальная площадь обнаружения посторонних лиц и охраняемом помещении, м2 ...............90

Расстояние до границы действия излучателя, м:

максимальная ....................... 12...16

минимальная ................... 3.. 4

Контролируемый объем, м^3, не менее ........... 200

Ток, потребляемый электронным извещателем

и рабочем режиме, мА, не более ........... 2

Габаритные размеры (без кронштейна), мм ...... 97Х9ЗХ52

Условия эксплуатации:

температура окружающей среды, °С ........ —30...+50

относительная влажность воздуха

при температуре 20 °С, % .............. 85±3

атмосферное давление воздуха,мм рт. ст. ..... 200...900

Следующим рекомендуемым к применению изделием промышленного производства для охраны закрытых помещении является извещатель типа «Аргумент-2», который относится к типу охранных объемных радиоволновых электронных устройств. Работает рассматриваемое изделие от сети переменного тока напряжением 220 В частотой 50 Гц или от автономного источника питания напряжением 12 В постоянного тока. В качестве автономного БП может быть использован источник питания «Электроника Д2-27», который имеет высокие технические характеристики. В состав этого изделия входят сетевой понижающий трансформатор питания, выпрямительное устройство и стабилизатор напряжения постоянного тока 12 В.

Рассматриваемый охранный объемный радиоволновый извещатель «Аргумент-2» устанавливается внутри помещения в местах наиболее вероятного нахождения постороннего лица при проникновении его в это помещение. Устройство охраны обеспечивает высокую обнаружительную способность, отсутствие ложных тревог при эксплуатации в помещениях с работающим оборудованием, установку и работу нескольких излучателей-извещателей в одном помещении, дистанционное управление. При проникновении постороннего лица в зону действия датчика излучателя охраняемое пространство закрытого помещения изменяет действующее внутри него электромагнитное поле, которое, в свою очередь, приводит к срабатыванию системы и формированию тревожного извещения размыканием выходных контактов исполнительного реле. Размыкание контактов реле приводит в действие световые или звуковые индикаторы и радиоизлучатель.

Активные зоны действия электронного охранного извещателя типа «Аргумент-2» в горизонтальной и вертикальной плоскостях приведены на рис. 3.4, где по осям абсцисс и ординат откладываются радиусы действия устройсва, дающие в сумме объемную картину электромагнитною поля, по типу приемно-передающей антенны.

3-21.jpg

Рис. 3.4. Схема зоны обнаружения постороннего лица:

а—в горизонтальной плоскости: б — ввертикальной плоскости.

Основные электрические параметры и технические характеристики излучателя «Аргумент-2»

Номинальное напряжение питающей сети

переменного тока,В .................... 220

Номинальная частота питающей сети

переменного токи, Гц .............. . . 50

Номинальное cтабилизированное напряжение питания функциональных узлов устройства постоянным током, В ........... ....... . . 12

Пределы изменения напряжения питающей сети

переменного тока, % ........ . . —10...+15

Пределы изменения частоты питающей сети

переменного тока, % ................ —1

Коэффициент нелинейных искажений питающей сети переменного тока, %, не более ............. 12

Дальность действия активного элемента устройства в закрытом помещении, м:

максимальная ...................... 16

минимальная ........................ 3

Активная площадь обнаружения посторонних лиц, м^2,

не менее ............................ 100

Объем закрытою помещения, обслуживаемый одним датчиком, м3, не менее ................... 250

Ток, потребляемый устройством в режиме

холостого хода, мА, не более ............... 80

Диапазон рабочих частот, МГц, в пределах которых устанавливается одна частота для конкретного объекта охраны ....................... 140...210

Длительность полного провала напряжения

питающей сети переменного тока, мс, не менее . . 250 Срок службы устройства при круглосуточном

включении датчика, ч, не менее ............. 5000

Вероятность безотказной работы устройства

при риске заказчика в=0,95, не менее ........ 0,99

Помехозащищенность электронного датчика при воздействии внешнего электромагнитного поля, дБ, не менее ......................... 120

Сопротивление изоляции токоведущих частей

относительно друг друга, МОм, не менее ....... 10

Условия эксплуатации:

температура окружающей среды, С ........ —30...+50

относительная влажность воздуха

при температуре 25 °С, %, не менее ....... 85

атмосферное давление воздуха, мм рт. ст. ..... 200...1000

Габаритные размеры, мм .................. 90х65х45

Гарантийный срок службы, г ................ 1

Конструктивно охранный извещатель «Аргумент-2» выполнен в виде прямоугольника сравнительно небольших размеров, который устанавливается на специальном кронштейне. При использовании рассматриваемого датчика в составе комплексной сторожевой системы предусмотрено применение автоматического дистанционного управления, которое позволяет включать его вторично после срабатывания ИМ звукового или светового оповещения. В этом случае данный извещатель становится дублирующим устройством с автономной передачей радиосигнала на ЦПУ с помощью радиоволн, работающих на выбранной частоте. Если будет вскрыта и заблокирована первая ступень защиты, то данная вторая ступень сработает вторично и предупредит о несанкционированном вторжении в охраняемое помещение.

Проблема охраны закрытых помещений с помощью объемных радиоволновых извещателей решается в полной мере только в том случае, если вся информация приходит на ЦПУ и действует система постоянного наблюдения и отслеживания.

Технические характеристики и основные электрические параметры некоторых типов электронных извещателей, изготавливаемых промышленным способом, приведены в табл. 3.5.

Особую группу датчиков, применяемых в сторожевых и сигнальных устройствах, составляют конечные выключатели, которые используются для коммутации электрических цепей постоянного или переменного тока. Часто применяются малогабаритные кнопки типа КМ, командные кнопки типа КН, кнопочные переключатели типа КП и микропереключатели типа МП.

Основные электрические параметры микропереключателей типа МП при различных видах нагрузки приведены в табл. 3.6.

Малогабаритные кнопочные переключатели типа КМ выпускаются двух типоразмеров: КМ1-1 и КМ2-1, они рассчитаны на эксплуатацию в самых жестких условиях воздействия климатических, механических, биологических и электромагнитных нагрузок. Микропереключатели этого типа обеспечивают коммутацию электрических цепей с активной нагрузкой постоянного тока от 0,0005 до 4 А с напряжением от 0,5 до 30 В и переменного тока частотой 50...400 Гц от 0,0005 до 3 А с напряжением от 0,5 до 250 В. Износостойкость переключателей составляет 10000 циклов переключений из положения «выключено» в положение «включено» и возвращение их в положение «выключено».

Модульные переключатели типов П2К и П2КЛ изготавливаются во всеклиматическом исполнении для эксплуа-

Таблица 3. 5. Основные электрические параметры и технические характеристики электронных извещателей

3-22.jpg

тации при температуре от —10 до 40 °С, относительной влажности воздуха до 90%, при температуре 25 °С и пониженном атмосферном давлении воздуха до 5 мм рт. ст. Эти переключатели составляются из отдельных ячеек (модулей) с различным числом контактных групп. Изготовляются пять типов модулей с числом контактных групп на переключение 2; 4; 6; 8. Все ячейки переключателя П2К имеют одинаковые размеры, за исключением длины, которая зависит от числа контактных групп. Переключатель П2К может состоять из одной ячейки и в таком виде применяется, как правило, в сторожевых устройствах. Допустимый постоянный ток через контакты при активной нагрузке равен 0, 1 А при напряжении 250 В и 1 А при напряжении 12 В; допустимый переменный ток через контакты равен 0, 2 А при напряжении до 250 В частотой 50 Гц и равен 1, 5 А при напряжении 12 В. Емкость между контактами не превышает 1, 5 пФ; тангенс угла диэлектрических потерь на частоте 1 МГц — не более 0, 05; сопротивление изоляции постоянному току в нормальных условиях не менее 50 МОм.

К числу переключателей с повышенной износостойкостью, надежностью и долговечностью относятся переключатели типа КМ, которые могут коммутировать электрические цепи постоянного и переменного тока с напряжением от 10 до 50 В и током от 0, 05 до 1, 5 А. Изготавливается командный кнопочный переключатель в виде трех типоразмеров: КН-1 однополюсного включения, КН-2 — двухполюсного включения и КН-П — однополюсного включения—выключения. Износостойкость этих переключателей составляет не менее 15000 циклов переключении.

Микропереключатели типа МП, представленные в табл. 3. 6, являются наиболее часто применяемыми в сторожевых устройствах. Перед установкой этих микропереключателей в качестве датчиков после длительного хранения необходимо произвести их тренировку (не менее 100 циклов). Износостойкость микропереключателей составляет 10 000 циклов переключении. Сопротивление изоляции при нормальных условиях эксплуатации — не менее 1000 МОм. Масса переключателей типов МП1-1, МПЗ-1, МП5 равна 3, 5 г, типов МП9, МП10, МП11 — 2, 7 г, типа MП7 — 0, 8 г, МП 12 — 0, 7 г.

В составе всех электронных и электромеханических сторожевых устройств с автоматическим управлением кроме датчиков и блоков электроники имеются ИМ и узлы. Необходимо заметить, что к процессам управления относятся: приведение в действие устройства (включение, пуск, подключение), прекращение действия (остановка, выключение) и регулирование. При автоматическом управлении сторожевыми устройствами в качестве датчиков используются контактные, автономные, реостатные, электролитические, проволочные, индуктивные, фотоэлектрические датчики, а также датчики температуры.

Также обязательным элементом электрической схемы сторожевого устройства является ИМ, устанавливаемый фактически на механических или электромеханических замках. Наиболее часто применяемыми исполнительными устройствами являются электрические магниты и соленоиды как промышленного, так и самодельного изготовления. Электропитание этих изделий осуществляется, как правило, от источников постоянного тока с низковольтным напряжением и малым потреблением тока. Например, для открывания дверного замка с защелкой может быть рекомендован электромагнит с питанием от выпрямителя постоянного тока 24 В, рассчитанного на ток от 0,25 до 0,5А. На рис. 3.5 приведена конструкция электромагнита, который развивает тяговое усилие не менее 3 кгс при указанных электрических параметрах. Самодельный электромагнит состоит из следующих деталей: 1 — гайка регулировочная; 2 — каркас катушки, состоящий из двух щечек и гильзы, изготавливаемых из гетинакса или пластмассы; 3 — опорный диэлектрический вкладыш-втулка, жестко закрепляемый в отверстии катушки; 4 — обмотка электромагнита (2700 витков провода ПЭВ-2 диаметром 0,31 мм, уложенных рядами виток к витку); 5 — пружина возвратная; 6 — шпилька Мб направляющая двусторонняя; 7 — сердечник; 8 — скоба-тяга, служащая для соединения с защелкой механического замка.

Сердечник электромагнита изготавливается из мягкой электротехнической стали марки 3311, 3312 или 3313. Конструкция сердечника определяет форму и размеры каркаса катушки и габаритные размеры электромагнита. Ход сердечника внутри катушки должен быть не менее 18 мм.

На рис. 3.6 дана конструкция тягового электромагнита, изготовленного из трансформатора питания или из дросселя фильтра типа Ш броневой конструкции. Рекомендуется выбрать такой трансформатор или дроссель, у которого магнитопровод выполнен методом шихтования из пластин электротехнической стали типа Ш20Х20. Для того чтобы изготовить тяговый электромагнит, необходимо произвести полную разборку трансформатора и выполнить следующую работу.

1. Из Ш-образных пластин вырезать центральные части магнитопровода, на которые устанавливается катушка с намотанными на нее проводами.

3-23.jpg

Рис. 3. 5. Конструкция тягового электромагнита с круглым магнитопроводом.

3-24.jpg

Рис. 3. 6. Конструкция тягового электромагнита, изготовленного из трансформатора типа Ш.

2. Собрать вырезанные части магнитопровода в пакет, скрепив его в двух местах немагнитными заклейнками.

3. Вырезать из стального листа толщиной 2 мм две накладки, контур которых полностью повторяет контур магнитопровода, представляющего собой замкнутый прямоугольник с размерами 80Х70 мм по наружному периметру и 60Х50 по внутреннему. По углам накладок просверлить четыре отверстия диаметром 4,5 мм.

4. Собрать все разрезанные части пластин магнитопровода в пакеты, закрыть их с обеих сторон накладками и скрепить немагнитными заклепками или шпильками.

5. Изготовить новый каркас катушки из гетинакса или стеклотекстолита толщиной 1 мм, с размерами, обеспечивающими установку катушки внутри магнитопровода. Внутреннее отверстие каркаса должно иметь размеры 20,5Х20,5 мм.

6. Намотать на каркас катушки провод марки ПЭЛ (ПЭВ-1, ПЭВ-2, ПЭТВР) диаметром 0,25 мм рядовым способом (виток к витку) в количестве 3000 витков.

7. Закрепить катушку с обмоточным проводом и магнитопровод в единую конструкцию и произвести пропитку изоляционным лаком.

8. Собрать и закрепить якорь электромагнита, как показано на рис. 3.6.

В состав электромагнита входят следующие основные детали конструкции: 1— магнитопровод в сборе; 2 — якорь в сборе; 3 — скоба (2 шт); 4— скоба-тяга, соединяющая якорь с защелкой механического замка; 5 — немагнитная заклепка; 6 — накладка (2 шт); 7 — обмотка электромагнита; 8 — каркас катушки; 9 — немагнитная заклепка.

Таблица 3.6. Основные электрические параметры микропереключателей типа МП

t11.jpg

Рис. 3.4. Схема зоны обнаружения постороннего лица: а—в горизонтальной плоскости: б — в вертикальной плоскости.

Изображение: 

Рис. 3.5. Конструкция тягового электромагнита с круглым магнитопроводом.

Изображение: 

Рис. 3.6. Конструкция тягового электромагнита, изготовленного из трансформатора типа Ш.

Изображение: 

Таблица 3. 5. Основные электрические параметры и технические характеристики электронных извещателей

Изображение: 

Таблица 3.6. Основные электрические параметры микропереключателей типа МП

Изображение: 

3. 3. Электронное сторожевое устройство с однокнопочным управлением

3. 3. ЭЛЕКТРОННОЕ СТОРОЖЕВОЕ УСТРОЙСТВО С ОДНОКНОПОЧНЫМ УПРАВЛЕНИЕМ

Электронное устройство с индикаторным управлением, работающее от одного замыкающего переключателя, предназначено для эксплуатации в условиях УХЛ. Устанавливается устройство на входных дверях жилых и производственных помещений. Работает сторожевое устройство как от сети переменного тока напряжением 220 В частотой 50 Гц, так и от автономного источника питания напряжением 9 В постоянного тока. При этом питание ИМС обеспечивается стандартным напряжением 5 В.

Отличительной особенностью рассматриваемого изделия является наличие в его составе счетно-решающего устройства, позволяющего кодировать, и дешифровать определенное число цифр и использовать то устройство в качестве кодового замка, управляемого одной кнопкой по сигналам светодиода, используемого для отсчета порядковой цифры кода. При этом набор каждой цифры осуществляется только при замкнутых контактах переключателя SB1 то есть. при нажатии этой кнопки и отпускании ее в момент отсчета очередной кодовой цифры.

Сторожевое устройство, оснащенное специальным ИМ, может быть использовано также для блокировки открывания обычных механических врезных замков, устанавливаемых как на наружных, так и на внутренних дверях помещений бытового и хозяйственного назначения, например на садово-огородных и приусадебных участках. Одно такое устройство может охранять только один объект. При этом обеспечивается двойная защита от открывания дверей, так как даже при наличии необходимого ключа замок невозможно открыть без знания четырех- или восьмизначного кода.

Незначительная конструктивная доработка врезного механического замка любой конструкции, заключающаяся в установке дополнительного стопора, который работает от маломощного тягового магнита или от электромагнитного реле, доступна начинающему радиолюбителю в домашней мастерской.

Сторожевое устройство может быть рекомендовано также для охраны гаражей и складских помещений при эксплуатации в условиях повышенной влажности (до 98%) и при температуре окружающей среды от —35 до 45 °С.

Принципиальная электрическая схема электронного сторожевого устройства с однокнопочным индикаторным управлением, его электронной части приведена на рис.3.7. Как следует из схемы, сторожевое устройство включает в свой состав входные цепи с защитой от помех, проникающих в промышленную электросеть, и с защитой от перенапряжения и коротких замыканий, сетевой понижающий трансформатор питания Т1, выпрямитель, работающий на емкостный фильтр, стабилизатор напряжения, автономный источник питания постоянного тока, кодирующее, счетно-решающее устройство с управляющей системой и ИМ.

Входные цепи предназначены для подключения сторожевого устройства к сети переменного тока напряжением 220 В частотой 50 Гц и защиты его электронной части от проникающих в сеть питания электромагнитных помех низкой частоты. Для этого во входной цени установлен емкостный фильтр, собранный из конденсаторов С1 и С2. Плавкий предохранитель F1 обеспечивает дополнительную защиту всего устройства от коротких замыканий, он рассчитан на максимальный ток 0,25 А. Подключается сторожевое устройство к сети с помощью стандартного электрического соединителя тина «вилка»,обозначенного на схеме X1.

Сетевой понижающий трансформатор питания Т1 может быть выбран из унифицированного ряда или изготовлен в домашней мастерской на броневом магнитопроводе типа Ш или ШЛ, моточные данные которого приведены в табл.3.7. При самодельном изготовлении трансформатор должен содержать три обмотки: одну первичную, рассчитанную на напряжение 220 В переменного тока, и две вторичные обмотки, обеспечивающие заданный уровень выпрямленных напряжений постоянного тока 5 и 9 В.

Сетевой трансформатор питания кроме трансформации напряжения обеспечивает полную гальваническую развязку всех вторичных цепей электронной схемы устройства от сети высокого напряжения переменного тока и надежную защиту и электробезопасность при наладке устройства.

Таблица 3.7. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном сторожевом устройстве с однокнопочным управлением

3-31.jpg

Для получения повышенного качества, надежности и долговечности трансформатора необходимо обеспечить соблюдение определенных правил при проведении технологических операций изготовления трансформатора. Это в первую очередь касается процесса рядовой укладки обмоточных проводов, межслойной изоляции и пропитки витков нитролаком. Трансформатор питания имеет одну катушку каркасной конструкции, которая устанавливается на центральном стержне магнитопровода. Активная площадь поперечного сечения стали магнитопровода должна быть не менее 4 см2. Магнитопровод с увеличенным сечением стали потребует большего объема и площади при установке на шасси. Между первичной и вторичными обмотками трансформатора через изоляционные прокладки наматывается один слой обмоточного провода диаметром 0,21...0,31 мм или медной ленты плотно виток к витку, рядовой намоткой. Этот слой обмоточного провода является экраном, который защищает трансформатор и устройство в целом от различных электромагнитных помех внешнего поля, действующего в первичных цепях.

Магнитопровод трансформатора питания вместе с катушкой должен быть закрыт защитным кожухом, который кроме функции механической защиты от случайных повреждений обмоточного провода дополнительно защищает и от наведенных электромагнитных полей, предотвращая ложные срабатывания. Для изготовления трансформатора Т1 лучше всего воспользоваться готовым ленточным магнитопроводом витой конструкции типа ШЛ20Х20 или ШЛ20Х25.

Рекомендуется при сборке устройства установить трансформатор на металлическом шасси, изготовленном из дюралюминия толщиной не менее 2 мм. На нем же можно укрепить плату с комплектом выпрямительных диодов.

На выходе вторичных обмоток трансформатора собрано два выпрямителя на восьми маломощных диодах VD1—VD8, которые преобразуют переменный ток частотой 50 Гц в постоянное напряжение 5 и 9 В. Оба выпрямителя работают на емкостные фильтры, собранные на оксидных электролитических конденсаторах. Выпрямители смонтированы по однофазным двухполупериодным мостовым схемам, каждый на четырех полупроводниковых диодах. Примененная в данном случае выпрямительная мостовая схема характеризуется повышенной частотой пульсации выпрямленного напряжения постоянного тока, достаточно высоким коэффициентом использования габаритной мощности сетевого понижающего трансформатора, малым значением обратного напряжения и тока на полупроводниковых диодах, повышенными потерями и несколько меньшим кпд по сравнению с другими типами выпрямительных схем (однополупериодной; со средним выводом и т. д.).

Необходимо отметить, что наиболее часто мостовые схемы применяются в различных радиолюбительских конструкциях, обеспечивая достаточно высокий уровень выпрямленного тока (40...500 мА) в зависимости от примененных полупроводниковых выпрямительных диодов.

Первый выпрямитель собран на диодах VD1—VD4, второй — на диодах VD5—VD8. На входах выпрямителей и соответственно на вторичных обмотках трансформатора питания Т1 действует переменное напряжение до 6,3 В и до 12 В.

Электролитические конденсаторы СЗ, С4 и С5 дополнительно сглаживают пульсации выпрямленного напряжения, образуют емкостные фильтра. При этом конденсатор С5 установлен после ПСН.

На выходе первого выпрямителя VD1—VD4 собран ПСН, обеспечивающий электропитание микросхем счетно-решающего узла сторожевого устройства постоянным напряжением +5 В. Подключение всех примененных в устройстве ИМС к данному источнику питания показано на рис. 3.7. К выводу 14 ИМС DA1 и DA2, к выводу 5 ИМС DA3 и DA4, к выводу 16 ИМС DA5 и DA6 подключается стабилизированное напряжение 5 В.

ПСН собран на двух стабилитронах VD9 и VD10, которые обеспечивают коэффициент сигнализации не менее 100 и являются одновременно источниками образцового напряжения. Перед подключением ИМС к стабилизатору напряжения в указанных на схеме токах необходимо убедиться в том, что входное напряжение удовлетворяет требованию: Uвх min <=Uвх<=Uвх max. При токе нагрузки Iн<=0,025 А и номинальном выходном напряжении 5 В значения указанных параметров должны иметь следующие значения: Uвхmin = 6...8 В; Uвх max = 7...9,5 В; Rвых max == 0,15 Ом; Uвых = 5 В. Измерения производятся при отсутствии нагрузки, то есть на холостом ходу.

Второй выпрямитель также собран по мостовой схеме на четырех полупроводниковых диодах VD5—VD8, он обеспечивает на выходе выпрямленное напряжение постоянного тока 9 В и работает на емкостный фильтр.

Подключаемая к выпрямителю нагрузка не превышает 100 мА. На выходе второго выпрямителя собрана электронно-механическая система защиты, которая предотвращает повреждение как дорогостоящих элементов самого выпрямителя и стабилизатора, так и схемы нагрузки при коротких замыканиях и перегрузках. Ток, при котором срабатывает система защиты, равен 100...110 мА.

В составе защитного устройства собран стабилизатор постоянного напряжения, защищенный также от выхода из строя при отключенной нагрузке. Для этого на выходе установлен двухваттный резистор, который поддерживает нормальный режим работы элементов стабилизатора. Стабилизатор образован транзистором VT2 и стабилитроном VD11 и обеспечивает напряжение пульсации, которое незначительно при максимальном токе нагрузки и не превышает 10 мВ. Собранная в составе данного устройства система защиты включает в свой состав два электромагнитных реле К1 и К2, транзистор VT1, резисторы R1—R3 и индикаторную лампу H1.

При коротком замыкании в выходных цепях после точек А и Б или в подключенной к ним схеме сторожевого устройства, как только ток через проволочный резистор R1 превысит заданное максимальное значение (100...110 мА), срабатывает на открывание транзистор VT1, через который напряжение поступает на электромагнитное реле К2. Реле срабатывает, замыкая свои контакты К2.1. Вслед за этим напряжение питания будет подано на обмотку электромагнитного реле К7, оно сработает и разомкнет контакты К1.1, отключив нагрузку сторожевого устройства от сети питания.

Таким образом, если постороннее лицо захочет отключить питание и обесточить сторожевое устройство, думая, что сможет открыть механический замок обычным ключом, то у него это не получится, так как только знание секрета стопорения механической части сторожевого устройства (замка) сможет обеспечить беспрепятственное открывание дверей. Здесь необходимо заметить, что сторожевое устройство после включения питания не только сохраняет свой код, но и тут же готово к дальнейшей работе.

В схеме защиты сторожевого устройства установлена сигнальная лампа H1 и параллельно ей смонтирован резистор R3, через который протекает ток, удерживающий якорь реле К1 в нормальном положении и предотвращающий повторное срабатывание. После срабатывания системы защиты необходимо отключить электропитание и вновь включить, замкнув контакты переключателя S1.

В точках А и Б принципиальной схемы может быть подключен автономный источник питания—ХИТ любого типа, имеющий на выходе напряжение питания постоянного токя 9В и отвод, на котором должно действовать напряжение 5...6 В.

Счетно-решающее устройство — основная часть электронной схемы сторожевого устройства — включает в свой состав шесть ИМС, работающих в режиме счета и сравнения с установленным заранее кодом. Для более полного описания принципа работы сторожевого устройства введем следующие обозначения и определения элементов ИМС:

элемент ИМС DA1 с выводами 8...13 образует триггер;

элемент ИМС DA3 с выводами 1...3, 8, 9, 11, 12 и 14 образует счетчик числа импульсов;

элемент ИМС DA4 с выводами 1...3, 8, 9, 11, 12 и 14 образует счетчик числа импульсов;

элемент ИМС DA1 с выводами 2.. .6 образует триггер;

элемент ИМС DA2 с выводами 1...3 образует инвертор, который вместе с транзистором VT1 образует тактовый генератор;

элемент ИМС DA2 с выводами 4.. .6 образует триггер;

элемент ИМС DA2 с выводами 1...3 образует инвертор;

элемент ИМС DA2 с выводами 11...13 образует триггер;

микросхема DA5 является дешифратором заданного кода при его наборе на пульте управления сторожевого устройства;

микросхема DA6 является мультиплексором. Исходя из классификации электронных устройств и изделий и определений, принятых в технической литературе и государственных стандартах, триггером называется электронное переключающее устройство, которое сколь угодно долго сохраняет одно из двух своих состояний устойчивого равновесия и скачкообразно переключается по сигналу извне из одного состояния в другое; инвертором называется электронное устройство, преобразующее сигнал низкого уровня логического нуля на входе в сигнал высокого уровня логической единицы на выходе и наоборот, что эквивалентно операции отрицания; тактовым генератором называется устройство, вырабатывающее электрические сигналы — колебания с заданной частотой; дешифратором

называется устройство для автоматической расшифровки (декодирования) сообщения и переиода содержащейся в нем информации на язык (код) воспринимающей системы.

ИМС DA4 распознает в процессе работы цифры, набираемые при замыкании контактов переключателя S1 по числу зажигания светодиода HL1.

Перед началом эксплуатации сторожевого устройства необходимо произвести операцию установления нужного кода, которая осуществляется включением соответствующих перемычек между выводами мультиплексора (ИМС DA6) и выводами дешифратора (ИМС DA5). При этом следует иметь в виду, что набор номера кода на дешифраторе начинается с вывода 7, которому соответствует первая набранная в коде цифра 5 (в данном случае). Этот вывод, равно как и последующие, можно соединять с выводами мультиплексора (DA6) практически в любой последовательности (с 1—4 и с 12—15).

Выводу 6 ИМС DA5 соответствует цифра 6 кода сторожевого устройства, выводу 5 — цифра 7, выводу 4 — цифра 8, выводу 9 — цифра 1, выводу 10 — цифра 2, выводу 11 — цифра 3, выводу 12 — цифра 4.

Если соединить выводы ИМС DA5, как показано на рис. 3.7, с выводами мультиплексора DA6, то будет закодировано число из 8 цифр: 66112233.

Для того чтобы более точно устанавливать шифр (код) сторожевого устройства, необходимо смонтировать параллельно друг другу (лучше на лицевой панели корпуса сторожевою устройства) две планки с восьмью контактными приборными зажимами, к которым подключаются выводы ИМС DA5 и DA6. Если к контактам первой планки подключить выводы от ИМС DA5 сверху вниз, как показано на схеме, то мы будем иметь восьмиразрядный набор шифра сторожевого устройства от 1 до 8 при условии, что соединения всех остальных выводов ИМС останутся такими же, как на схеме.

Таким образом, на первой планке, соединенной с дешифратором DA5, необходимо сделать гравировку или выполнить надписи от 1 до 8, соответствующие набираемому коду. При этом у выхода АО (вывод 5 ИМС DA5) должна быть проставлена цифра 5 будущего кода. У выхода А1 — цифра 2 и т. д. На второй параллельной планке, контакты которой соединены с выводами мультиплексора ИМС DA6, также должны быть написаны цифры от 1 до 8, соответствующие порядку считывания набранного кода

этим устройством в автоматическом режиме работы. Цифры на этой планке располагаются по порядку: 1, 2... 8. При этом первой цифре автоматического счета соответствует выход Д0 (вывод 4) и т. д.

Порядок соединений контактов на параллельных планках сторожевого устройства приведен в табл. 3. 8.

Таблица 3. 8. Порядок соединений контактов при кодировании и считывании кода

3-32.jpg

Например, если контакты на параллельных планках соединить с выводами ИМС DA5 и DA6 следующим образом: вывод 6 DA5 с выводами 4 я 3 DA6; вывод 9 DA5 с выводами 2 и 1 DA6; вывод 10 DA5 с выводами 14 и 15 DA6;

вывод 11 DA5 с выводами 7 и 8 DA6, то мы получим указанный выше код сторожевого устройства 66112233. Еще один пример кодирования сторожевого устройства при соединении контактов на параллельных планках. Соединяя выводы DA5 с выводами DA6 в следующей последовательности: 5 с 4; 10 с 3; 7 с 2; 11 с 1; 6 с 15; 12 с 14; 4 с 13;

9 с 12, получим новый шифр устройства: 72536481, который необходимо запомнить для точного воспроизведения при дешифровании и открывании дверей. Очевидно, что в данном случае может быть выбрано любое произвольное сочетание восьми цифр кода, известное лишь его владельцу. В рассматриваемом варианте случайного набора кода необходимо выполнить 40320 операций, каждый раз запоминая или записывая пройденный набор цифр. Это практически непосильная задача для злоумышленника.

Набор шифра сторожевого устройства во всех случаях производится только после полной сборки всех узлов и блоков и необходимой проверки их работоспособности. Для удобства перекодирования шифра планки на лицевой панели устройства снабжаются приборными малогабаритными контактными зажимами типа КМЗ-1. Длина монтажных проводников, соединяющих зажимы с выводами ИМС, должна быть минимальной. Монтаж этих проводников рекомендуется осуществлять как пайкой, так и под резьбовые соединения. Конструкция электрической части сторожевого устройства определяется примененными ЭРИ и ЭРЭ, и в первую очередь расположением крупногабаритных элементов. Размеры по высоте и ширине могут быть произвольными и зависят не только от габаритов сетевого трансформатора, но и опыта и материальных возможностей домашнего мастера. Наиболее технологичной является прямоугольная конструкция, например, рекомендуется применять унифицированную базовую конструкцию «База-3» и «База-4».

Работает сторожевое устройство следующим образом. После включения устройства в сеть переменного тока или при подключении его к устройству автономного питания и замыкания контактов переключателей S1 или S2 сторожевое устройство подготовлено к работе и находится в ждущем режиме. В этот момент можно обычным ключом закрыть входную дверь и в замке сработает блокировочный упор электромагнита. Индикаторные лампы не светятся, и теперь открыть дверь ключом без снятия блокировки невозможно. Сторожевое устройство включено в режим холостого хода. Вариант конструкции блокировочного узла, работающего от электромагнита, рассмотрим ниже.

Электронная часть сторожевого устройства с мультиплексором и дешифратором в начальном состоянии находится в ждущем режиме. ИМС, выполняющие роль счетчиков при правильном наборе кода, дают электрический сигнал на ИМ, разрешающий открывание замка ключом. Основными элементами этой схемы являются мультиплексор и демультиплексор, которые определяют правильность набора кода.

Следует отметить важную особенность сторожевого устройства, заключающуюся в том, что работает оно от одного электрического соединителя SBI, а отсчет числа срабатывании осуществляется визуально по вспыхиванию светодиода зеленого или красного цвета. Если светодиод вспыхнул три раза и в это время контакты переключателя SB1 будут разомкнуты, то это значит, что была набрана цифра 3 кода. Но она должна находиться в строго определенном месте кода при его расшифровке. Для расшифровки кода и получения возможности открыть дверь не обходимо последовательно набрать все восемь цифр установленного кода. Для этого необходимо замкнуть контакты (нажать кнопку) переключателя SB1 и подать питание на ИМС DA1 (вывод 12), триггер которой срабатывает на инверторном выходе (вывод 9), и появится высокий уровень логической единицы, который приведет оба счетчика импульсов ИМС DA3 и DA4 в исходное состояние. При этом второй триггер ИМС DA1 (выводы 2. ..6) срабатывает, и при правильном наборе первой цифры начинает работать генератор импульсов (транзистор VT1) и инвертор ИМС DA2 (выводы 1...3).

Работа сторожевого устройства начинается сразу же после замыкания контактов переключателя SB1. После включения первого триггера ИМС DA1 (выводы 8. ..13} начинает работать счетчик ИМС DA3, который будет переключать свои разряды постоянно от 0 до 15, пока замкнуты контакты переключателя SB1 и при каждом переключении будет вспыхивать индикаторный светодиод VD13. Выбор необходимой цифры кода определяется числом включений светодиода. Если разомкнуть контакты переключателя SB1 в момент шестого включения, то закодированная цифра равна 6. Лучше всего для данной схемы сторожевого устройства использовать переключатель с кнопочным управлением. Для набора любой цифры кода, например 5, необходимо нажать на кнопку SB1, отсчитать пять вспышек светодиода и отпустить ее в этот момент.

Нет, видимо, необходимости во всех подробностях описывать внутренние процессы в ИМС при замыкании контактов переключателя SB1. Отметим только, что при первом нажатии на кнопку переключателя счетчик, собранный на ИМС DA1, начинает работать и загорается светодиод HL1 (VD13), вслед за этим на выходе мультиплексора DA6 (вывод 6) появляется высокий уровень логической единицы, который передается на триггер ИМС

DA2 (вывод 2). Если разомкнуть контакты переключателя SB1 сразу же после первого загорания светодиода, то начальная цифра кода равна 1 и не соответствует закодированной. При этом на выводе 9 счетчика DA3 появляется высокий уровень логической единицы, который откроет выход дешифратора DA5 (выход 10). После следующего включения откроется следующий выход дешифратора (вывод 11) и т. д.

При правильном последовательном наборе всех цифр кода открываются также последовательно входы мультиплексора DA6. После первой правильной цифры низкий уровень логического нуля появляется на выводе 3 ИМС DA6, после второй цифры 6 — на выводе 2 этой же микросхемы, после третьей правильной цифры 1 низкий уровень появляется на выводе 1 ИМС DA6 и т. д.

Если кнопка SB1 набора кода отпускается в момент, не соответствующий правильной цифре, то последующие входы микросхемы будут закрыты и набор кода не состоится.

Когда набраны правильно все цифры кода, срабатывает счетчик, собранный на ИМС DA4, подготавливая передачу сигнала на ИМ (электромагнит или электромеханическое реле) через транзистор VT2, выполненный по схеме усилителя тока. Время горения светодиода и паузы между вспышками регулируются подбором сопротивлений резисторов и емкостей конденсаторов, включенных в схему генератора.

Как следует из схемы, в данном сторожевом устройстве при неправильном наборе кода сигнал тревоги не предусмотрен, так как замок без набора кода просто не открыть. Конструкция сторожевого устройства и стопора в замке может быть выполнена домашним мастером в нескольких вариантах. Суть стопорения подвижного язычка механического замка состоит в том, что в замке устанавливается дополнительный упор, который препятствует открыванию и который вытягивается из углубления язычка замка при срабатывании электромагнита (ИМ). Эти упоры могут быть установлены как на наружной части (крышке) замка, так и внутри его конструкции. Например, можно выполнить сам стопор в виде штыря, конец которого входит в отверстие подвижной части механического замка. Это отверстие можно просверлить по месту установки электромагнита или электромагнитного реле.

При изготовлении сторожевого устройства использованы следующие комплектующие ЭРИ и ЭРЭ: ИМС DA1 типа К155ТМ2, DA2 — К155ЛА12, DA3 — К155ИЕ5, DA4 — К155ИЕ5, DA5 — К155ИД4, DA6 — К155КП7; транзисторы VT1 типа КТ342А, VT2 — П214В, VT3 — КТ315Б, VT4 — КТ814А;

выпрямительные диоды VD1—VD4 типа КД105, VD5 - VD8 — Д226; стабилитроны VD9 типа Д809, VDIO — Д814Г, VD11 — Д814Г; конденсаторы С1 типа МБМ-П-6308-0,1 мкФ, С2 — МБМ-П-бЗ0В-0,1 мкФ, СЗ — К50-6-16В-500 мкФ, С4 — К50-6-10В-100 мкФ, С7 — К10-17-25В-Н90-0.68 мкФ, С5 — К50-6-6.3В-20 мкФ, С6 — К10-17-25В-ПЗЗ-220 пФ; резисторы R1 типа МЛТ-2-6,8 Ом, R2 — МЛТ-0,25-3,9 кОм, R3 — МЛТ-0,25-100 Ом, R4 — МЛТ-0,25-750 Ом, R5 — МЛТ-0,5-220 Ом, R6 — МЛТ-1-2,2 кОм, R7 — МЛТ-0,125-1 кОм, R8 — МЛТ-0,125-22 кОм, R9 — МЛТ-0,125-5,6 кОм, R10 — МЛТ-0,125-100 кОм, R11—МЛТ-0,125-1 кОм, R12 — МЛТ-0,25-330 Ом, R13 — МЛТ-0,5-330 Ом, R14 — МЛТ-0,125-10 кОм; светодиод VD13 типа АЛ102А; электромагнитные реле К1 типа РЭС-10 (паспорт РС4.524.303) или РЭС-15 (паспорт РС4.591.003), К2 — РЭС-10 (паспорт РС4.524.302) или РЭС-15(паспорт РС4.591.004), КЗ — РКН (паспорт РС4.500.100);

индикаторная лампа H1 типа К6-60; плавкий предохранитель F1 типа ПМ-1-0.25А; сетевой понижающий трансформатор питания Т1 типа ШЛ броневой конструкции (ТН 17-127/220-50);

электрический соединитель X1 типа «вилка», смонтированный с электрическим кабелем; переключатели S1 типа П1Т-1-1, SB1 — МП-1; ХИТ GB1 типа 373 или 373А (6 шт).

При изготовлении электронного блока сторожевого устройства можно применить другие комплектующие ЭРИ и ЭРЭ. Например, резисторы типа МЛТ можно заменить на резисторы типов ОМЛТ, МТ, ВСа, ВС, C1-4, C2-8, УЛИ; конденсаторы типа К50-6 — на К50-3, К50-6А, К50-12, К50-16, К50-20, изменив способ их крепления на монтажной плате; выпрямительные диоды типа КД105 — на КД103А, КД109А, КД202А, Д105А, диоды типа Д226 — на Д226Г, Д226Д, КД109А; стабилитрон типа Д809 — на Д810, Д814Б, Д814В; транзистор типа КТ342А — на КТ342Б, КТ342В, КТ342Г, КТ301В, КТ312Б, КТ315В, КТ315Г, транзистор типа П214В — на П214А, П215Б, П215, П314Г; переключатель типа «тумблер» — на кнопочные типа П2К.

Налаживание и регулировка сторожевого устройства должны осуществляться последовательно. Все элементы схемы перед установкой на место должны быть проверены на соответствие требованиям ТУ и иметь параметры в пределах допусков, разрешенных ТД или указанных на схеме.

Регулировку и налаживание сторожевого устройства лучше всего осуществлять поблочно, при отключенной нагрузке. Сначала проверяется напряжение холостого хода на вторичных обмотках трансформатора питания Т1, затем — величина тока через стабилитрон VD11 подбором величины сопротивления резистора R5. Ток должен быть в пределах 16...22 мА. Далее подбором сопротивления резистора R1 устанавливают ток срабатывания защиты от перегрузок и коротких замыканий в выходных цепях электронного блока. Эту проверку производят при питании сторожевого устройства от сети переменного тока, при отключенном ХИТ. Иногда приходится заменять стабилитрон VD11 из-за разброса параметров, для того чтобы на выходе в точках А и Б действовало напряжение 9...10 В.

Проверка основной части электрической схемы сторожевого устройства осуществляется в собранном виде, при котором должен обеспечиваться заданный порядок срабатывания набранного шифра. Небольшая тренировка включения и своевременного выключения ИМ (стопора замка) в любом случае необходима для того, чтобы обеспечить его надежную эксплуатацию.

Важным условием долговечной работы сторожевого устройства является качественный электромонтаж проверенных ЭРИ и ЭРЭ. Пайку элементов необходимо выполнять оловянно-свинцовым припоем марки ПОС-40 или ПОС-60 паяльником мощностью не более 25 Вт.

Все комплектующие ЭРЭ основной принципиальной схемы устройства размещают на плате, изготовленной из односторонне фольгированного стеклотекстолита или гетинакса толщиной не менее 1,5 мм.

Проследим порядок открывания механизма замка сторожевого устройства при работе его от сети переменного тока и после установки кода 66112233, как указано на принципиальной схеме с перемычками между мультиплексором и дешифратором. В исходном состоянии при включенном электропитании все элементы счетно-решающего устройства подготовлены к работе и находятся в режиме ожидания. После нажатия на кнопку SB1 и замыкания ее контактов примерно через полсекунды должны произойти первое включение светодиода и передача импульса тока с выхода мультиплексора (вывод 6) ИМС DA6, на котором появляется высокий уровень логической единицы, на вход триггера ИМС DA2 (вывод 2). Заметим, что первый сигнал соответствует цифре 1, а правильно должна быть набрана цифра 6. Одновременно при включении светодиода на выходе счетчика ИМС DA3 (вывод 9) действует низкий уровень логического нуля, а при выключении здесь появляется высокий уровень логической единицы и открывается выход дешифратора ИМС DA5 (вывод 10).

Через 0,5 с произойдет второе зажигание светодиода, если кнопка переключателя SB1 оставалась в нажатом состоянии и ее контакты были замкнуты, появляется низкий уровень логического нуля на выходе дешифратора ИМС DA5 (но уже на выводе 11), и он останется открытым до третьего включения светодиода НL1. Затем через 0,5 с происходит третье включение, и так до шестого зажигания светодиода, перед которым становится открытым последующий выход ИМС DA5 (вывод 6), соединенный проволочной перемычкой с выводом 4 ИМС DA6, так как на нем действует низкий уровень логического нуля. Теперь на выходе ИМС DA6 (вывод 6) будет действовать также низкий уровень логического нуля, который переключит триггер ИМС DA1 (вывод 2) в исходное состояние, так как набрана правильная цифра 6 кода, и если в этот момент кнопку отпустить, то счетчик DA4 устанавливается в кодовое состояние, а в ИМС DA6 открывается следующий вход (вывод 3).

Следующая правильная цифра опять 6. Значит, набирая цифру 6, контакты переключающей кнопки SB1 необходимо разомкнуть в момент шестого вспыхивания светодиода HL1. Исполнительный механизм ЭМ1 сработает только после правильного набора всего восьмиразрядного кода в момент последнего выключения контактов переключателя SB1.

Конструктивно сторожевое устройство выполняется в виде функциональных узлов, заключенных в общий прямоугольный корпус с лицевой панелью, на которую выведены все основные ручки управления, предохранитель и индикаторы. Первый функциональный узел устройства представляет собой СИП, область применения которого может быть расширена, если выполнить его самостоятельной сборочной единицей. Значительный интерес для радиолюбителей может представлять БП, так как его можно использовать, например, для зарядки маломощных аккумуляторных батарей и элементов, для электропитания РЭА. Поэтому целесообразно на лицевую панель устройства вывести клеммы этого источника питания и в периоды между прямым выполнением функций использовать напряжение постоянного тока 9 и 5 В с общим выводом для питания различной бытовой аппаратуры и приборов.

Желательно также около всех элементов на лицевой панели сделать надписи, обозначающие их функциональные назначения. Лучше это делать гравировкой. На верхней крышке устройства необходимо предусмотреть вентиляционные отверстия, расположение и размеры которых определяются местом установки тепловыделяющих элементов на печатной плате и шасси: трансформатора питания Т1, выпрямительных диодов и регулирующего транзистора.

Электронный блок сторожевого устройства может быть установлен в любом месте охраняемого помещения, но обязательно на открытом и легкодоступном месте, где можно производить его техническое обслуживание. В не рабочем состоянии сторожевое устройство должно быть отключено от питающей сети, а механический стопор подвижного язычка замка установлен в положение, при котором обеспечивается свободное открывание замка обычным ключом.

При использовании устройства для многофункциональных целей в электрическую принципиальную схему должны быть внесены изменения в части включения в нее ИП, определяющих напряжение питания нагрузки и потребляемый этой нагрузкой постоянный ток. Это особенно важно при зарядке аккумуляторных батарей и элементов, при восстановлении и «лечении» различных ХИТ. В качестве ИП могут быть рекомендованы приборы 2-го класса точности типа М4200.

В устройстве можно применить электромагнит типа ЭКЗ-4-10, используемый в замках промышленного производства и устанавливаемый на входных дверях жилых помещений.

Основные электрические параметры и технические характеристики сторожевого устройства с однокнопочным управлением

Номинальное напряжение питающей сети переменного тока, В .................... 220 или 127

Номинальная частота питающей сети неременного тока, Гц .................... 50

Номинальные стабилизированные напряжения автономного источника питания, В:

для питания электронных цепей ........... 9

для питания ИМС .................... 5

Пределы изменения напряжения питающей сети

переменного тока, В .................... 180...240 или

110... 140

Пределы изменения частоты питающей сети

переменного тока, Гц.................... 49... 51

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более .............. 12

Пределы изменения напряжения постоянного тока, В.. 8... 12 и 4, 6... 6,1 Максимальная мощность, потребляемая устройством

от сети в режиме холостого хода, мВт ........ .12

Мощность, потребляемая устройством н рабочем

режиме эксплуатации, Вт, не более........... 15

Ток, потребляемый устройством н рабочем режиме,

мА, не более.......................... I50

Ток срабатывания защиты при коротком замыкании,

мА, не менее.......................... 170

Ток холостого хода, мА, не более.............. 8

Время срабатывания защитного устройства

от перегрузок с, не более ................ .0,1

Частота, вырабатываемая тактовым генератором

импульсов, Гц ........................ .2

Время между вспышками светодиода, с ........ .0,5

Число охраняемых объектов, шт .............. 1

Количество возможных сочетаний программируемого

кода устройства, шт .................... .40 320

Количество кодируемых цифр, шт ............ .8

Время готовности устройства к эксплуатации

после включения питания, мс .............. .0,2

Напряжение переменного тока на выводах

вторичных обмоток трансформатора, В:

7 и 8 . ............................ .6.3

9 и 10 ............................ .5

9 и 11............................ .6,3

12 и 13 ........................... .5

12 и 14 ........................... .6,3

Амплитуда пульсации выпрямленного напряжения

постоянного тока, мВ, не более:

5В .............................. .0,18

9В .............................. .0,12

Срок службы, ч, не менее ................. .8000

Вероятность безотказной работы устройства

при риске заказчика в=0,9, не менее ........ .0,98

Сопротивление изоляции токоведущих частей

устройства, МОм, не менее ................ 10

Помехозащищенность устройства при воздействии

внешнего электромагнитного поля, дБ, не менее . .100 кпд, %, не менее ....................... .90 t21.jpg

Рис. 3.7. Принципиальная схема электронного сторожевого устройства с однокнопочным управлением.

 

Рис. 3.7. Принципиальная схема электронного сторожевого устройства с однокнопочным управлением.

Изображение: 

Таблица 3. 8. Порядок соединений контактов при кодировании и считывании кода

Изображение: 

Таблица 3.7. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном сторожевом устройстве с

Изображение: 

3. 4. Электронное сторожевое устройство на шести интегальных микросхемах

3.4. ЭЛЕКТРОННОЕ СТОРОЖЕВОЕ УСТРОЙСТВО НА ШЕСТИ ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

Высоконадежное сторожевое устройство, собранное на шести ИМС, относится к электронным устройствам средней сложности и разработано для применения в условиях УХЛ, ХЛ или В. Сторожевое устройство рассчитано на жесткие условия эксплуатации при температуре окружающей среды от —40 до 50 °С, относительной влажности воздуха до 95% при температуре 25 °С, при воздействии инея и росы и пониженного атмосферного давления воздуха до 5мм рт. ст.

Устройство может быть применено для установки как на внутренних, так и на наружных дверях жилых, производственных и хозяйственных помещений. Область его использования может быть расширена без значительных доработок для запирания дверей и въездных ворот гаражей, складских помещений и хозпостроек на садово-огородных участках. Надежность и долговечность устройства обеспечивается достаточно простым схемно-техническим решением и современным конструктивно-технологическим исполнением. Технологичность сторожевого устройства определяется оснащением радиолюбительской лаборатории необходимыми приборами и инструментами.

Электронная схема сторожевого устройства является по существу неотъемлемой частью системы охраны, в которую дополнительно входят механический замок врезной или накладной конструкции со стопором защелки, ИМ, приводимый в действие от электромагнита или соленоида или от электромеханического реле, и в ряде случаев устройство управления стопором защелки.

Работает сторожевое устройство от сети переменного тока напряжением 220 В частотой 50 Гц, ХИТ или другого источника электропитания постоянного тока, в том числе и собранного по рекомендациям, изложенным выше. Напряжение постоянного тока не превышает 12 В, номинальное напряжение — 9В.

Принципиальная электрическая схема сторожевого устройства на шести ИМС приведена на рис. 3.8. Как следует из схемы, устройство содержит в своем составе входные цепи с емкостным фильтром, защищающим от помех, которые проникают в сеть переменного тока; сетевой понижающий трансформатор питания Т1; выпрямитель нерегулируемого типа, работающий на емкостный фильтр; стабилизатор напряжения постоянного тока; кодирующее звено; счетно-решающее устройство с системой управления; ИМ дискретного действия.

Входное устройство обеспечивает подключение к сети переменного тока с помощью электрического соединителя X1 и сетевой розетки; предохранение первичных цепей устройства от перегрузок и коротких замыканий с помощью плавкого предохранителя F1, рассчитанного на максимальный ток 0,25А; общее отключение питания при нештатных ситуациях и включение устройства в эксплуатацию с помощью переключателя типа «тумблер» или П2К, — S1. На входе устройства собран емкостный фильтр на конденсаторах С1 и С'2, защищающий от низкочастотных помех, которые могут проникнуть в сеть питания.

В качестве сетевого понижающего трансформатора питания Т1 в сторожевом устройстве может быть использован унифицированный трансформатор типа ТН, габаритная мощность которого равна 20 Вт. Конструкция покупного трансформатора обеспечивает повышенный уровень влагозащищенности и электрической прочности. Соединения выводов обмоток трансформатора при подключении к сети переменного тока даны в табл. 3.9.

Таблица 3.9. Соединения выводов обмоток сетевого понижающего трансформатора питания Т1

3-41.jpg

В устройстве может быть применен самодельный трансформатор питания, рассчитанный на подключение к сети переменного тока напряжением только 220 В и изготовленный по упрощенной схеме, с одной первичной и двумя вторичными обмотками, одна из которых имеет отвод от средней точки. Моточные данные самодельного трансформатора приведены в табл.3.10. Трансформатор питания изготавливается с одной катушкой на броневом магнитопроводе типа УШ (Ш или ШЛ). В конструкции может быть использован также магнитопровод с размерами, позволяющими уменьшить расход меди, типа ШЛМ. Активная площадь поперечного сечения стали центрального стержня магнитопровода должна быть не менее 6 см2.

Таблица 3. 10. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном сторожевом устройстве на шести интегральных микросхемах

3-42.jpg

Намотка провода на катушку должна осуществляться рядовым способом, виток к витку, с изоляцией каждого слоя и пропиткой нитролаками. Между первичной и вторичными обмотками делается усиленная изоляция и наматывается слой обмоточного провода, один вывод которого замыкается на магнитопровод. Слой обмоточного провода является экраном. Самодельный трансформатор рекомендуется закрыть металлическим кожухом, изготавливаемым из жести или электротехнической стали и дополнительно защищающим обмоточный провод катушки.

Понижающий трансформатор питания обеспечивает полную гальваническую развязку вторичных цепей электронной схемы от сети переменного тока высокого напряжения, заданные значения выпрямленного напряжения постоянного тока, достаточно безопасную регулировку устройства, так как на выходе действует пониженное напряжение.

Выпрямительное устройство собрано на двух маломощных диодах по двухполупериодной схеме со средним выводом вторичной обмотки, которая чаще применяется в маломощных БП. По сравнению с однофазной мостовой схемой она позволяет уменьшить вдвое число диодов и тем самым понизить потери. Выпрямители, собранные по этой схеме, характеризуются повышенной частотой пульсации, возможностью использования вентилей с общим катодом (или анодом), что упрощает их установку на общем радиаторе, а также повышенным обратным напряжением на комплекте выпрямительных диодов и более сложной конструкцией трансформатора. Работает выпрямитель на емкостный фильтр, выполненный на конденсаторе С5. Схема выпрямителя позволяет получить на выходе напряжение питания с высокими техническими параметрами, обеспечивающими точное срабатывание системы защиты и четкую работу схемы сторожевого устройства. Выпрямленное напряжение поступает на полупроводниковый стабилизатор с защитой от перегрузок и коротких замыканий в цепях сторожевого устройства.

Включенный на входе устройства плавкий предохранитель F1 не всегда надежно защищает устройство от перегрузок и коротких замыканий, которые наиболее часто возникают из-за ошибок, допускаемых начинающими радиолюбителями и юными техниками. Для повышения надежности работы сторожевого устройства в БП введена электронная защита, которая собрана на стабилитроне VD3, транзисторе VT1 и резисторах R1 и R3. Работает защитное устройство следующим образом. На выходе выпрямителя включен проволочный резистор R3, через который протекает ток нагрузки и на котором падает небольшое напряжение, управляющее работой транзистора VT1. Заметим, что напряжение на этом транзисторе стабилизировано полупроводниковым стабилитроном VD3, включенным в прямом направлении. Ток нагрузки, протекающий через резистор R3, действует между базой и эмиттером, и разность напряжений между ними определяет состояние этого транзистора. Если ток нагрузки ниже допустимого, который определяется параметрами ЭРЭ, то транзистор остается закрытым. Когда же ток нагрузки резко увеличивается и превышает допустимый, падение напряжения на резисторе R3 становится таким, что транзистор VT1 открывается. При этом параллельно переходу база — коллектор включенный стабилитрон VD4 фактически шунтируется, так как через этот переход ответвляется часть электрического тока, а это приводит к ограничению тока, протекающего через регулирующий транзистор VT3 стабилизатора напряжения. В результате напряжение на нагрузку не поступает и сторожевое устройство обесточивается. Защитное устройство можно настроить на ток срабатывания 300 мА и более.

Важнейшим условием четкой работы сторожевого устройства и электронной схемы является использование проверенных и абсолютно исправных комплектующих ЭРИ и ЭРЭ, а также технологически правильного монтажа микросхем на печатной плате. При монтаже должен использоваться только низковольтный маломощный паяльник с тонким жалом и регулируемой температурой нагрева. В общем случае существующие правила формовки выводов и установки ИМС в электромонтажной схеме могут быть определены следующим образом:

1. Длина выводов ИМС должна быть не менее 15 мм после подрезки и формовки в соответствии с ТУ.

2. Использование высокотемпературных припоев не допускается.

3. При припайке каждого вывода ИМС должен использоваться металлический теплоотвод (в обычном случае это пинцет).

4. Время нагрева отдельных выводов ИМС при пайке не должно превышать 1...2 с.

5. Места на печатной плате перед установкой ИМС должны быть тщательно подготовлены.

6. Демонтаж ИМС допускается не более двух раз. Следует отметить, что только правильное соединение элементов схемы, и особенно шифровального устройства, позволит работать сторожевому устройству без сбоев.

Кодирование устройства осуществляется методом установления перемычек между выводами выходных контактов ИМС DA5 и DA6, образующих мультиплексор. Так как конструкция сторожевого устройства не сопровождается комплектом КД и ТД и полностью зависит от выполнения рекомендаций и возможностей радиолюбителя, а также от материального оснащения домашней мастерской, то необходимо наиболее удобно сконструировать и изготовить узел кодировочного поля. Наиболее целесообразно использовать такие элементы, как унифицированные малогабаритные зажимы или приборные контакты с пружинными и винтовыми зажимами. Эти контакты удобно расположить на лицевой панели сторожевого устройства, в котором собрана электронная схема. Монтаж ЭРИ и ЭРЭ осуществляется комбинированным способом с применением печатного и объемного монтажа. Печатная плата изготавливается из односторонне фольгированного стеклотекстолита или гетинакса толщиной 1,5..2 мм.

Как следует из схемы, набор шифра сторожевого устройства осуществляется на шифровальном поле соединением контактов А1—А8 с контактами Б1—Б8 в комбинациях любых цифр от 1 до 8. Восьмиразрядный код позволяет получить более 40000 сочетаний кода, который набрать простым перебором цифр практически не представляется возможным. Шифр выполняется установлением перемычек между выводами ИМС. Для правильного набора кода необходимо одну из двух линеек с контактными зажимами обозначить цифрами, которые и определяют не только восьмиразрядный код, но и порядок счета при замыкании контактов переключателя SB1.

Если соединить контакты А1 с Б2, А2 с Б1, A3 с БЗ, A3 с Б4, А6 с Б5, А7 с Б6, А7 с Б7, А8 с Б8, то закодированное число шифра будет 12336778.

В основном электронном блоке можно выделить следующие функциональные элементы: на двух ИМС DA5 и DA6 собран мультиплексор; счетчик-дешифратор собран на ИМС DA4; тактовый генератор выполнен на ИМС DA1 (выводы 1, 2, 3 и 11, 12, 13); счетчик выполнен на ИМС DA3; определитель типа И собран на диодах VD7—VD14 и резисторе R16 и имеет восемь разрядов.

Порядок считывания цифр кода производится автоматически с контактов, которые смонтированы на шифровальной планке Б, цифры кода задаются вручную подключением перемычек с шифровальной планки А. Например, если код имеет вид 55555555, то необходимо контакты А5 соединить последовательно со всеми контактами планки Б.

Для изготовления сторожевого устройства использованы следующие покупные комплектующие ЭРИ и ЭРЭ: ИМС DA1 типа К176ЛА7, DA2 — К176ЛЕ5, DA3 — К176ИЕ8, DA4 — К176ИЕ8, DA5 — К176ЛА7, DA6 — К176ЛА7; транзисторы VT1 типа МП42, VT2 — МП42, VT3 — П213, VT4 — КТ315Б VT5 — КТ315Б, VT6 — КТ814А; диоды VD1 типа Д226Д, VD2 — Д226Д, VD6 — Д226Е, VD7—VD14 — КД513А; стабилитроны VD3 типа Д814Д, VD4 — Д814Д; светодиод VD5 типа АЛ102А;

конденсаторы С1 типа МБМ-11-750В-0.025 мкФ, С2 — МБМ-П-750В-0.025 мкФ, СЗ — К42У-2-160В-2200 пФ, С4 — К10-7В-50В-Н30-2200 пФ, С5 — К50-6-25В-500 мкФ, С6 — К50-6-25В-500 мкФ, С7 - К10-17-50В-22 пФ, С8 — К73-17-63В-0, 1 мкФ, С9 — К10-17-50В-1000 пФ, С10 — КМ-6-25В-0,033 мкФ, С11— КМ-6-25В-0,033 мкФ; резисторы R1 типа ВСа-0,5-620 Ом, R2 — ВСа-0,25-750 Ом, R3 — проволочный самодельный 3 Ом (намотанный на резисторе ВСа-2-10 Ом константановым или нихромовым проводом), R4 — ВСа-0,5-1,2 кОм, R5 СП4-1-0,5Вт-А-2,2 кОм, R6 — ВСа-0.5-4,3 кОм, R7 — ВСа-0.5-2,4 кОм, R8 — ВСа-2-10 к0м,R9-ВСа-0,125-10кОм, R10-Bса-0,125-3,0МОм,R11— ВСа-0,125-100 кОм, R12 — ВСа-0,12-100 кОм, R13 — ВСа-0,5-330 Ом, R14 -ВСа-0,125-47 кОм, R15 - ВСа-0,25-1,2 кОм, R16 -ВСа-0,25-100 кОм; сетевой понижающий трансформатор питания T1типа ТН 14-127/220-50; электрический соединитель X1 типа «вилка»; предохранитель плавкий F1 типа ПМ-1-0,25 А;

лампа индикаторная H1 типа МН-6,3-0,22 А; переключатели SI типа «тумблер» ТВ2-1-2, SB1 — КМ1-1; ИМ К1 (электромагнит или электромагнитное реле типа РКН).

Раскодирование и подача команды на срабатывание ИМ сторожевого устройства производится с помощью правильного набора кода при замыкании контактов переключателя SB1. При нажатии на кнопку этого переключателя начинает работать счетчик импульсов и вспыхивать светодиод VD5. Если нужно набрать, например, код, состоящий из цифр 57331844, то для набора первой цифры светодиод должен вспыхнуть пять раз, после чего кнопка переключателя SB1 должна быть отпущена. При следующем нажатии на кнопку светодиод должен вспыхнуть семь раз и кнопка вновь должна быть отпущена. Таким образом набираются все восемь цифр кода. Если все цифры кода будут набраны правильно, то последним откроется транзистор VT6 и сработает исполнительное реле К.1.

При регулировке сторожевого устройства можно использовать другие аналогичные ЭРИ и ЭРЭ, не ухудшающие его основные электрические параметры и технические характеристики. Например, вместо стабилитрона типа Д814Д можно использовать любой стабилитрон из серий Д808—Д814. Резистор R3 можно намотать проводом с высоким удельным сопротивлением на корпусе перегоревшего предохранителя. Вместо резисторов типа ВСа можно использовать резисторы типов МТ, МЛТ, ОМЛТ, C1-4, C2-11, БЛП, БЛПа. В качестве ИМ можно использовать электромагнит или соленоид, описание которых приведено выше, а также электромагнитные реле типа РЭН-18 (паспорт РХ4.564.706), РКН (паспорт РС4.500.100), РСМ (паспорт РФ4.500.031). Налаживание сторожевого устройства начинается с БП. Сначала проверяется действующее напряжение на выходных обмотках сетевого трансформатора Т1, затем — на выходе выпрямителя и стабилизатора напряжения в точках А и Б. Здесь напряжение постоянного тока должно быть в пределах 8,5...12 В. Эту проверку рекомендуется выполнять при отключенной в точках А и Б нагрузке. После данной проверки устанавливается ток срабатывания защиты от перегрузок и коротких замыканий. Налаживание защиты сводится к подбору сопротивления резистора R3 — его сопротивление должно быть таким, чтобы защита срабатывала при токе нагрузки 350 мА.

В электронном блоке сторожевого устройства производится подбор резисторов усилителя тока ИМ (R9, R13) для обеспечения необходимого тока срабатывания.

Основные электрические параметры и технические характеристики электронного сторожевого устройства на шести микросхемах

Номинальное напряжение питающей сети

переменного тока, В .................... .220 или 127

Номинальная частота питающей сети

переменного тока, Гц ................... .50

Номинальное напряжение автономного источника

электропитания постоянного тока, подключаемого

в точках А и Б, В ..................... .9

Пределы изменения напряжения питающей сети

переменного тока, В .................... .180...242 или

110...140 Пределы изменения частоты питающей сети

переменного тока, Гц ................... .49...51

Пределы изменения напряжения электропитания

постоянного тока автономного источника, В .... .8,5...12 Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более .............. .12

Амплитуда пульсации выпрямленного напряжения

постоянного тока на выходе выпрямителя, мВ,

не более ............................ .20

Коэффициент стабилизации, не менее .......... .100

Длительность вспышек светодиода при наборе кода

и замкнутых контактах переключателя SB1, с,

не менее ............................ .0,5

Вероятность подбора кода, не менее ........... .10^(-8)

Номинальное количество цифр в коде .......... .8

Разрядность счетчика импульсов .............. .8

Максимальная мощность, потребляемая устройством

от сети,Вт ........................... 18

Ток, потребляемый устройством в рабочем

режиме, мА, не более ................... .300

Ток срабатывания защиты при перегрузках

и коротких замыканиях, мА, не менее......... 350

Время срабатывания защиты при коротком

замыкании ,с, не более ................... .0,1

Ток холостого хода, мА, не более .............. 10

Рабочая частота, вырабатываемая тактовым

генератором импульсов. Гц ............... .2

Время между вспышками светодиода при замкнутых

контактах переключателя SB1, с ........... . .0,5...1

Число одновременно охраняемых объектов, шт .... .1

Готовность устройства к эксплуатации

после включения напряжения, мс, не более ..... .0,5

Вероятность безотказной работы сторожевого устройств при риске заказчика в=0,92, не менее .... .0,97

Срок службы, ч, не менее .................. 10 000

Сопротивление изоляции токоведущих частей

устройства, МОм, не менее ................ 10

Помехозащищенность устройства при воздействии

внешнего электромагнитного поля, дБ, не менее . .100 кпд, %, не менее ....................... .95

Условия эксплуатации:

температура окружающей среды, °С ........ .—40...+50

относительная влажность воздуха при температуре 25 С, %, не более .................. .93±2

атмосферное давление воздуха, мм рт. ст. .... .200...1000

t31.jpg

Рис. 3. 8. Принципиальная схема электронного сторожевого устройства на шести интегральных микросхемах.

Рис. 3.8. Принципиальная схема электронного сторожевого устройства на шести интегральных микросхемах.

Изображение: 

Таблица 3. 10. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном сторожевом устройстве

Изображение: 

Таблица 3.9. Соединения выводов обмоток сетевого понижающего трансформатора питания Т1

Изображение: 

3. 5. Сторожевое устройство на ППП со световой и звуковой сигнализацией

3.5. СТОРОЖЕВОЕ УСТРОЙСТВО НА ППП СО СВЕТОВОЙ И ЗВУКОВОЙ СИГНАЛИЗАЦИЕЙ

Сторожевое устройство на полупроводниках разработано для охраны объектов народно-хозяйственного назначения, дачных строений, хозблоков на садово-огородных участках, гаражей, жилых помещений в условиях УХЛ, ХЛ и В, при установке исполнительных механизмов на входных дверях, окнах, воротах и по периметру ограждений, которые рассчитаны на эксплуатацию как внутри объектов, так и на открытых площадях. Радиолюбителям необходимо так сконструировать сторожевое устройство, чтобы была обеспечена высокая технологичность изготовления и устройство могло бы противостоять разнообразным внешним воздействующим нагрузкам. Изделия промышленного изготовления устойчиво работают при смене температур и повышенной относительной влажности до 95%, а также при пониженном атмосферном давлении до 5 мм рт. ст. Такие условия эксплуатации обеспечиваются высоким качеством применяемых комплектующих ЭРИ и ЭРЭ и достаточно простым схемно-техническим решением.

Работает сторожевое устройство от сети переменного тока напряжением 220 В частотой 50Гц.Электронная схема данного устройства допускает электропитание от вторичного источника питания напряжением 16...24 В.

Область применения этого сторожевого устройства может быть значительно расширена, если внести некоторые изменения в схему питания и использовать его для охраны подвижных большегрузных средств, работающих на суше и на воде (реках, озерах и морях). Но лучшее применение — все-таки для охраны стационарных объектов на приусадебных участках.

Принципиальная электрическая схема устройства, собранного на ППП со световой и звуковой сигнализацией, приведена на рис. 3.9.

Сторожевое устройство представляет собой совокупность нескольких функциональных узлов и блоков, объединенных в универсальную охранную систему. Как видно из электрической схемы, она состоит из входных электрических цепей, сетевого понижающего трансформатора питания Т1, выпрямительного устройства, работающего на емкостный фильтр, стабилизатора напряжения, быстродействующего электронного блока охранной сигнализации и выходных цепей с исполнительными устройствами автоматического действия.

Подключается устройство к сети переменного тока с помощью стандартного электрического соединителя X1 типа «вилка», которая в свою очередь подключается к штепсельной розетке. На входе устройства установлен плавкий предохранитель F1, защищающий ЭРЭ входных цепей от перегрузок и коротких замыканий. Предохранитель рассчитан на максимальный ток срабатывания 0,25 А. Включение и выключение охранной сигнализации обеспечивается однополюсным переключателем S1 типа «тумблер». Включенный параллельно первичной обмотке сетевого трансформатора, высоковольтный конденсатор С1 защищает систему электронной сигнализации от сетевых помех.

В качестве сетевого понижающего трансформатора питания Т1 применен унифицированный трансформатор типа ТА, который может быть заменен трансформатором самодельной конструкции. Можно применить трансформатор типоразмера ТА62-127/220-50 с двумя первичными и шестью вторичными обмотками. Самодельный трансформатор изготавливается на броневом магнитопроводе типа Ш или ШЛ (ШЛМ) из электротехнической стали марки 3312. Активная площадь поперечного сечения стали основного стержня магнитопровода должна быть в пределах 5...6 см2 Следует заметить, что чем больше активная площадь поперечного сечения стали, тем больше габаритная мощность трансформатора. Моточные данные самодельного трансформатора Т1 приведены в табл. 3.11. При изготовлении этого трансформатора можно намотать на каркас катушки только действующие обмотки, не повторяя конструкцию унифицированного трансформатора. На каркас катушки наматывается одна первичная и две вторичные обмотки, между которыми укладывается через изоляционные прокладки один ряд обмоточного провода виток к витку, выполняющего роль экрана, который обеспечит защиту выходных цепей от электромагнитных помех. Один конец экранного провода заземляется на магнитопровод.

Таблица 3.11. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в сторожевом устройстве на ППП со световой и звуковой сигнализацией

3-51.jpg

Согласно схеме, для подключения выпрямителя используются две обмотки сетевого трансформатора Т1 с выводами 19 и 20, 21 и 22. Выводы обмоток 20 и 21 соединяются между собой, а однофазная двухполупериодная схема выпрямителя подключается к выводам 19 и 22, на которых действует переменное напряжение 22 В. Коэффициент трансформации при этом равен 10. При включении унифицированного трансформатора в сеть переменного тока напряжением 220 В выводы 2 и 6 соединяются между собой, а напряжение питания электрической сети подается на выводы 1 и 8. Если в сторожевом устройстве будет применен другой трансформатор, например серии ТПП или ТС, то подключение его к сети должно осуществляться согласно схеме этого трансформатора.

При изготовлении трансформатора необходимо особое внимание уделить укладке обмоточного провода, которая должна быть рядовой, виток к витку, без накладок и перехлестов и с обязательной изоляцией каждого слоя нитролаком и тонкой фторопластовой пленкой с большим электрическим сопротивлением, можно также конденсаторной бумагой. Второй и последующие слои наматываются также рядами с выводом концов обмоточного провода через боковую стенку каркаса катушки в одну сторону. После сборки трансформатор должен быть закрыт защитным кожухом.

Выпрямительное устройство состоит из четырех полупроводниковых диодов и конденсаторов С1—С4. Конденсатор С1, как было указано выше, защищает устройство от сетевых помех, С2 сглаживает пульсации выпрямленного напряжения постоянного тока, СЗ обеспечивает снижение шума ППП, а С4, установленный на выходе стабилизатора напряжения и включенный параллельно нагрузке, снижает выходное сопротивление источника питания по переменному току.

В схеме электропитания на выходе выпрямителя собран стабилизатор напряжения компенсационного типа, выполненный на транзисторах VT1—VT4 и стабилитроне VD5. Регулирующим элементом стабилизатора является транзистор VT3. Опорное напряжение снимается со стабилизатора, выполненного по параметрической схеме на транзисторе VT1 и стабилитроне VD5, при этом транзистор является стабилизатором тока. Величина опорного напряжения при работе стабилизаторов сравнивается с выходным напряжением, которое снимается с резисторного ДН, собранного на постоянных резисторах R5, R6. Транзисторы VT2 и VT4 образуют дифференциальный усилитель тока. При сравнении токов опорного и выходного напряжений, которое осуществляется дифференциальным усилителем, через транзистор VT3 протекает ток, равный разности этих напряжений. Последовательно включенный стабилитрону VD5 резистор R1 обеспечивает четкий запуск компенсационного стабилизатора, когда в момент включения напряжение на выходе равно нулю.

После подачи сетевого напряжения на устройство в работу включается система электропитания, а сторожевые цепи электронной схемы переходят в дежурный режим.

Сторожевое устройство представляет собой быстродействующую систему, которая срабатывает, как и большинство подобных систем, как при замыкании контактов конечных выключателей или датчиков, так и при обрыве охранной линии.

В зависимости от выбранной конструкции устройства питание системы может обеспечиваться от автономного источника тока.

Подача сигнала тревоги при открывании двери или окна происходит по двухпроводной линии. В качестве датчиков используются малогабаритные переключатели ТВ2, которые могут быть включены параллельно в одну линию связи, составляющую сигнальный шлейф. В устройстве применено довольно большое количество переключателей и контактных групп, которые управляют автоматикой сигнального блока. Как было отмечено ранее, переключатель S1 предназначен для включения электропитания переменного тока; переключатель S2 включает и выключает питание звонка ВА1. В положении, указанном на схеме, электрический звонок включен и звуковой сигнал будет подан, если сработает автоматика устройства. Двухполюсный переключатель S3 предназначен для общего отключения звуковой и световой сигнализации. Переключатель S4 переводит сигнальное устройство в ждущий режим работы из положения холостого хода. Переключатели S5 и S6 устанавливаются на входных дверях, окнах, форточках, воротах гаражей и т. д., они составляют охранный шлейф и являются конечными выключателями.

При открывании дверей охраняемого объекта контакты 1 и 2 переключателя S5 (или S6) замыкаются и система переходит в рабочий режим тревоги. В положениях контактов всех переключателей, указанных на схеме, сторожевое устройство отключено от сети и находится в нерабочем состоянии. При подаче напряжения переменного тока на вход устройства и при условии, если вся система исправна, а двери закрыты (конечные выключатели S5, S6 разомкнуты), схема находится в дежурном режиме. В это время тиристор VS1 и стабилитрон VD7 закрыты и напряжение па исполнительные устройства не подается. Транзистор VT5 открыт, а на резисторе R10 фиксируется напряжение до 3 В, которого становится достаточно для поддержания в открытом состоянии этого транзистора. На базу транзистора VT6 подается небольшое положительное напряжение.

После замыкания контактов переключателя S5 падение напряжения на резисторе R10 значительно возрастает, что приводит к открыванию стабилитрона VD7 и тиристора VS1. Это, в свою очередь, обеспечивает срабатывание реле К1, контакты которого К1.1 и К1.2 переключаются из открытого состояния в замкнутое. Одновременно срабатывает световая и звуковая сигнализация, которые продолжают работать и после того, как контакты 1 и 2 переключателя S5 будут вновь разомкнуты, то есть дверь будет снова закрыта.

При изготовлении электронного блока устройства необходимо предусмотреть возможность размещения ручек управления, кнопок переключателей и индикаторных ламп на лицевой панели. Электрический звонок и сигнальная лампа могут быть расположены на значительном расстоянии от пульта управления и установлены вне охраняемого помещения. При этом параллельно могут быть установлены несколько таких сигнализаторов в разных местах. Электропитание их осуществляется по двухпроводным линиям, выполненным изолированным проводом.

Для изготовления сторожевого устройства применены следующие покупные комплектующие ЭРИ и ЭРЭ: сетевой понижающий трансформатор питания Т1 типа ТА62-127/220-50;

транзисторы VT1 типа ГТ308В, VT2 — КТ315Б, VT3 — КТ814Б, VT4 — КТ315Б, VT5 — КТ603Б, VT6 — КТ603Б; выпрямительные диоды VD1—VD4 типа Д223, VD6 — Д224, VD8 — Д223, VD9 — Д223; стабилитроны VD5 типа Д814Д, VD7 — КС156А;

тиристор VS1 типа КУ102А; конденсаторы С1 типа К40У-9-630В-0.033 мкФ, С2 — К50-12-25В-500 мкФ, СЗ — К50-12-25В-20 мкф, С4 — К50-12-25В-100 мкФ, С5 — К50-12-25В-5 мкФ; резисторы R1 типа МЛТ-0,125-300 кОм, R2 — МЛТ-0,25-100 Ом, R3 — МЛТ-0,25-1,8 кОм, R4 — МЛТ-0,25-5,1 кОм, R5 — СПЗ-4аМ-А-0,25Вт-3,3 кОм, R6 — МЛТ-0,25-2 кОм, R7 — МЛТ-0,125-560 кОм, R8 — МЛТ-2-100 Ом, R9 — МЛТ-0,25-6,8 кОм, R10 — МЛТ-0,25-1 кОм, R11 — МЛТ-0,25-3,6 кОм, R12 — МЛТ-0,5-9,1 кОм, R 13 — МЛТ-0,5-1 кОм, R14 — МЛТ-0,5-68 кОм, RI5 — МЛТ-0,25-68 кОм, R16 — МЛТ-2-39 кОм; сигнальные лампы H1 типа ТН-30-3, Н2 — СМ37; электромагнитное реле К1 типа РЭС-9 (паспорт РС4.524.200); электрический звонок постоянного тока ВА1 напряжением питания до 24 В; электрические соединители X1 типа «вилка», Х2, ХЗ — КМЗ-1; переключатели S1 типа ТВ2-1-2, S2 — П1Т-1-1, S3 — МТЗ-1 (П2Т-1-1), S4 — ТВ2-1-2,S5 — ТВ2-1-2, S6 — ТВ2-1-2; предохранитель F1 типа ПМ1 1-0,25 А.

При изготовлении и регулировке сторожевого устройства можно использовать другие ЭРИ и ЭРЭ, аналогичные примененным и не ухудшающие основные электрические параметры и эксплуатационные характеристики. Например, сетевой понижающий трансформатор типа ТА можно заменить на трансформатор типа ТС-50-5 или трансформатор самодельной конструкции; выпрямительные диоды типа Д223, входящие в мостовой выпрямитель, можно заменить диодной сборкой типа КЦ или на выпрямительные диоды, рассчитанные на выпрямленный ток не менее 50 мА и обратное напряжение не ниже 50 В; транзисторы КТ315Б могут быть заменены транзисторами этой же серии с буквенными индексами В, Г, Е; резисторы типа МЛТ можно заменить на резисторы типов МТ, ВС, ВСа, ОМЛТ, УЛИ, БП, C1-4, C2-8; конденсаторы типа К50-12 — на К50-3, К50-6, К50-16, К50-20; транзисторы типа КТ603Б — на КТ605, П307, П308, П309 с любыми буквенными индексами; тиристор типа КУ102А — на КУ101 или КУ102 с любыми буквенными индексами. Для переключения рабочих состояний устройства вместо указанных выше могут быть применены переключатели типа П2К с фиксированным положением кнопки.

Регулировку сторожевого устройства начинают с проверки источника электропитания, устанавливая в него заведомо исправные и качественные ЭРИ и ЭРЭ. Сначала проверяется действующее напряжение на выходных обмотках сетевого трансформатора, далее — на выходе выпрямительного моста и затем в точках А и Б — на выходе стабилизатора напряжения. При проверке БП нагрузка в точках А и Б отключается и вместо нее к выходу подключается проволочный постоянный резистор типа ПЭВ (С5-35В) сопротивлением 250 Ом и мощностью 5 Вт. Подстроечным переменным резистором R5 устанавливается на этом резисторе постоянное напряжение 16 В. Затем нужно подключить осциллограф, и подбором резистора R7 добиваются минимальной амплитуды пульсации постоянного тока. Ток нагрузки должен быть не более 2 А. После этого подключается нагрузка и проверяется электронный блок при выключенных контактах переключателей. Сначала подбором сопротивления резистора R12 устанавливают на эмиттере транзистора VT6 напряжение 3 В, при этом на транзисторе V15 должно быть напряжение 0,5 В и он должен быть открыт.

Далее контакты 1 и 2 переключателя S7 замыкаются, то есть устройство переводится в положение «включено». При этом напряжение на стабилитроне VD7 относительно «земли» должно равняться 24 В. Тиристор и этот стабилитрон находятся в открытом состоянии, и, следовательно, индикаторная лампа Н2 должна светиться.

Основные электрические параметры

и технические характеристики сторожевого устройства на ППП

со световой и звуковой сигнализацией

Номинальное напряжение питающей сети

переменного тока, В .......... ....... 220 или 127

Номинальная частота питающей сети

переменного тока, Гц ................... 50

Номинальное напряжение автономного источника

питания постоянного тока, подключаемого

к системе в точках А и Б, В ............... 24

Пределы изменения напряжения питающей сети

переменного тока, %.................... —10...+10

Пределы изменения частоты питающей сети

переменного тока, %.................... 1

Пределы изменения напряжения автономного

источника питания постоянного тока, В ....... 20...24

Напряжение переменного тока на выводах

сетевого трансформатора Т1, В

11 и 12 ........................... 56

13 и 14 ........................... 56

15 и 16 .......................... 40

17 и 18 ........................... 40

19 и 20 ........................... 12

21 и 22 ........................... 10

Стабилизированное напряжение на выходе в точках

А и К, В ............................ 22

Амплитуда пульсации выпрямленного напряжения,

мВ, не более ......................... 16

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более ............. 12

Коэффициент стабилизации напряжения питающей

сети, не менее ........................ 200

Максимальное сопротивление шлейфа, кОм ...... 3

Количество одновременно охраняемых объектов, шт . . 1...10 Сопротивление изоляции токоведущих проводников

относительно металлических частей устройства,

МОм,не менее ....................... 10

Ток, потребляемый устройством в дежурном режиме

работы, мА, не более ................... 7

Общая максимальная мощность устройства, Вт .... 36 Мощность потребляемая устройством в дежурном

режиме работы,мВт .................... 150

Помехозащищенность устройства при воздействии внешнего электромагнитного поля, дБ, не менее . . 100 Срок службы, ч, не менее .................. 10 000

Вероятность безотказной работы при риске заказчика в=0,92, не менее ............... 0,96

кпд, %,не менее ........................ 95

Условия эксплуатации:

температура окружающей среды, °С ........ —25...-+-40

относительная влажность воздухапри температуре25 С %, не более ................... 85

атмосферное давление воздуха, мм рт. ст. ..... 200...900

t41.jpg

Рис. 3.9. Принципиальная схема сторожевого устройства на ППП со световой и звуковой сигнализацией.

Рис. 3.9. Принципиальная схема сторожевого устройства на ППП со световой и звуковой сигнализацией.

Изображение: 

Таблица 3.11. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в сторожевом устройстве на ППП со све

Изображение: 

3. 6. Система предупредительной сигнализации

3. 6. СИСТЕМА ПРЕДУПРЕДИТЕЛЬНОЙ СИГНАЛИЗАЦИИ

Электронная автоматическая система промышленного изготовления типа «Сирена» предназначена для подачи сигнала тревоги при проникновении на охраняемые объекты посторонних лиц и при срабатывании установленных на объектах специальных датчиков, выполняющих роль конечных выключателей. Рассматриваемое устройство имеет универсальное применение, так как рассчитано на использование во всех климатических зонах страны для охраны как стационарных, так и подвижных объектов.

Наилучшие результаты при применении устройства предупредительной сигнализации типа «Сирена» можно получить, если использовать его в комплексных системах охраны и оповещения совместно с другими электронными и электромеханическими устройствами, и особенно при охране стационарных объектов.

Примерная схема размещения датчиков в контрольных точках охраняемых объектов приведена на рис. 3. 10. Электрическая схема, включающая комплект блоков и самостоятельных узлов, которые образуют систему, предусматривает возможность подключения к соответствующим клеммам не менее четырех датчиков. С их помощью осуществляется наблюдение и охрана как помещения в целом, так и отдельных его частей или нескольких близко расположенных объектов одновременно.

В схеме, приведенной на рис. 3. 10, приняты следующие обозначения; светодиод VD1 типа АЛ307Б; датчики Д1— Д4, конструкции которых даны в главе 3. 2; однополюсный переключатель S1 типа «тумблер»; перемычка X1 прово-

3-61.jpg

Рис. 3. 10. Схема размещения датчиков в контрольных точках охраняемых объектов.

лочная , блок громкоговорителей (БГ); БЭ; сигнальная лампа H1.

Работает система предупредительной сигнализации, как правило, в автономном режиме, от восьми последовательно соединенных элементов типа 373, устанавливаемых в специальный отсек БП. Данная система сигнализации может быть легко переведена на электропитание от сети переменного тока напряжением 220 В частотой 50Гц. Для этого необходимо использовать покупной или самодельный блок электропитания с выходным стабилизированным напряжением 10...12 В и током нагрузки не менее 500мА, принципиальная электрическая схема которого приведена на рис. 3.11. Подключается БП к клеммам 4 и 6 электронного блока системы.

Следует сказать, что в соответствии с рекомендациями завода-изготовителя допускается использовать в качестве встроенного источника электропитания элементы, приведенные в табл. 3.1, или аккумуляторы типа НКТЦ-35-1, а также другие аналогичные им по техническим характеристикам и размерам. Хорошие результаты дает применение аккумуляторной батареи типа 8НКГ-10Г, которая сохраняет работоспособность в очень жестких условиях эксплуатации и обладает повышенными техническими характеристиками, надежностью и долговечностью.

С целью сохранения секретности промышленных изделии данной системы БЭ при установке на место не вскрывается и весь электромонтаж производится наружными соединениями к контактам, выведенным на лицевую панель БЭ. При этом принцип работы БЭ сторожевого устройства не поддается определению из-за отсутствия принципиальной и монтажной электрических схем. И как указывалось ранее, из-за отсутствия комплекта КД эти изделия не могут быть отремонтированы в домашней лаборатории.

Конструктивно основной электронный блок сторожевого устройства выполнен в виде прямоугольного пластмассового корпуса, который имеет габаритные размеры, не превышающие 185Х110Х70 мм. Размеры сетевого блока электропитания определяются в основном конструкцией примененного в ней понижающего трансформатора питания Т1 и не превышают следующих данных 120Х80Х70 мм. На лицевой панели БЭ установлены все основные органы управления и контактные клеммы, которые служат для подключения к ним монтажных проводников, идущих от датчиков. Эти клеммы имеют соответствующие обозначения.

К контактам 2 и 3 подключается скрытно устанавливаемый выключатель S1. Он должен быть недоступен посторонним лицам. Внешний источник питания, работающий автономно или от сети переменного тока, подключается к клеммам 4 и б (4 и 5). При этом на клемму 4 подается напряжение постоянного тока с положительного (плюсового) контакта, а на клемму б — с отрицательного (минусового). На выходных клеммах 1 и 2 действует напряжение питания со знаком «+» так же, как и на клеммах 4. К клеммам 5 и 10 подключается обрывной шлейф, выполненный из тонкого медного провода. К клеммам 13 и 14 — сирена или блок громкоговорителей. Шлейф-датчик подключается к клемме 10 (+) и к одному из минусовых выводов.

На лицевой панели БП устанавливаются ручки управления, держатели предохранителей, выходные клеммы и индикаторная лампа H1, а также светодиод VD2. Элементы БП собираются на печатной плате, изготавливаемой из фольгированного стеклотекстолита толщиной до 2 мм. Как видно из принципиальной схемы (рис. 3.11), БП включает в свой состав входные питающие цепи, сетевой понижающий трансформатор Т1, выпрямительное устройство, собранное на полупроводниковых диодах и электролитических конденсаторах, стабилизатор напряжения и выходные цепи.

Подключение БП к сети переменного тока осуществляется с помощью электрического соединителя X1 типа «вилка» к унифицированной розетке. Общее включение электропитания обеспечивается переключателем S1 типа «тумблер». Предохранители F1 и F2 защищают входные цепи БП от коротких замыканий и перегрузок.

На входе БП собран световой сигнализатор изменения сетевого напряжения на светодиоде VD2 и световой сигнализатор о подаче напряжения на сторожевое устройство на лампе H1 Первый сигнализатор работает только в том случае, если напряжение переменного тока превысит значение 235...240 В, в этом случае светодиод начинает светиться в мигающем режиме. Лампа накаливания H1 работает постоянно, пока замкнуты контакты переключателя S1. Ее равномерное свечение свидетельствует о том, что напряжение сети находится в пределах номинальных значений и на выходных обмотках трансформатора действует расчетное напряжение. Первый сигнализатор начнет работать в мигающем режиме только в том случае, если напряжение питающей сети превысит номинальное значение. Основой этого сигнализатора является динистор VS1, который срабатывает в следующем порядке. После замыкания контактов переключателя S1 сетевое напряжение поступает на однополупериодный выпрямитель, собранный на полупроводниковом диоде VD1, выпрямляется и подается через резистор R1 на ДН. С движка переменного резистора R2 часть напряжения поступает на электролитический конденсатор С1, который начинает заряжаться. До тех пор, пока напряжение на этом конденсаторе не достигнет напряжения пробоя динистора, последний находится в закрытом состоянии. В момент достижения повышенного значения напряжения динистор пробивается и конденсатор С1 разряжается через него и последовательно соединенные с ним резистор R4 и светодиод VD2, который вспыхивает. Затем конденсатор опять заряжается, после чего процесс повторяется снова. Так происходит постоянно до тех пор, пока напряжение в сети не снизится до предельных оптимальных значений. Работает этот сигнализатор в независимом режиме.

Блок питания подключается к БЭ электрическими соединителями Х2 и ХЗ. При этом соединитель Х2 подключается к клеммам 5 или 6, а ХЗ — к клемме 4 электронного блока. Здесь необходимо сделать предупреждение. БП, выполненный в металлическом корпусе, не должен иметь гальванической связи с системой предупредительной сигнализации, так как его корпус может иметь положительный потенциал.

В БП применен унифицированный сетевой трансформатор питания серии «Габарит», который рассчитан на подключение к сети переменного тока напряжением 127 или 220 В частотой 50 Гц. Вместо покупного трансформатора может быть применен самодельный трансформатор, который изготавливается на броневом магнитопроводе типа Ш или ШЛ (ШЛМ). Особое внимание следует обратить на сопротивление изоляции между витками обмоток трансформатора и магнитопроводом. Чем выше сопротивление, тем больше электрическая прочность и тем надежнее эксплуатация такого трансформатора. В домашней мастерской это достигается довольно простым способом. При рядовой намотке каждый слой провода покрывается нитролаком и высушивается в течение 2 ч. Между слоями обмотки прокладывается слой конденсаторной бумаги, который также покрывается изоляционным лаком. Каждая обмотка трансформатора, в том числе и экранная, должна быть также разделена слоем изоляционного материала, но с большим коэффициентом магнитной проницаемости. Очень хорошие результаты можно получить, если после полного изготовления весь трансформатор залить в форму эпоксидной смолой. Перед этой операцией выводные клеммы должны быть облужены припоем марки ПОС-60.

Сетевой понижающий трансформатор TI обеспечивает заданное выходное напряжение, поступающее на выпрямитель, полную гальваническую развязку входных цепей и сети переменного тока от вторичных электрических цепей схемы и достаточную электробезопасность при настройке и ремонте устройства предупредительной сигнализации.

Трансформатор Т1 имеет одну катушку, установленную на центральном стержне магнитопровода с активной площадью поперечного сечения стали не менее 6 см2. Моточные данные сетевого понижающего трансформатора питания самодельной конструкции приведены в табл. 3.12. На выходных обмотках трансформатора действует переменное напряжение 12 В при номинальной нагрузке.

Таблица 3.12. Моточные данные сетевого понижающего трансформатора питания T1, примененного в системе предупредительной сигнализации

3-62.jpg

Выпрямитель собран на четырех полупроводниковых диодах VD3—VD6 по однофазной двухполупериодной мостовой схеме, которая характеризуется высокими электрическими параметрами. На выходе выпрямителя действует постоянный ток с повышенной частотой пульсации. Выпрямитель имеет высокий кпд, удобен для электрического монтажа, не требует предохранительных прокладок при установке, защищает включенные в него полупроводниковые диоды от механических повреждений, на них действует пониженное обратное напряжение, и сама схема позволяет полнее использовать имеющуюся габаритную мощность сетевого трансформатора.

Выпрямленное напряжение постоянного тока 12...15 В поступает на компенсационный стабилизатор напряжения, собранный на транзисторах VT1—VT3. В качестве РЭ применен мощный транзистор VT1. Ток ограничения определяется величиной сопротивления резистора R8. При сборке и монтаже стабилизатора необходимо выполнить условие, при котором суммарное напряжение стабилизации в цепях полупроводниковых стабилитронов было бы равно примерно 11...12 В. Здесь необходимо учитывать также, что при увеличении тока нагрузки напряжение на входе стабилизатора уменьшается: и тем больше, если меньше габаритная мощность трансформатора.

При изготовлении БП и установке системы сигнализации на конкретном объекте используются следующие покупные комплектующие ЭРИ и ЭРЭ: транзисторы VT1 типа КТ803А, V'Т2 — КТ815В, VТ3-КT814B; выпрямительные диоды VD1 типа Д226Б, VD3-VD6—105А; стабилитроны VD7 типа Д815Д, VD8 — Д815Д, VD9 - Д814Д, VD10 — Д814Д, VD11 Д815Д; динистор VS1 типа КН102Д; конденсаторы С1 типа К73-11-1608-0,033 мкФ, С2 — К50-6-25В-4000 мкФ, СЗ — К.10-7В-25В-П33-100 нФ, С4 — К50-6-25В-6.8 мкФ; резисторы RI типа ВСа-0,5-47 кОм, R2 — СП4-2Ма-0,5Вт-100 кОм, R3 — ВСа-0,5-10 кОм, R4 — ВСа-0,25-10 Ом, R5 — ВСа-0,25-110 Ом, R6 — ВСа-0,5-680 Ом, R7 — ВСа-0,5 330 Ом, R8 — ВСа-0,5-2,7 кОм, R9 — ВСа-0,25-2,7 кОм, R 10 — СП4-2Ма-1Вт-1 кОм;

электрические соединители X1 типа <<вилка», Х2, ХЗ — КМЗ-1;

светодиод VD2 типа АЛ107Б; предохранители плавкие F1, F2 типа ПМ 1-0,5 A, F3 — ПМ 1-0,25 А; переключатель двухполюсный S1 типа П2Т-1-1; сигнальная лампа H1 типа МН- 6.3-0,22 A.

Система предупредительной сигнализации дает возможность подключить к ней дополнительно индикаторную лампу, работающую постоянно в мигающем режиме, аккумулятор автомобильного типа и звуковую сирену типа С205-6. Схема подключения этих устройств приведена на рис. 3.12. При монтаже дополнительных устройств применены следующие комплектующие ЭРЭ: транзисторы VT1 типа КТ315Б, VT2 — КТ819А; электромагнитное реле К7 типа РЭН-34 (паспорт ХП4.500.030-01); сирена ВА1 типа С205-6; аккумуляторная батарея GB1 с напряжением постоянного тока 12 В.

В качестве датчиков, устанавливаемых на дверях, окнах, капотах, воротах и т. д., применяются малогабаритные переключатели типа КМ1-1, выключатели типа МТ-1, переключатели типа П2К. Для монтажа используется провод марки МГШВ с площадью поперечного сечения по меди от 0,2 до 0,4 мм2.

Схемы подключения датчиков и дополнительных устройств приведены на рис. 3.10 и 3.12. Необходимо отметить, что к контактам 1 и 5 или 1 и 6 подключается датчик, устанавливаемый на входных дверях, так как система обеспечивает при этом задержку на выдачу звукового сигнала на 10 с. Этого времени хватает на то, чтобы отключить систему от питания при входе в помещение или охраняемый объект выключателем S1, скрытно установленным в укромном месте, что позволяет избежать подачи сигнала тревоги. К контактам 7 или 9, 5 или 6

3-63.jpg

Рис. 3.12. Схема подключения звуковой сирены к электронному блоку системы предупредительной сигнализации.

подключаются датчики, устанавливаемые на окнах, форточках, внутренних дверях и других открывающихся объектах, когда необходимо подать сигнал тревоги немедленно.

К контактам 10 и 5 или 10 и 6 подключаются проводники шлейфа, уложенного по периметру охраняемого помещения или территории. Проводники шлейфа могут быть наклеены на стекла окон. Шлейф выполняется из тонкого провода, металлической фольги или комбинированного токопроводящего материала. Обрыв проводников шлейфа приводит к мгновенному срабатыванию системы. При указанном включении шлейфа бывают случаи ложного срабатывания. Для предотвращения ложных срабатываний тогда, когда не применяется в качестве датчика шлейф, необходимо установить перемычки, замыкающие все три выходных контакта 5, 6 и 10 между собой.

К контактам 13 и 14 подключается акустическое устройство, входящее в комплект поставки системы. Как правило, на охраняемом объекте устанавливается один датчик на входной двери Д3 (см. рис. 3.10) и могут быть установлены параллельно друг другу датчики Д1, Д2 в количестве до 24 шт. При подключении датчика-шлейфа Д4 между контактами 6 и 10 не должно быть металлической перемычки. Установка датчиков в автомобиле и подключение системы предупредительной сигнализации типа «Сирена» к аккумулятору изложены в руководстве по эксплуатации.

Правильно собранная охранная сигнальная система в дополнительной наладке и регулировке не нуждается. Однако при сборке и монтаже элементов БП необходимо:

проверить выходное напряжение на вторичных обмотках сетевого трансформатора, поступающее на выпрямитель в режиме холостого хода; оно должно быть равно 12...13 В;

проверить вольтметром выпрямленное напряжение постоянного тока в контрольных точках А и Б как в режиме ожидания, так и под нагрузкой при подаче звукового и светового сигналов;

проверить выходное стабилизированное напряжение постоянного тока на электрических соединителях Х2 и ХЗ (см. рис. 3.9), которое должно быть равно 12 В под нагрузкой и до 14 В в режиме холостого хода.

В блоках системы можно применить другие комплектующие ЭРЭ, аналогичные по своим техническим характеристикам использованным. Так конденсаторы типа К50-3 можно заменить на конденсаторы типов К50-6, К50-12, К50-16, К50-20; резисторы типа ВСа — на ВС, МТ, МЛТ, ОМЛТ, С1-4; транзисторы типа КТ803А — на КТ819Б—КТ819Г; диод Д226Д — на КД102Б, Д237А, диоды типа Д105А — на Д226, Д237Б, КД105Б; могут быть применены также переключатели типа П2К.

Основные электрические параметры

и технические характеристики

системы предупредительной сигнализации типа «Сирена»

Номинальное напряжение питающей сети

переменного тока, В ..................... 220

Номинальное напряжение автономного источника

питания, В ......................... 12

Номинальная частота питающей сети

переменного тока, Гц ................... 50

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более ............. 12

Пределы изменения напряжения питающей сети

переменного тока, при которых сохраняется

устойчивая работа системы, В ............. 187...242

Пределы изменения напряжения автономного

источника питания, В ................... 9...14

Пределы изменения частоты питающей сети

переменного тока, Гц ................... 49...51

Максимальный ток нагрузки при питании от

автономного источника постоянного тока, мА . . . 500

Амплитуда пульсации выпрямленного напряжения, В,

не более ............................ 0,3

Коэффициент стабилизации напряжения постоянного

тока автономного источника электропитания,

не менее ............................ 300

Ток, потребляемый системой предупредительной

сигнализации в режиме холостого хода, мА,

не более ............................ 5

Уровень звукового давления сигнала тревоги

на расстоянии 1 м от источника. дБ . ....... 100

Koличество устанавливаемых на охраняемых на объекте

датчиков,шт ............... ....... 24

Длина шлейфа ,не менее ................. 100

Cопротивление шлейфа, кОм, не более ......... 5

Время срабатывания устройства при обрыве

шлейфа, мс, не более .................... 0,1

Время срабатывания устройства при размыкании

контактов датчиков, с, не менее ............. 2

Длительность звучания сигнала тревоги

после срабатывания системы, с, не менее ...... 500

Диаметр центральной жилы монтажного провода

в изоляции, соединяющего датчики с БЭ

устройства, мм, не менее ................. 0,2

Срок службы, ч, не менее .................. 5000

Срок гарантии, мес ...................... 24

Вероятность безотказной работы системы при риске

заказчика в=0,92, не менее ................ 0,95

Сопротивление изоляции токопроводящих частей

системы, МОм, не менее ................. 5

Условия эксплуатации:

температура окружающей среды, °С ........ —40...+45

относительная влажность воздуха при температуре 25 °С, %, не более ....... 85±3

атмосферное давление воздуха, мм рт. ст. ..... 200...900

t51.jpg

Рис. 3. 11. Принципиальная схема блока питания сторожевого устройства.

Рис. 3.10. Схема размещения датчиков в контрольных точках охраняемых объектов.

Изображение: 

Рис. 3.11. Принципиальная схема блока питания сторожевого устройства.

Изображение: 

Рис. 3.12. Схема подключения звуковой сирены к электронному блоку системы предупредительной сигнализации

Изображение: 

Таблица 3.12. Моточные данные сетевого понижающего трансформатора питания T1, примененного в системе предупредительной сигнализа

Изображение: 

3. 7. Универсальное электронное сторожевое устройство системы «Сириус»

3. 7. УНИВЕРСАЛЬНОЕ ЭЛЕКТРОННОЕ СТОРОЖЕВОЕ УСТРОЙСТВО СИСТЕМЫ «СИРИУС»

Универсальное сторожевое устройство состоит из сигнального устройства, БП с защитой, шифратора, дешифратора и ИМ. Устройство разработано для охраны помещений от пожара и несанкционированного открывания дверей, но использовать его целесообразно вместе с другими сторожевыми устройствами, которые имеют в своем составе звуковую и световую сигнализацию.

Электронное сторожевое устройство, собранное на ППП и трех ИМС, предназначено для установки в жилых домах и в хозяйственных помещениях для запирания дверей и отключения электропитания при повышении температуры окружающей среды выше установленной величины. Сторожевое устройство выполняет функции охраны без какой-либо сигнализации, является электронным прибором, в котором невозможно прослушать ход и порядок набора шифра и который внешне не реагирует на правильно или неправильно набранные промежуточные цифры шифра, а срабатывает исключительно после всего правильно набранного шифра. Важной особенностью данного устройства является то, что при наборе неправильной цифры время его срабатывания на открывание дверей постоянно увеличивается и даже правильно набранный шифр не дает команду на ИМ.

Сторожевое устройство может быть с успехом использовано как в городе, так и в сельской местности. Оно рассчитано на эксплуатацию в различных климатических районах страны, в условиях М, УХЛ и ХЛ. Устойчивую работу при температуре окружающей среды от —20 до 40 °С и относительной влажности до 90% при температуре 22 °С можно гарантировать, если для сборки и монтажа применены заведомо качественные комплектующие ЭРИ и ЭРЭ и правильно выполнены основные технологические операции сборки и монтажа.

Устройство может найти применение для охраны стационарных объектов на садово-огородных и приусадебных участках: домов, гаражей, хозблоков и т. д. Работает устройство от сети переменного тока напряжением 220 В частотой 50 Гц в постоянном режиме включения, о чем свидетельствует свечение неоновой лампы H1. Индикаторный светодиод вспыхивает только при правильно набранной девятой цифре шифра, набор которого осуществляется двумя рядом расположенными кнопочными переключателями, не имеющими фиксированного положения при замыкании контактов.

Принципиальная электрическая схема универсального сторожевого устройства приведена на рис. 3. 13. В полной зависимости от примененного в устройстве ИМ и напряжения его питания, которое определяет конструктивное исполнение, находится инженерное решение и техническое исполнение механической части замка, поэтому в схему могут быть внесены непринципиальные изменения. Так, если ИМ работает от источника постоянного тока, то из схемы исключаются входные и защитные цепи, и устройство может быть выполнено более компактным, но с несколько меньшими функциональными возможностями. Применение ИМ, работающего от сети переменного тока напряжением 220 В, делает сторожевое устройство более универсальным, в котором можно применять большое количество промышленных изделий: электромагнитов, соленоидов, электромагнитных реле и т. д.

Электронное сторожевое устройство отличается oт других устройств подобного назначения также тем, что оно работает непосредственно от сети переменного тока и не имеет в своем составе понижающего сетевого трансформатора питания, и, следовательно, схема сторожевого устройства не имеет трансформаторной гальванической развязки во входных цепях. Однако для гальванической развязки первичных цепей и электрической цепи защиты от схемы счетно-решающего устройства применен оптрон DU1, который одновременно служит устройством, повышающим электробезопасность всего РЭУ.

Как следует из схемы, сторожевое устройство включает в свой состав входные цепи питания, противопожарное охранное устройство, выпрямитель постоянного тока, емкостный фильтр, ПСН, счетно-решающее устройство, ИМ и выходные цепи.

Подключение электронного сторожевого устройства к сети переменного тока происходит с помощью стандартных электрического соединителя X1 типа «вилка» и штепсельной розетки. Предохранители F1 и F2 защищают входные цепи от коротких замыканий и перегрузок, они рассчитаны на ток максимальной перегрузки 1 А. Включение устройства в эксплуатацию осуществляется с помощью кнопочного или перекидного однополюсного переключателя S1.

Одним из основных блоков электронного устройства является устройство защиты от повышения температуры как окружающей среды в охраняемом помещении, так и от перегрева элементов электронной схемы, находящихся постоянно под напряжением высокого переменного тока. От этого зависит выбор места установки термодатчика. В данном случае при повышении температуры окружающей среды и температуры, действующей на термодатчик, предусмотрено отключение сторожевого устройства от сети переменного тока.

Устройство защиты применяется в многообразных вариантах во многих конструктивных исполнениях, в силу своей простоты не имеет принципиальной новизны, но достаточно эффективно работает с разными типами датчиков и в различных условиях эксплуатации.

В качестве главного элемента устройства защиты от пожара в данном случае использован маломощный транзистор VТ1, который является очень чувствительным датчиком температуры. Работает термодатчик по принципу увеличения обратного тока эмиттера при повышении температуры окружающей среды. Датчиками температуры могут служить полупроводниковые диоды и термосопротивления.

В рассматриваемом сторожевом устройстве в качестве термодатчика выбран транзистор типа П416, устойчивая работа которого обеспечивается при температуре от —25 до 125 °С. Транзистор устанавливается снаружи корпуса сторожевого устройства выводами внутрь корпуса и на дюралюминиевой пластине, которая имеет размеры не менее 45х45 мм и толщину до 3 мм. Однако может быть применена и другая конструкция установки и крепления этого транзистора, но во всех случаях термодатчик должен устанавливаться в наиболее пожароопасном месте, а корпус транзистора должен быть всегда открыт.

Изменение тока транзистора VT1 контролируется электронной схемой защиты, в которой предусмотрен разрыв цепи питания сторожевого устройства от сети переменного тока при достижении установленного порогового значения тока транзисторного датчика.

Напряжение переменного тока после замыкания контактов переключателя S1 поступает через цепочку гасящего конденсатора С1 на выпрямитель, собранный на полупроводниковых диодах VD1 и VD2 и далее на сдвоенный стабилизатор напряжения параметрического типа, выполненный на стабилитронах VD4 и VD3, резисторе R1 и конденсаторе С2. Выбранный метод электропитания защитного устройства обеспечивает его устойчивую и надежную работу при минимальном количестве использованных элементов. Подстроечный резистор R3 служит для установления температурного режима срабатывания защиты, который может изменяться в очень широких пределах.

Работает система охраны следующим образом. В тот момент, когда температура окружающей среды и термодатчика достигнет установленного максимума, ток транзистора будет равен пороговому значению. Этот ток при ведет к открыванию транзистора VT2, находящегося в инверсном включении, и через диод VD5 он откроет тиристор VS1. А это в свою очередь приведет к тому, что

обе линии питающей сети переменного тока будут замкнуты между собой через цепочку: предохранитель F2, гасящий десятиваттный резистор R6 сопротивлением 100м и открытый тиристор VS1. Естественно, в этом случае предохранитель F2 мгновенно перегорает и отключает всю систему от сети переменного тока. Заметим, что термодатчик включен в цепь базы управляющего транзистора VT2, а в переход база — эмиттер включен резистор R4, позволяющий регулировать интервал температуры срабатывания устройства. При включении электропитания и подачи напряжения на элементы схемы загорается индикаторная неоновая лампа H1.

Независимо от работы защитного устройства после включения электропитания начинает действовать счетно-решающий блок. Он выполняет одну из функций сторожевого устройства и собран на транзисторах, оптроне, трех ИМС и других ППП. Сначала переменный ток питающей сети поступает на выпрямитель, собранный на четырех диодах по однофазной двухполупериодной мостовой схеме VD6—VD9, а затем сглаживается параметрическим стабилизатором, выполненным на стабилитроне VD10, последовательно с которым включены резисторы R7 и R8. Емкостный фильтр, сглаживающий пульсации постоянного тока, собран на электролитическом конденсаторе СЗ. На выходе стабилизатора действует постоянное стабилизированное напряжение 9 В.

Принцип действия счетно-решающего устройства состоит в следующем. Сначала, в подготовительный период, устанавливается произвольный шифр, состоящий из 9 знаков, расположенных последовательно в произвольном порядке и введенных в память счетно-решающего устройства. На заключительном этапе на дешифраторе, состоящем из двух переключателей S2 и S3, последовательно набираются эти 9 знаков, расположенных в том же порядке. Если весь набор произведен правильно, то после набора последнего знака дается команда на срабатывание ИМ, работающего на постоянном токе. После последнего правильно набранного знака срабатывает тиристор VS1, управляемый оптроном DU1.

В составе счетно-решающего устройства можно выделить в качестве основных самостоятельных функциональных узлов такие, как счетчик-дешифратор, собранный на ИМС DA1; триггеры на ИМС DA2 (выводы 1, 3,4, 5 и 6), ИМС DA3 (выводы 3, 4, 5, 6), ИМС DA3 (выводы 1,2, 8, 9); инвертор; ключевой транзистор VT3; узел задержки времени срабатывания при наборе неправильного знака шифра; узел кодирования и расшифровки кода на двух переключателях S2 и S3 с переключающими группами контактов, не фиксируемые в нажатом положении. девятиразрядный узел кодирования комбинаций цифр. В качестве пояснения к описанию работы системы элементы принципиальной схемы имеют следующие дополнительные обозначения: часть микросхемы DA1 с выводами 3, 4, 5 и б является триггером DAI.1; микросхема DA3 выполняет функцию счетчика-дешифратора; часть микросхемы DA2 с выводами 1, 3—6 является вторым триггером; VT1 — ключевой транзистор; электрическая цепь, состоящая из С1, R5, R6, VD1 и части микросхемы DA1

(DA1.3), является узлом задержки времени.

Набор первоначального шифра сторожевого устройства производится на шифровальной плате, имеющей два ряда контактов, расположенных параллельно друг другу. Один ряд контактов соединен с соответствующими выходами счетчика-дешифратора, а второй ряд — друг с другом и с дешифратором.

Конструктивно этот узел устройства целесообразно разместить на лицевой плате, а в качестве контактов использовать малогабаритные приборные зажимы, рассчитанные на одно соединение, например типа КМЗ-1. Это дает возможность устанавливать любой код в любое время без перепайки контактных групп. На принципиальной схеме (рис. 3.13) контакты платы кодирования условно обозначены цифрами от 1 до 9 и имеют вид А1.1, А1.2...А1.9 и Б1, Б2...Б9. Для получения нужного кода необходимо установить перемычки между параллельно расположенными контактами отрезками монтажного провода в изоляции, имеющей высокое омическое сопротивление. Можно соединять между собой только контакты А1.1 с B1.1; A1.2 с B1.2; A1.3 с B1.3; A1.4 с B1.4; А1.5 c В1.5; В1.6 с А1.6; А1.7 с В1.7; А1.8 с B1.8; A1.9 с В1.9. При этом замкнутые между собой перемычки можно обозначить любой одной цифрой или буквой или математическим знаком.

Если замкнуты все имеющиеся 18 контактов параллельно между собой, то будет составлен, например, код, состоящий из одних и тех же цифр, букв или знаков (1, 1, 1, 1, 1, 1, 1, 1, 1 или А, А, А, А, А, А, А, А, А или +, +, +, +, +, +, +, +, +) Для упрощения схемы

шифрования рекомендуется принять за обозначения незамкнутых контактов цифру 1, а замкнутых — цифру 2. Тогда показанный на принципиальной схеме шифр будет иметь следующий вид: 1, 2, 2, 1, 2, 1, 2, 2, 2.

Для того чтобы набрать этот номер для открывания замка, в устройстве имеются две кнопки S2 и S3. Кнопка S2 при замыкании ее контактов дает команду, соответствующую замкнутым контактам шифровального поля, а конца S3 при замыкании ее контактов — незамкнутым. В этом случае целесообразно на лицевой плате у кнопки

S2 выгравировать цифру 2, а у кнопки переключателя S3 — цифру 1.

Для набора установленного шифра необходимо последовательно нажать кнопки S2 и S3 в следующем порядке:

S3, S2, S2, S3, S2, S3, S2, S2, S2. В этом случае дешифрованное девятое состояние счетчика послужит сигналом включения ИМ. Необходимо запомнить, что наличие перемычки соответствует цифре 2, а ее отсутствие — цифре 1.

При длительной эксплуатации охранного устройства могут возникнуть случаи сбоя при наборе знака, например двойное нажатие от дребезга. Чтобы этого избежать, в схему включен узел защиты, собранный на двух триггерах ИМС ДАЗ (выводы 3—6 и 1, 2, 8, 9), который срабатывает от первого замыкания любых контактов переключателей S2 и S3 и абсолютно не реагирует на остальные замыкания от дребезга.

Основным узлом устройства остается счетчик-дешифратор, собранный на ИМС DA1 и ведущий счет импульсов вводимого шифра от переключателей S2, S3. Сдвоенный триггер, выполненный на ИМС DA2, обеспечивает защиту счетчика от неправильного набора даже одного знака шифра. Если при наборе произошел сбой и была нажата не та кнопка S2 или S3, то сдвоенный триггер не позволяет дальнейший счет. Кроме этого, в сторожевом устройстве собран узел второй самозащиты при неправильном наборе знака шифра, он обеспечивает задержку времени, по истечении которой можно выполнить повторную попытку набора шифра. Время задержки определяется типом диода VD3, значениями сопротивлений резисторов R19 и R20, значением емкости конденсатора С5 и инвертором ИМС DA3. Величину задержки времени можно регулировать в широких пределах — от 2 до 20 с. Это устройство практически запрещает набирать следующий знак до истечения времени задержки. Если набор в это время все же будет выполнен, и даже правильно, результат будет отрицательным, счетчик импульсов не пропустит и ИМ ¦не сработает.

Импульс (сигнал), посланный любой кнопкой S2 или S3, переключает узел дребезга на передачу сигнала на вход датчика счетчика-дешифратора DA1. Если набор знака осуществлен правильно, то на прямом выходе триггера ИМС DA2 (вывод 1) действует низкий уровень логического нуля, разрешающий работу счетчика ИМС DA1 до полного набора шифра.

Если один из набираемых знаков шифра не совпал с установленным на шифровальной плате в .любом разряде счетчика, то на выходе триггера ИМС DA2 (выводы 1, 3—6) появляется высокий уровень логической единицы, который запрещает по существу дальнейший счет. Эта защита будет работать до тех пор, пока устройство не вернется в исходное состояние. Однако, если в это время продолжать нажимать на кнопки S2 или S3, то каждое нажатие будет увеличивать время задержки работы счетчика на величину, которая определяется времязадающей цепочкой R20, С5. После прекращения замыкания контактов переключателей S2 или S3 и по прошествии полученной задержки времени на выходе инвертора ИМС DA3 (выводы 10—13} появляется высокий уровень логической единицы, переключающий триггер ИМС DA2 (выводы 1, 3—6) и счетчик ИМС DA1 в состояние логического нуля, то есть в начальное положение.

Двойная самозащита сторожевого устройства (большое количество возможных сочетаний кодовых знаков в девятиразрядном шифре, невозможность включения ИМ при неправильном наборе и задержка времени срабатывания сторожевого устройства) при попытках подобрать шифр простым перебором знаков обеспечивает ему высокую надежность в работе и отвечает требованиям техники безопасности и охраны имущества.

Если все знаки установленного шифра набраны правильно, то на последнем выходе счетчика ИМС DA1 (вывод 11) появляется высокий уровень логической единицы, который открывает транзистор VT3, что приводит к включению оптрона DU1, а вслед за ним тиристора VS2, включающего электропитание ИМ. В качестве исполнительного устройства в данном случае рекомендуется использовать электромагнит переменного тока промышленного или самодельного изготовления.

Следует заметить, что после правильного набора всех знаков шифра дверь можно открывать только после характерного щелчка механического замка. По истечении времени задержки, определенного электрической цепочкой R.20, C5, сторожевое устройство возвратится в исходное состояние.

При изготовлении электронного сторожевого устройства использованы следующие комплектующие ЭРИ и ЭРЭ: транзисторы VT1 типа П416, VT2 — КТ315Б, VT3 — КТ315Г; оптрон DU1 типа АОУ103Б; выпрямительные диоды VD1 типа Д226Б, VD2 — Д226Б, VD5 — Д226Б, VD6 -VD9 типа КД202Р, VD11 — КД105Б, VD13 -VD21 - КД552A,VD22 — КД522А;

стабилитроны VD3 типа Д814Д, VD4 - Д814А, VD10 — Д814В;

конденсаторы С1 типа К73-17-630В-1 мкФ (два параллельно включенных конденсатора по 0,47 мкФ), С2 — К50-6-25В-100 мкФ, СЗ — К50-6-16В-100 мкФ, С4 — К42У-2-160В-0.1 мкФ, C5 — К50-6-25В-1.5 мкФ; резисторы R1 типа МЛТ-0,25-100 Ом, R2 — МЛТ-0,25-27 кОм, R3 — СПЗ-4Ма-0,25Вт-47 кОм, R4 — МЛТ-0,25-62 кОм, R5 — МЛТ-2-330 кОм, R6 — С5-35В-10Вт-10 Ом (ПЭВ-10Вт), R7 — МЛТ-2-20 кОм, R8 — МЛТ-2-20 кОм, R9 — МЛТ-0,5-2,4 кОм, R10 — МЛТ-0,25-2,2 кОм, R11 — МЛТ-0,25-470 Ом, R12 — МЛТ-0,125-470 Ом, R13 — МЛТ-0,125-100 кОм, R14 — МЛТ-0,25-10 кОм, R15 — МЛТ-0,25-27 кОм, R16 — МЛТ-0,25-1 кОм, R17 — МЛТ-0,25-27 кОм, R18—МЛТ-0,5-82 кОм, R19 — МЛТ-0,125-27 кОм, R20 — МЛТ-0,125-4,7 кОм; электрические соединители X1 типа «вилка», А1.1—А1.9 и В1—В9 типа КМЗ-1 (разъемные зажимные контакты на одно соединение любого типа); предохранители F1, F2 типа ПМ1-0,25А, F3, F4 — ПМ1-0.15 А плавкие; ИМС DA1 типа К176ИЕ8, DA2 — К176ТМ2, D3 — К176ЛА7; тиристоры VS1 типа КУ202К, VS2— КУ202Н; индикаторная лампа H1 типа ТН-02-2; светодиод VD12 типа АЛ307А; электрические соединители X1 типа «вилка», А1, В1 — КМЗ-1 приборные однополюсные; переключатели S1 типа П2К или П1Т-1-1, S2, S3 — КМ1-1.

При изготовлении сторожевого устройства можно применить другие ЭРИ и ЭРЭ, предварительно проверенные на соответствие требованиям ТУ и КД. Резисторы типа МЛТ можно заменить на резисторы типов ОМЛТ, МТ, С1-4, УЛИ, БЛП, С2-8, ВСа; конденсаторы типа К73-17 — на К10У-5, К73-15, К78-2, конденсаторы типа К50-6 — на К50-3, К50-12, К50-16, К50-20, можно применить конденсаторы типов К53-4А, К42У-2, МБМ, МБГ; электромагнит постоянного тока Y1 типа ЭМ2-220-1 можно заменить на самодельный электромагнит, переделанный с промышленного типа МИС1100Е; транзистор типа П416 — на ГТ308Б, транзистор типа КТ315Б — на КТ312А, КТ312Б;

выпрямительные диоды типа Д226Б — на любые кремниеные диоды с допустимым обратным напряжением, не менее 100...500 В и прямым током не менее 200 мА; ИМС типа К176ИЕ8 можно заменить двумя ИМС типов К176ИЕ2 и К176ИД1.

Сторожевое устройство собрано в прямоугольном пластмассовом корпусе. Все элементы устройства размещены на печатной плате, изготовленной из одностороннего фольгированного стеклотекстолита толщиной не менее 1,5 мм. Проводники печатной платы могут быть выполнены либо традиционным методом травления, либо их вырезают специальным резаком. Габаритные размеры корпуса устройства не превышают 120Х95Х45 мм. На боковых поверхностях и крышке корпуса размещаются элементы управления, кнопки дешифратора, индикаторные лампы и шифровальное поле в виде двух планок с КМЗ-1.

На крышке и днище корпуса необходимо предусмотреть вентиляционные отверстия, которые располагаются над тепловыделяющими элементами. После изготовления корпус сторожевого устройства необходимо покрыть нитрокраской, цвет которой должен соответствовать интерьеру помещения, так как устройство устанавливается, как правило, рядом с входной дверью.

Монтаж, сборка и особенно подключение и регулировка сторожевого устройства должны осуществляться при обязательном соблюдении правил электробезопасности, так как большинство электрических цепей устройства находятся под высоким напряжением переменного тока питающей сети 220 В, которое опасно для жизни. Это обстоятельство необходимо учитывать при установке сторожевого устройства на место и при ремонте. В схеме отсутствует сетевой понижающий трансформатор питания, а гальваническая развязка осуществляется только оптроном DU1 по низковольтным цепям.

В дополнение к сказанному об установке термодатчика следует заметить, что выбор места его крепления зависит не только от формы охраняемого объекта, но и от конструкции приспособления, к которому крепится транзистор VT1. Можно установить термодатчик в герметичной полиэтиленовой упаковке, что позволит произвести регулировку порога срабатывания охранного устройства, погружая его в горячую воду определенной температуры.

Важным конструктивным элементом системы является ИМ и в данном частном случае стопорное устройство механического замка. Эта система должна позволять хозяину дома открывать охраняемое помещение в случае, когда стопор освобождает механизм замка под воздействием счетно-решающего устройства, в случае, когда есть и когда нет электропитания от сети переменного тока. Такие конструкции не являются новинкой, широко известны и применяются в разных вариантах в изделиях домашних мастеров.

При монтаже комплектующих элементов, и особенно ИМС, ППП, транзисторов, необходимо строго соблюдать правила сборки, технологические приемы и операции, которые обеспечат надежные контактные соединения с минимальными переходными сопротивлениями и качественную эксплуатацию электронного сторожевого устройства. Пайку всех элементов следует осуществлять припоем марки ПОС-40 или ПОС-60 только низковольтным паяльником мощностью не более 25 В при ограниченном времени нагрева контактов, которое не должно превышать 2 с. И обязательно при пайке каждого вывода ППП или ИМС в качестве теплоотвода надо использовать металлический пинцет.

Весь наружный монтаж электрических соединителей производите кабелем, а не монтажным проводом. Кабель должен иметь двойную изоляцию, а ее сопротивление постоянному току должно быть не менее 200 МОм. Печатную плату и мощные транзисторы рекомендуется установить на дюралюминиевом шасси.

Можно в качестве шифра в сторожевом устройстве принять обычно используемый во всех кодовых замках цифровой код от 1 до 9. Тогда несколько усложняется процесс расшифровки, так как изменить номера переключателей S2 и S3 на новые не представляется возможным из-за того, что они не отвечают на вопрос «да — нет».

Регулировка и настройка сторожевого устройства не требует сложных ИП. В данном случае достаточно иметь простой авометр с автономным питанием. Налаживание устройства состоит в подборе сопротивления резисторов и измерении действующих напряжений в контрольных точках и на выходе выпрямительного устройства. Необходимо следить за правильностью установки постоянного напряжения 9 В.

Защитное устройство требует подбора сопротивления резистора R4, и, как было указано ранее, необходимо задать температурные пределы срабатывания защиты. Устройство должно срабатывать при среднем положении движка резистора R3, так как при заданной температуре должен перегорать предохранитель F2.

Порядок данной регулировки следующий.

1. Сначала термодатчик (транзистор VT1) герметически запаивают в полиэтиленовую пленку так, чтобы можно было погружать его в горячую воду, имеющую определенную температуру.

2. Затем обычным термометром измеряют температуру окружающего воздуха в охраняемом помещении.

3. Плавкий предохранитель F2 заменяют лампой накаливания мощностью 150 Вт, рассчитанной на подключение к промышленной сети.

4. Термодатчик помещают в горячую воду с температурой на 5... 15 °С выше той, при которой должна сработать защита, например с температурой 85 °С.

5. Резисторами R3 и R4 через 10 мин после нагревания термодатчика устанавливают порог срабатывания защитного устройства, который определяется моментом загорания лампы накаливания 150 Вт.

6. После этого лампа отключается и вместо нее вновь ставится предохранитель F2.

На следующем этапе регулировки подбираются сопротивления резисторов, включенных в цепь дешифратора R16—R18 (27, 27 и 82 кОм). Сопротивления этих резисторов можно менять в широких пределах.. Если кнопки управления дешифратором S2 и S3 расположены на значительном расстоянии от электронного блока, то рекомендуется монтажные соединения выполнять экранированным проводом.

Основные электрические параметры и технические характеристики универсального электронного сторожевого устройства системы «Сириус»

Номинальное напряжение питающей сети

переменного тока, В..................... 220

Номинальная частота питающей сети

переменного тока, Гц.................... 50

Пределы изменения напряжения питающей сети,

при которых сохраняется работоспособность

устройства, В......................... 180... 235

Пределы изменения частоты питающей сети

переменного тока, Гц................... 49, 5... 50, 5

Коэффициент нелинейных искажений питающей сети

переменного тока, %, не более............. 12

Номинальное напряжение питания автономного

источника постоянного тока, В............. 9

Пределы изменения напряжения постоянного тока

автономного источника, В................ 8... 12

Коэффициент стабилизации выпрямленного

напряжения постоянного тока, не менее...... 80

Амплитуда пульсации выпрямленного напряжения

постоянного тока, мВ, не более............ 8

Пределы изменения температуры окружающей среды,

при которых срабатывает

защитное устройство, °С................. 50... 125

Количество охраняемых объектов при использовании

шифр-замка, шт...................... 1

Количество объектов, охраняемых температурными

датчиками, шт....................... 1... 15

Количество элементов типа 373, входящих

в автономный источник электропитания, шт.... 6

Вероятность подбора шифра сторожевого устройства

при незнании кода, не более.............. 0, 1^-4

Количество возможных комбинаций

при установлении шифра, шт .............. Зх105

Количество разрядов кодовой комбинации, шт . . . . 9

Вероятность безотказной работы устройства

при риске заказчика в=0,95, не менее ....... 0,98

Срок службы, ч, не менее ................. 5000

Включение датчиков температуры ............ параллельное

Сопротивление шлейфа, кОм, не более ......... 5

Задержка времени срабатывания счетчика

после неправильного набора очередного

шифра, с ........................... 1...20

Ток, потребляемый устройством в режиме

холостого хода, мА, не более .............. 6

Мощность, потребляемая устройством при работе

счетчика и при срабатывании ИМ, Вт,

не более ........................... 50

Мощность электромагнита, Вт, не более ........ 30

Сопротивление изоляции токоведущих частей

устройства, МОм, не менее ............... 10

Помехозащищенность устройства при воздействии

внешнего электромагнитного поля, дБ,

не менее ........................... 100

Условия эксплуатации:

температура окружающей среды, °С ....... —20...+40

относительная влажность воздуха при температуре 22 °С, %, не более ................... 90±3

атмосферное давление воздуха, мм рт. ст. ..... 200...900

t61.jpg

Рис. 3.13. Принципиальная схема универсального электронного сторожевого устройства системы «Сириус».

 

Рис. 3.13. Принципиальная схема универсального электронного сторожевого устройства системы «Сириус».

Изображение: 

3. 8. Релейное сторожевое устройство с пятизначным шифром

3.8. РЕЛЕЙНОЕ СТОРОЖЕВОЕ УСТРОЙСТВО С ПЯТИЗНАЧНЫМ ШИФРОМ

Электромеханическое сторожевое устройство относится к числу наиболее простых релейных полуавтоматов, изготовление которых в условиях радиолюбительской лаборатории не представляет больших затруднений. При этом домашний мастер при изготовлении данного устройства может много экспериментировать, совершенствовать не только электрическую схему, но и конструктивное исполнение, вносить в нее необходимые изменения и дополнения. Сама принципиальная электрическая схема является примером классического исполнения таких устройств, она дает возможность радиолюбителю проверить большинство технологических приемов сборки и монтажа и выполнить регулировку и настройку самыми простыми ИП и инструментами.

Такие релейные устройства устанавливаются на входных дверях городских домов и подъездов, выполняются в различных вариантах конструктивных и электротехнических решений. Настоящее сторожевое устройство характеризуется достаточно высокими эксплуатационными характеристиками, надежностью, долговечностью и простотой электрического монтажа. Разработано сторожевое устройство для работы в жестких условиях механических и климатических нагрузок в УХЛ, ХЛ, В как внутри охраняемых помещений, так и на открытых площадках. Устройство устойчиво работает при температуре окружающей среды от —30 до 45 °С, при повышенной относительной влажности воздуха до 92% при температуре 25 °С и при пониженном атмосферном давлении до 5 мм рт. ст.

Работает сторожевое устройство от сети переменного тока напряжением 220 В частотой 50 Гц или от автономного источника питания постоянного тока напряжением 24 В, который подключается к разъемным зажимным контактам А и Б.

Принципиальная электрическая схема релейного сторожевого устройства приведена на рис. 3. 14. Она включает в свой состав входные цепи с сигнальными устройствами, сетевой понижающий трансформатор питания Т1, выпрямительное устройство, работающее на емкостный фильтр, и собственно релейный автомат.

Подключается устройство к сети питания с помощью электрического соединителя X1 типа «вилка» и

3-81.jpg

Рис. 3. 14. Принципиальная схема релейного сторожевого устройства с пятизначным шифром.

стандартной штепсельной розетки. Плавкие предохранители F1 и F2, установленные на входе электрической цепи, предназначены для защиты устройства от коротких замыканий и перегрузок, которые очень часто возникают из-за неправильного монтажа, ошибок, допускаемых начинающими радиолюбителями, а также из-за неисправных комплектующих ЭРЭ. Включение и выключение электропитания устройства производится однополюсным переключателем S1, который должен быть установлен на лицевой панели корпуса сторожевого устройства, и, как правило, рядом с индикаторной лампой тлеющего разряда H1. Здесь же, на лицевой панели корпуса устройства, устанавливаются держатели предохранителей F1 и F2.

К контактным соединителям Х2 и ХЗ подключается электрический звонок BA1, работающий от сети переменного тока напряжением 220 В и включаемый в действие контактами К5. 2 электромагнитного реле К5.

Сетевой понижающий трансформатор питания Т1 унифицированной конструкции позволяет обеспечить необходимую электробезопасность при эксплуатации, регулировке и ремонте сторожевого устройства, так как на выходе трансформатора действуют низкое переменное напряжение и небольшие токи нагрузки, не опасные для жизни человека. Сетевой трансформатор питания обесчивает также заданное выходное напряжение постоянного тока на выпрямителе и полную гальваническую развязку вторичных цепей релейного автомата и цепей управления от высокого напряжения питающей сети переменного тока.

Выпрямительное устройство собрано по однофазной двухполупериодной мостовой схеме на четырех выпрями тельных диодах малой мощности VD1,VD4 и оксидном конденсаторе С1, который выполняет роль емкостного фильтра, сглаживающего пульсации выпрямленного напряжения постоянного тока и обеспечивающего минимальную пульсацию. Выпрямитель мостового типа характеризуется пониженным значением обратного напряжения на выпрямительных диодах, высоким коэффициентом использования габаритной мощности сетевого трансформатора питания Т1, повышенным уровнем пульсации на выходе выпрямителя по сравнению с другими видами схем выпрямителей малой мощности. Одновременно выпрямитель на четырех диодах имеет некоторые недостатки, например, повышенные потери мощности, пониженный кпд, повышенную стоимость изготовления, невозможность установки диодов на радиаторе охлаждения без изоляционных прокладок, сложную технологию изготовления.

Релейный автомат имеет очень простую схему соединений, включения и работы комплектующих ЭРИ и ЭРЭ, но отличается высокой степенью надежности и долговечности при эксплуатации, а его сборка под силу начинающему радиолюбителю и юным техникам.

При изготовлении сторожевого устройства использованы следующие комплектующие ЭРИ и ЭРЭ: сетевой понижающим трансформатор питания Т1 типа ТН34-127/220-50; электромагнитные реле К1—К5 типа РЭС-9 (например, паспорт РС4.529.029-03); выпрямительные диоды VD1—VD4 типа Д237А; конденсатор С1 типа К50-6-50В-100 мкФ; резистор R1 типа МЛТ-2-470 кОм; индикаторная лампа H1 типа ТН-03; звонок электрический бытовой BA1 с напряжением питания 220 В любой конструкции и типа; предохранители плавкие F1, F2 типа ИМ 1-0, 5 А; переключатели S1 типа П1Т-1 1, S2 — П2К; электрические соединители X1 типа, «вилка» Х2—Х19 —"штырь". и «гнездо» приборные покупные или самодельной конструкции, S3—S11 — КМ1-1; A,Б ,В1 и В2— разъемные соединения самодельной конструкции.

Исполнительным механизмом сторожевого устройства является электромагнит промышленного изготовления или втяжной соленоид типа КМ1, которые устанавливаются непосредственно на входной двери и соединяются специальной тягой с защелкой механического замка. В устройстве может быть применен самодельный соленоид, работающий от сети переменною тока и включаеый параллельно звонку ВА1 вместе с последовательно соединенными контактами реле К4.2. Конструкция такою соленоида состоит из сердечника, катушки с обмоточным проводом, корпуса и деталей соединения соленоида с замком. Сердечник соленоида изготавливается из электротехнической стали или мягкого железа, имеет диаметр основного стержня 29 мм и длину до 100 мм. Если сердечник соленоида изготавливается не круглого, а прямоугольного сечения, то и катушка соленоида должна иметь прямоугольное отверстие с размерами 20Х20 мм. На конце сердечника нарезана резьба М12 длиной 18...20 мм. Катушка соленоида состоит из каркаса длиной 80...85 мм и обмоточного провода марки ПЭВ-2 диаметром 0,31 мм. Внутренние размеры катушки, куда входит сердечник, равны диаметру 20,5 мм или квадрату с размерами 20,5Х20,5 мм. После намотки наружный диаметр катушки составит ориентировочно 30 мм при толщине стенок каркаса до 1,5 мм. Число витков, рассчитанных на напряжение 220 В, равно 5400, и на каждый виток действует напряжение 0,04 В.

Соленоид вместе с пружинным механическим замком устанавливается на дверь, закрепляется винтами по разметке после проверки хода ригеля и надежного запирания двери. Для соединения соленоида с пружинным механизмом производится соответствующая доработка замка. Для увеличения тяговой силы соленоида необходимо с другого конца отверстия катушки закрепить дополнительный сердечник из электротехнической стали длиной 15...20 мм.

Электрический переключатель S2 является блокировочным и устанавливается также на входной двери. Его

контакты размыкаются при открывании двери и вновь замыкаются при закрывании. Это соответствует тому, что при открывании дверей все обмотки реле К1—К4 обесточиваются и их контакты возвращаются в исходное положение, подготавливая релейный автомат к следующему набору шифра и приходу нового посетителя, знающего этот шифр.

Соединение контактов блокировочного переключателя и подключение соленоида к источникам электропитания производятся высокопрочным кабелем с двойной изоляцией, который прокладывается по косяку двери и стене к пульту управления и кнопкам дешифратора.

Работает релейное сторожевое устройство следующим образом. После включения сторожевого устройства в сеть переменного тока или к постоянному источнику питания и замыкания контактов переключателя S1 напряжение сразу же подается на сетевой трансформатор питания Т1 и выпрямительное устройство, подготавливая его к эксплуатации, если перед этим был установлен соответствующий шифр. Как следует из приведенной на рис.3.13 принципиальной схемы, кодирующие вставки соединителей замыкают контакты А2—Х4, A3—Х6, А4—Х8, А7— X14, таким образом набирается шифр из пяти цифр 2, 3, 4, 6 и 7. В оставшиеся гнезда вставлены вилки Х2, Х10, Х16, Х18, соединенные с обмоткой реле К5.

Дешифровка кода и открывание двери могут производиться только в строго указанной последовательности:

сначала необходимо нажать кнопку переключателя S4, соответствующую первой цифре шифра 2, затем S5, S6, S8 и S9. Любое нажатие кнопок в другой последовательности к положительному результату не приводит, а если будут нажаты кнопки не из установленного шифра, то всегда произойдет общий сброс и устройство возвратится в исходное состояние. Например, если после правильного набора нескольких первых цифр, при которых срабатывают последовательно реле K1, К2, КЗ, будет нажата кнопка переключателя S3, то питание будет подано на электромагнитное реле К5, которое сработает и своими контактами K5.1 разомкнет питание реле К1, и произойдет общий сброс всех правильно набранных первых цифр шифра.

При правильном наборе шифра, когда нет ошибок, происходят следующие переключения. После нажатия на кнопку переключателя S4, соответствующую цифре 2 сработает реле К1, подготавливая устройство защиты к набору второй цифры шифра, так как будут замкнуты контакты К1.1, блокирующие электропитание реле К1, и одновременно будут замкнуты контакты К1.2, подготавливающие подачу питания на реле К2 и т.д. После нажатия на кнопку S5, соответствующую второй цифре шифра 3, питание с выпрямителя будет подано на обмотку реле К2 через цепочку S5, Х7, Х6, A3, К1.2 на К2. После срабатывания К2 контакты К2.2 подготавливают эту цепочку к подаче напряжения на реле КЗ и набору следующей цифры шифра. Контакты К2.1 самоблокируют подачу питания на реле К2. После нажатия на кнопку переключателя S6, соответствующую третьей цифре правильного кода, питание подается на обмотку реле КЗ, оно срабатывает, замыкая свои контакты КЗ.1 и КЗ.2. При этом замкнутые контакты К.3.1 самоблокируют питание реле КЗ, а контакты КЗ.2 подготавливают устройство к подаче напряжения питания на обмотку реле К4.

Теперь, правильно набирая предпоследнюю цифру шифра 6, необходимо нажать на кнопку переключателя S8 и подать напряжение питания на реле К4 по электрической цепи S8, Х13, Х12, А6, КЗ.2, обмотка реле К4, K5.1, S2. Реле К4, срабатывая, замыкает свои контакты К4.1 и К4.2. Контакты К4.1 самоблокируют питание реле после отпускания кнопки переключателя S8. Контакты К4.2 замыкают цепь питания электромагнита КМ1 или соленоида, подготавливая его к срабатыванию. После нажатия на кнопку переключателя S9 электропитание подается на электромагнит КМ1, который, срабатывая, открывает замок на входной двери.

Необходимо отметить, что при нажатии на любые кнопки переключателей S3, S7, S10 и S11 напряжение электропитания подается на обмотку реле К5, которое замыкает контакты К5.2 и размыкает контакты K5.1. При замыкании контактов электропитание сети переменного тока подается на электрический звонок, который будет работать в течение времени нажатия на указанные замыкающие кнопки. В некоторых случаях, для большей скрытности кодирования, цепь звонка исключают из схемы. Контакты К5.1 в разомкнутом состоянии обесточивают питание всех обмоток реле К1—К4, которые не позволяют сработать всей системе.

При правильной сборке и монтаже из заведомо исправных ЭРЭ релейное устройство в настройке не нуждается. Оно начинает работать сразу же после включения в сеть.

Вместо покупного унифицированного трансформатора питания в устройстве можно применить самодельный трансформатор, не уступающий по своим техническим характеристикам трансформатору типа ТН, но при условии правильного выполнения всех операций изготовления и соблюдения передовой технологии. Большинство основных технологических приемов не требуют значительной подготовительной работы. Основные из этих приемов изложены в предыдущих главах справочника, отступления от которых приводят к нежелательным последствиям. Моточные данные сетевого понижающего трансформатора питания Т1 самодельной конструкции с уменьшенным числом обмоток приведены в табл. 3.13.

Таблица 3.13. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в релейном сторожевом устройстве с пятизначным шифром

3-82.jpg

Основные электрические параметры

и технические характеристики

релейного сторожевого устройства с пятизначным шифром

Номинальное напряжение питающей сети

переменного тока, В .................... 220

Номинальная частота питающей сети

переменного тока, Гц .................... 50

Коэффициент нелинейных искажении питающей сети переменного тока, %, не более.............. 10

Номинальное напряжение питающего автономного

источника постоянного тока, В.............. 24

Пределы изменения напряжения питающей сети переменного тока, В..................... 187... 245

Пределы изменения частоты питающей сети

переменного тока, Гц.................... 49... 51

Пределы изменения напряжения постоянного тока

автономного источника питания, В........... 20... 25

Напряжения на выводах обмоток сетевого унифицированного трансформатора питания. В:

1 и 2; 4 и 5 ......................... 110

7 и 8; 9 и 10 ........................ 6,3

11 и 12; 11 и 15 ......................5

11 и 13; 14 и 16 ..................... .6,3

Напряжение питания реле постоянного тока, В .... 24

Время готовности сторожевого устройства после включения напряжения питания, с, не более ..... 0,2

Время срабатывания устройства после набора одной цифры шифра, с, не более ............ 0,1

Количество одновременно охраняемых объектов, шт . 1 Максимальное количество цифр шифра, шт ..... .9

Количество вариантов набора шифра, шт ........ 362 880

Сопротивление изоляции токоведущих проводников и частей устройства относительно металлического корпуса и между собой, МОм, не менее ........ 20

Помехозащищенность релейного автомата при воздействии внешнего электромагнитного поля;

дБ, не менее .......................... 100

Срок службы, ч, не менее .................. 4000

Вероятность безотказной работы устройства при риске заказчика в = 0,9, не менее ........ 0,98

кпд, %,не менее ........................ 82

Условия эксплуатации:

температура окружающей среды, °С ........ —25...+45

относительная влажность воздуха при температуре 22 °С, %, не более ................... 95±3

пониженное атмосферное давление воздуха, кПа (мм рт. ст.) ......................... 53,3 (400)

Рис. 3.14. Принципиальная схема релейного сторожевого устройства с пятизначным шифром.

Изображение: 

Таблица 3.13. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в релейном сторожевом устройстве с пя

Изображение: 

3. 9. Сторожевое устройство на двух микросхемах

3.9. СТОРОЖЕВОЕ УСТРОЙСТВО НА ДВУХ МИКРОСХЕМАХ

Электронное сторожевое устройство, предлагаемое к изготовлению в домашней мастерской, представляет собой полууниверсальную простую систему со световой сигнализацией, которая может быть установлена в городских квартирах, офисах, производственных помещениях, на садово-огородных участках и т. д. Устройство рассчитано на эксплуатацию в самых жестких климатических условиях при

воздействии механических нагрузок. Устройство достаточно устойчиво работает при температуре от -40 до 40 °С и при относительной влажности воздуха до 90+_3% при температуре 20 °С, а также при пониженном атмосферном давлении воздуха до 5 мм рт. ст. Работает сторожевое устройство от сети переменного тока напряжением 127 или 220 В частотой 50 Гц и преобразователя напряжения плюс 15 — ноль — минус 15 В.

Автоматическое устройство может применяться для охраны средств подвижного транспорта и может работать от бортовой электросети постоянного тока напряжением до 12 В. Сигнальные цепи, развернутые по периметру охраняемых объектов или территорий, обеспечивают мгновенное срабатывание системы при размыкании контактов конечных выключателей, но сигнал тревоги подается с задержкой.

Сторожевое устройство, собранное на двух ИМС, характеризуется малым потреблением электроэнергии как в рабочем, так и в холостом режимах эксплуатации. Оно обеспечивает временную задержку срабатывания системы световой сигнализации после несанкционированного вторжения на охраняемый объект, что дает возможность владельцу сторожевого устройства установить систему в исходное состояние до того, как оно будет приведено в действие и подаст сигнал тревоги. После срабатывания электронной схемы управления сигналы тревоги раздаются тоже не сразу, а через определенный промежуток времени: после того как сигнальная цепь будет разомкнута. Время подачи звукового сигнала или сирены ограничено работой специального таймера. Также устройство характеризуется автоматическим возвратом в начальное состояние после подачи сигналов тревоги и возвращением в ждущий режим эксплуатации с помощью ручного управления; возможностью установки сигнальных устройств тревоги и оповещения у соседей по квартире и по месту охраняемого объекта; скрытностью установки источника сигнализации и кнопок управления; максимальной защищенностью от ложных срабатываний.

Сигнальная цепь может быть выполнена в различных конструктивных исполнениях, которые определяются материально-техническими возможностями домашнего мастера и оснащением его радиолюбительской лаборатории. Сигнальная цепь может иметь практически неограниченную протяженность по периметру охраняемого объекта, но ее общее сопротивление не должно превышать 10 кОм. В качестве наиболее простых элементов сигнализации могут быть применены герконы, микропереключатели, контактные соединители, разрывные цепи.

Вся сигнальная цепь в ждущем режиме работы должна быть замкнута, и по ней должен протекать незначительный электрический ток, определенный данным схемным значением. И пока по этой цепи течет электрический ток, сигнальная система на внешние электромагнитные поля и другие излучатели энергии не реагирует. Необходимо отметить, что даже мощный сигнал тревоги после срабатывания устройства не создает больших неудобств соседям, так как действует (работает) определенное и заранее заданное время, после чего автоматически отключается и приходит в исходное состояние.

На рис. 3. 15 приведена принципиальная электрическая схема сторожевого устройства на двух микросхемах и семи транзисторах. Схема обладает высокой степенью универсальности, очень проста по составу комплектующих ЭРИ и ЭРЭ и легко читается.

Электронное сторожевое устройство включает в свой состав входные электрические цепи питания, сетевой понижающий трансформатор питания 77 унифицированной конструкции из серии «Габарит», выпрямительное устройство с емкостным фильтром, сигнальную цепь, электронный управляющий блок и выходные сигнальные цепи.

К сети переменного тока устройство подключается с помощью электрического соединителя XI типа «вилка» и электрической штепсельной розетки, рассчитанной на прохождение тока нагрузки до 6 А. Включается и выключается устройство с помощью однополюсного переключателя S1. На входе питающей сети установлен плавкий предохранитель F1, защищающий входные цепи от коротких замыканий и перегрузок, которые могут возникнуть из-за ошибок при сборке и монтаже и при неправильном включении первичных обмоток трансформатора.

Неоновая лампочка H1 тлеющего разряда сигнализирует о готовности устройства к эксплуатации. При включении устройства в сеть и замыкании контактов переключателя S1 лампочка H1 загорается, что свидетельствует о подаче переменного напряжения на первичную обмотку сетевого трансформатора. Конденсаторы С9 и С10, включенные на входе параллельно первичной обмотке трансформатора, защищают устройство от низкочастотных помех, проникающих к сеть питания переменного напряжения.

Сетевой понижающий трансформатор питания Т1 броневой конструкции изготавливается на магнитопроводе из электротехнической стали марки 3312 толщиной от 0, 2 до 0, 5 мм типоразмера ШЛМ 25Х32 с уменьшенным расходом меди. Унифицированный трансформатор имеет две разнесенные первичные обмотки и шесть вторичных обмоток с соответствующими обозначениями. На рис. 3. 15 показано подключение трансформатора к сети неременного тока напряжением 220 В. Для того чтобы включить устройство в сеть с напряжением 127 В, необходимо соединить выводы обмоток 1 и 6, 4 и 9, а напряжение 127 В подать на выводы 1 и 4 (6 и 9). На вторичных обмотках унифицированного трансформатора действуют следующие неременные напряжения: на выводах 11 и 12 — напряжение 5 В; 13 и 14 — 5 В; 15 и /б — 10 В; 17 и 18 — 10 В; 19 и 20 — 2,6 В; 21 и 22 — 2,6 В под нагрузкой. Номинальное значение тока на вторичной обмотке трансформатора не превышает 0,88 А. Вместо унифицированного покупного трансформатора можно применить самодельный трансформатор, который изготавливается по данным, приведенным в табл. 3.14.

Сетевой понижающий трансформатор Т1 обеспечивает расчетный уровень выпрямленного напряжения постоянного тока на выходе, полную гальваническую развязку вторичных цепей устройства от высокого напряжения переменного тока первичной сети и дополнительную электробезопасность при эксплуатации сторожевого устройства с низким напряжением на выходе вторичных обмоток.

Выпрямительное устройство собрано по двухполупериодной схеме со средним выводом вторичной обмотки на двух выпрямительных диодах малой мощности и работает на емкостный фильтр, выполненный на оксидном конденсаторе С1. Выпрямитель по такой схеме характеризуется невысоким уровнем пульсации выпрямленного напряжения, уменьшенным количеством примененных выпрямительных диодов и достаточно высоким обратным напряжением, действующим на комплекте выпрямительных диодов. Применяется выпрямитель со средней точкой в устройствах малой и средней мощности нагрузки.

Сторожевое устройство работает следующим образом. После замыкания контактов переключателя S1 и включения электропитания напряжение начинает поступать на

Таблица 3.14. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в сторожевом устройстве на двух микросхемах

3-91.jpg

сетевой понижающий трансформатор Т1 и загорается индикаторная лампочка H1, само сторожевое устройство при замкнутых контактах конечных выключателей В1 переходит в дежурный режим работы. К контактам Х2 и ХЗ можно подключить практически любое количество контактных групп и конечных выключателей. Использование ИМС в режиме ожидания дает значительный выигрыш в потреблении электроэнергии, которая не расходуется в периоды времени от момента автоматического включения до момента следующего включения. Примененные в сторожевом устройстве микросхемы серии К561ЛА7 относятся к параметрическому ряду ИМС, состоящих из комплекса микромощных микросхем второй и третьей степени интеграции на транзисторах, выполненных поспециальней технологии, и характеризуются жесткими требованиями к потребляемой энергии, массе, габаритным размерам в условиях значительного изменения напряжения питания при работе от одного источника. Диапазон напряжений электропитания микросхем серии К561 лежит в пределах от 3 до 15 В, допустимый уровень пульсации напряжения постоянного тока не превышает 0,2 В. Минимальное напряжение высокого уровня логической единицы на выходе микросхемы: 3, 6 В при напряжении питания 5 В и 7, 1 В при напряжении 10 В. Максимальное напряжение низкого уровня логического нуля на входе микросхемы: 1, 4 В при напряжении питания 5 В и 2, 9 В — при 10 В. Для нормальной работы микросхемы длительность фронтон входных импульсов должна быть не более 10, 5 и 1 мкс при напряжении питания 5, 10 и 15 В.

В соответствии с принятой классификацией ИМС БИС функциональный состав микросхемы с обозначением ЛА7 включает в себя четыре логических элемента 2И-НЕ. В данном случае два элемента каждой микросхемы являются таймерами, работающими в общей схеме управления.

При замкнутых контактах выключателя В1 таймеры микросхемы не работают. В это время на выходе третьего элемента второй ИМС DA2 (вывод 10) действует высокий уровень логической единицы, а это значит, что на обоих входах третьего элемента ИМС DA1 (выводы 8 и 9) также действует высокий уровень логической единицы.

При размыкании контактов переключателя В1 на входе третьего элемента ИМС DA1 (вывод 9) через резистор R3 появляется низкий уровень логического нуля, а его выход (вывод 10) переходит в состояние высокого уровня логической единицы. Включенные в схему резистор R3 и конденсатор С2 обеспечивают защиту устройства от ложных сигналов срабатывания, возникающих в результате электромагнитных наводок в соединительных цепях. После того как на выходе третьего элемента ИМС DA1 (вывод 10) появляется высокий уровень логической единицы, открывается транзистор VT2. Время открывания транзистора зависит от емкости конденсатора С5 и сопротивления резистора R12. Открывание транзистора VT2 приводит к разрядке конденсатора С4 и к срабатыванию первого таймера, собранного на первых двух элементах ИМС DA 1 (выводы 1—6). Для четкого завершения цикла работы первого таймера вход 1 первой ИМС соединен с выходом третьего элемента второй ИМС DA2 (выводы 8 и 9), которые остаются в состоянии логического нуля до тех пор, пока работает таймер. Как только первый таймер завершит свой цикл, выход третьего элемента второй ИМС DA2 (вывод 10) снова переходит в состояние высокого уровня логической единицы, и при этом на короткое время открывается транзистор VT4. Открывание транзистора VT4 обеспечивает запуск второго таймера после зарядки конденсатора С7. Второй таймер собран на двух элементах ИМС DA2 (выводы 1, 2,3 и 4, 5, 6).

С целью создания напряжения электропитания ИМС в устройстве собран параметрический стабилизатор на стабилитроне VD3, транзисторе VT1 и резисторе R2.

Сигнал, снимаемый с выхода второго таймера, преобразуется транзисторами VT3 и VT5 с напряжения 7, 5 В до значения напряжения источника постоянного тока. Транзисторы VT6 и VT7 образуют усилитель мощности, который обеспечивает в свою очередь четкое срабатывание ИМ. В качестве ИМ можно применить электромагнитное реле типа РЭС-10, которое подключается своей обмоткой к электрическим соединителям Х5 и Х6. Контакты этого реле, не показанные на схеме, замыкают соответствующие питающие цепи исполнительных звуковых и световых элементов.

При изготовлении универсального сторожевого устройства использованы следующие покупные комплектующие ЭРИ и ЭРЭ: ИМС DA1 типа К561ЛА7, DA2 — К561ЛА7; транзисторы VT1 типа КТ3102Д, VT2 — КТ3102Д, VT3 — КТ3102Д, VT4 — КТ3102Д, VT5 — КТ3102Д, VT6 — КТ3107Б, VT7 — КТ933Б;

стабилитрон VD3 типа Д814А; выпрямительные диоды VD1 типа КД204В, VD2 — КД204В, VD4 — КД521А, VD5 — КД521А, VD6 — КД521А, VD7 — КД521А, VD8 — КД521А, VD9 — КД521А, VD 11 — КД223; светодиод VD10 типа АЛ307А;

сетевой понижающий трансформатор питания Т1 унифицированной конструкции типа ТНП258-127/220-50; индикаторная лампочка H1 ТH-0,2-1; конденсаторы С1 типа К50-6-50В-200 мкф, С2 — К53-1А-20В-22 мкФ, СЗ — К73-17-63В-1 мкФ, С4 — К73-17-63В-1 мкф, С5 — КМ-5-50В-0. 1 мкФ, С6 — К73-17-63В-1 мкФ, С7 — К73-17-63В-1 мкФ, С8 — КМ-5-50В-0. 1 мкФ; резисторы R1 типа ВСа-2-200 кОм, R2 — ВСа-0, 5-2, 2 кОм, R3 -ВСа-0, 5-5, 6 кОм, R4 — ВСа-0, 25-10 МОм, R5 — ВСа-0, 25-10 кОм, R6 — ВСа-0, 25-330 кОм, R7 — ВСа-0, 25-1 МОм, R8 — ВСа-0, 25-10 МОм, R9 — ВСа-0, 25-10 кОм, R10 — ВСа-0, 25-1 МОм, R 11 — ВСа-0, 25-2, 2 МОм, R12 — ВСа-0, 25-10 кОм, R13 — ВСа-0, 25-22 кОм, R14 — ВСа-0, 5-22 кОм, R 15 — ВСа-0, 25-10 кОм, R16 — ВСа-0, 25-22 кОм, R 17 — ВСа-0, 25-10 кОм, R 18 — ВСа-0, 25-22 кОм, R19 — ВСа-0, 25-1, 8 кОм; плавкий предохранитель F1 типа ПМ-1-1А с держателем предохранителя; переключатели S1 типа П1Т-1-1, S2 — КМ1-1; электрические соединители X1 типа «вилка», Х2, ХЗ — КМЗ-1.

При изготовлении, регулировке, настройке и ремонте сторожевого устройства некоторые комплектующие изделия и ЭРЭ можно заменить без ухудшения основных электрических параметров и эксплуатационных характеристик. Например, резисторы типа ВСа можно заменить любыми постоянными резисторами типа МЛТ, ОМЛТ, МТ, УЛИ, Cl-4, C2-8; конденсаторы типа К73-17 — на К73-16, К73-11, К78-2, конденсаторы типа КМ-5 — на К10У-5, К10-17, КМ-6; выпрямительные диоды типа КД521А — на КД509А, Д220, Д220А, Д220Б, Д312; транзистор типа КТ3102Д — на КТ3102Е, КТ3107Е, КТ3107Ж, транзистор типа КТ933Б — на КТ939А, КТ644А, ГТ906АМ; ИМС типа К561ЛА7 — на 564ЛА7.

Основные электрические параметры и технические характеристики сторожевого устройства на двух микросхемах

Номинальное напряжение питающей сети

переменного тока, В.................... 220 или 127

Номинальная частота питающей сети переменного тока, Гц................... 50

Номинальное напряжение автономною источника

питания постоянного тока, В............... 12

Пределы изменения напряжения питающей сети переменного тока, В.................... 180... 240 или

110... 140 Пределы изменения частоты питающей сети переменного тока, Гц................... 49, 5... 50, 5

Пределы изменения напряжения автономного источника питания постоянного тока, В....... 9... 14

Коэффициент нелинейных искажений питающей сети переменного тока, %, не более............. 12

Время срабатывания системы, мс, не более...... 0, 2

Время задержки подачи сигнала тревоги после срабатывания системы, с............. 3... 30

Время подачи сигнала тревоги, мин........... 1... 10

Количество одновременно охраняемых объектов, шт. 1... 20 Сопротивление шлейфа, кОм, не более......... 10

Сопротивление изоляции токоведущих контактных групп и проводников устройства, подключающих конечные выключатели, МОм, не менее.............. 10

Помехозащищенность устройства от ложных срабатываний при воздействии внешних электромагнитных помех, дБ, не менее........ 100

Напряжение переменного тока на выводах обмоток сетевого трансформатора 77, В:

2 и 4............................. 110

7 и 9............................. 110

11 и 12........................... 5

13 и 14........................... 4, 95

15 и 16............................ 10

17 и 18........................... 10

19 и 20........................... 2, 6

21 и 22........................... 2, 6

Номинальное напряжение питания ИМС, В...... 7, 5

Максимальная выходная мощность сетевого

трансформатора питания 77, Вт........... 30

Срок службы, ч, не менее.................. 10 000

Вероятность безотказной работы сторожевого

устройства при риске заказчика в=0, 92, не менее 0, 98

кпд, %, не менее........................ 96

Условия эксплуатации:

температура окружающей среды, °С........ —25...+ 40

относительная влажность воздуха при температуре

окружающей среды 25°С, %, не более...... 90±3

атмосферное давление воздуха, мм рт. ст..... 200... 1000

t71.jpg

Рис. 3.15. Принципиальная схема сторожевого устройства на двух микросхемах.

Рис. 3.15. Принципиальная схема сторожевого устройства на двух микросхемах.

Изображение: 

Таблица 3.14. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в сторожевом устройстве на двух микро

Изображение: